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Introduction

The emphasis in this course is on problems—doing calculations and story problems. To

master problem solving one needs a tremendous amount of practice doing problems. The

more problems you do the better you will be at doing them, as patterns will start to emerge

in both the problems and in successful approaches to them. You will learn fastest and best

if you devote some time to doing problems every day.

Typically the most difficult problems are story problems, since they require some effort

before you can begin calculating. Here are some pointers for doing story problems:

1. Carefully read each problem twice before writing anything.

2. Assign letters to quantities that are described only in words; draw a diagram if

appropriate.

3. Decide which letters are constants and which are variables. A letter stands for a

constant if its value remains the same throughout the problem.

4. Using mathematical notation, write down what you know and then write down

what you want to find.

5. Decide what category of problem it is (this might be obvious if the problem comes

at the end of a particular chapter, but will not necessarily be so obvious if it comes

on an exam covering several chapters).

6. Double check each step as you go along; don’t wait until the end to check your

work.

7. Use common sense; if an answer is out of the range of practical possibilities, then

check your work to see where you went wrong.

11



12 Introduction

Suggestions for Using This Text

1. Read the example problems carefully, filling in any steps that are left out (ask

someone for help if you can’t follow the solution to a worked example).

2. Later use the worked examples to study by covering the solutions, and seeing if

you can solve the problems on your own.

3. Most exercises have answers in Appendix A; the availability of an answer is marked

by “⇒” at the end of the exercise. In the pdf version of the full text, clicking

on the arrow will take you to the answer. The answers should be used only as

a final check on your work, not as a crutch. Keep in mind that sometimes an

answer could be expressed in various ways that are algebraically equivalent, so

don’t assume that your answer is wrong just because it doesn’t have exactly the

same form as the answer in the back.

4. A few figures in the pdf and print versions of the book are marked with “(AP)” at

the end of the caption. Clicking on this should open a related interactive applet

or Sage worksheet in your web browser. Occasionally another link will do the

same thing, like this example. (Note to users of a printed text: the words “this

example” in the pdf file are blue, and are a link to a Sage worksheet.)

http://www.whitman.edu/mathematics/calculus_applets/sage/animated_cycloid


1
Analytic Geometry

Much of the mathematics in this chapter will be review for you. However, the examples

will be oriented toward applications and so will take some thought.

In the (x, y) coordinate system we normally write the x-axis horizontally, with positive

numbers to the right of the origin, and the y-axis vertically, with positive numbers above

the origin. That is, unless stated otherwise, we take “rightward” to be the positive x-

direction and “upward” to be the positive y-direction. In a purely mathematical situation,

we normally choose the same scale for the x- and y-axes. For example, the line joining the

origin to the point (a, a) makes an angle of 45◦ with the x-axis (and also with the y-axis).

In applications, often letters other than x and y are used, and often different scales are

chosen in the horizontal and vertical directions. For example, suppose you drop something

from a window, and you want to study how its height above the ground changes from

second to second. It is natural to let the letter t denote the time (the number of seconds

since the object was released) and to let the letter h denote the height. For each t (say,

at one-second intervals) you have a corresponding height h. This information can be

tabulated, and then plotted on the (t, h) coordinate plane, as shown in figure 1.0.1.

We use the word “quadrant” for each of the four regions into which the plane is

divided by the axes: the first quadrant is where points have both coordinates positive,

or the “northeast” portion of the plot, and the second, third, and fourth quadrants are

counted off counterclockwise, so the second quadrant is the northwest, the third is the

southwest, and the fourth is the southeast.

Suppose we have two points A and B in the (x, y)-plane. We often want to know the

change in x-coordinate (also called the “horizontal distance”) in going from A to B. This

13
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Figure 1.0.1 A data plot, height versus time.

is often written ∆x, where the meaning of ∆ (a capital delta in the Greek alphabet) is

“change in”. (Thus, ∆x can be read as “change in x” although it usually is read as “delta

x”. The point is that ∆x denotes a single number, and should not be interpreted as “delta

times x”.) For example, if A = (2, 1) and B = (3, 3), ∆x = 3 − 2 = 1. Similarly, the

“change in y” is written ∆y. In our example, ∆y = 3− 1 = 2, the difference between the

y-coordinates of the two points. It is the vertical distance you have to move in going from

A to B. The general formulas for the change in x and the change in y between a point

(x1, y1) and a point (x2, y2) are:

∆x = x2 − x1, ∆y = y2 − y1.

Note that either or both of these might be negative.

1.1 Lines

If we have two points A(x1, y1) and B(x2, y2), then we can draw one and only one line

through both points. By the slope of this line we mean the ratio of ∆y to ∆x. The slope

is often denoted m: m = ∆y/∆x = (y2 − y1)/(x2 − x1). For example, the line joining the

points (1,−2) and (3, 5) has slope (5 + 2)/(3− 1) = 7/2.

EXAMPLE 1.1.1 According to the 1990 U.S. federal income tax schedules, a head

of household paid 15% on taxable income up to $26050. If taxable income was between

$26050 and $134930, then, in addition, 28% was to be paid on the amount between $26050

and $67200, and 33% paid on the amount over $67200 (if any). Interpret the tax bracket



1.1 Lines 15

information (15%, 28%, or 33%) using mathematical terminology, and graph the tax on

the y-axis against the taxable income on the x-axis.

The percentages, when converted to decimal values 0.15, 0.28, and 0.33, are the slopes

of the straight lines which form the graph of the tax for the corresponding tax brackets.

The tax graph is what’s called a polygonal line, i.e., it’s made up of several straight line

segments of different slopes. The first line starts at the point (0,0) and heads upward

with slope 0.15 (i.e., it goes upward 15 for every increase of 100 in the x-direction), until

it reaches the point above x = 26050. Then the graph “bends upward,” i.e., the slope

changes to 0.28. As the horizontal coordinate goes from x = 26050 to x = 67200, the line

goes upward 28 for each 100 in the x-direction. At x = 67200 the line turns upward again

and continues with slope 0.33. See figure 1.1.1.
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Figure 1.1.1 Tax vs. income.

The most familiar form of the equation of a straight line is: y = mx+ b. Here m is the

slope of the line: if you increase x by 1, the equation tells you that you have to increase y

by m. If you increase x by ∆x, then y increases by ∆y = m∆x. The number b is called

the y-intercept, because it is where the line crosses the y-axis. If you know two points

on a line, the formula m = (y2− y1)/(x2−x1) gives you the slope. Once you know a point

and the slope, then the y-intercept can be found by substituting the coordinates of either

point in the equation: y1 = mx1 + b, i.e., b = y1 − mx1. Alternatively, one can use the

“point-slope” form of the equation of a straight line: start with (y− y1)/(x−x1) = m and

then multiply to get (y − y1) = m(x − x1), the point-slope form. Of course, this may be

further manipulated to get y = mx−mx1 + y1, which is essentially the “mx+ b” form.

It is possible to find the equation of a line between two points directly from the relation

(y− y1)/(x−x1) = (y2− y1)/(x2−x1), which says “the slope measured between the point

(x1, y1) and the point (x2, y2) is the same as the slope measured between the point (x1, y1)
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and any other point (x, y) on the line.” For example, if we want to find the equation of

the line joining our earlier points A(2, 1) and B(3, 3), we can use this formula:

y − 1

x− 2
=

3− 1

3− 2
= 2, so that y − 1 = 2(x− 2), i.e., y = 2x− 3.

Of course, this is really just the point-slope formula, except that we are not computing m

in a separate step.

The slope m of a line in the form y = mx+ b tells us the direction in which the line is

pointing. If m is positive, the line goes into the 1st quadrant as you go from left to right.

If m is large and positive, it has a steep incline, while if m is small and positive, then the

line has a small angle of inclination. If m is negative, the line goes into the 4th quadrant

as you go from left to right. If m is a large negative number (large in absolute value), then

the line points steeply downward; while if m is negative but near zero, then it points only

a little downward. These four possibilities are illustrated in figure 1.1.2.
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Figure 1.1.2 Lines with slopes 3, 0.1, −4, and −0.1.

If m = 0, then the line is horizontal: its equation is simply y = b.

There is one type of line that cannot be written in the form y = mx + b, namely,

vertical lines. A vertical line has an equation of the form x = a. Sometimes one says that

a vertical line has an “infinite” slope.

Sometimes it is useful to find the x-intercept of a line y = mx+ b. This is the x-value

when y = 0. Setting mx+ b equal to 0 and solving for x gives: x = −b/m. For example,

the line y = 2x− 3 through the points A(2, 1) and B(3, 3) has x-intercept 3/2.

EXAMPLE 1.1.2 Suppose that you are driving to Seattle at constant speed, and notice

that after you have been traveling for 1 hour (i.e., t = 1), you pass a sign saying it is 110

miles to Seattle, and after driving another half-hour you pass a sign saying it is 85 miles

to Seattle. Using the horizontal axis for the time t and the vertical axis for the distance y

from Seattle, graph and find the equation y = mt+ b for your distance from Seattle. Find

the slope, y-intercept, and t-intercept, and describe the practical meaning of each.

The graph of y versus t is a straight line because you are traveling at constant speed.

The line passes through the two points (1, 110) and (1.5, 85), so its slope is m = (85 −
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110)/(1.5− 1) = −50. The meaning of the slope is that you are traveling at 50 mph; m is

negative because you are traveling toward Seattle, i.e., your distance y is decreasing. The

word “velocity” is often used for m = −50, when we want to indicate direction, while the

word “speed” refers to the magnitude (absolute value) of velocity, which is 50 mph. To

find the equation of the line, we use the point-slope formula:

y − 110

t− 1
= −50, so that y = −50(t− 1) + 110 = −50t+ 160.

The meaning of the y-intercept 160 is that when t = 0 (when you started the trip) you were

160 miles from Seattle. To find the t-intercept, set 0 = −50t+160, so that t = 160/50 = 3.2.

The meaning of the t-intercept is the duration of your trip, from the start until you arrive

in Seattle. After traveling 3 hours and 12 minutes, your distance y from Seattle will be 0.

Exercises 1.1.

1. Find the equation of the line through (1, 1) and (−5,−3) in the form y = mx+ b. ⇒
2. Find the equation of the line through (−1, 2) with slope −2 in the form y = mx+ b. ⇒
3. Find the equation of the line through (−1, 1) and (5,−3) in the form y = mx+ b. ⇒
4. Change the equation y − 2x = 2 to the form y = mx + b, graph the line, and find the

y-intercept and x-intercept. ⇒
5. Change the equation x+y = 6 to the form y = mx+b, graph the line, and find the y-intercept

and x-intercept. ⇒
6. Change the equation x = 2y − 1 to the form y = mx + b, graph the line, and find the

y-intercept and x-intercept. ⇒
7. Change the equation 3 = 2y to the form y = mx+ b, graph the line, and find the y-intercept

and x-intercept. ⇒
8. Change the equation 2x + 3y + 6 = 0 to the form y = mx + b, graph the line, and find the

y-intercept and x-intercept. ⇒
9. Determine whether the lines 3x+ 6y = 7 and 2x+ 4y = 5 are parallel. ⇒

10. Suppose a triangle in the x, y–plane has vertices (−1, 0), (1, 0) and (0, 2). Find the equations
of the three lines that lie along the sides of the triangle in y = mx+ b form. ⇒

11. Suppose that you are driving to Seattle at constant speed. After you have been traveling
for an hour you pass a sign saying it is 130 miles to Seattle, and after driving another 20
minutes you pass a sign saying it is 105 miles to Seattle. Using the horizontal axis for the
time t and the vertical axis for the distance y from your starting point, graph and find the
equation y = mt + b for your distance from your starting point. How long does the trip to
Seattle take? ⇒

12. Let x stand for temperature in degrees Celsius (centigrade), and let y stand for temperature in
degrees Fahrenheit. A temperature of 0◦C corresponds to 32◦F, and a temperature of 100◦C
corresponds to 212◦F. Find the equation of the line that relates temperature Fahrenheit y to
temperature Celsius x in the form y = mx+ b. Graph the line, and find the point at which
this line intersects y = x. What is the practical meaning of this point? ⇒
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13. A car rental firm has the following charges for a certain type of car: $25 per day with 100
free miles included, $0.15 per mile for more than 100 miles. Suppose you want to rent a
car for one day, and you know you’ll use it for more than 100 miles. What is the equation
relating the cost y to the number of miles x that you drive the car? ⇒

14. A photocopy store advertises the following prices: 5/c per copy for the first 20 copies, 4/c per
copy for the 21st through 100th copy, and 3/c per copy after the 100th copy. Let x be the
number of copies, and let y be the total cost of photocopying. (a) Graph the cost as x goes
from 0 to 200 copies. (b) Find the equation in the form y = mx + b that tells you the cost
of making x copies when x is more than 100. ⇒

15. In the Kingdom of Xyg the tax system works as follows. Someone who earns less than 100
gold coins per month pays no tax. Someone who earns between 100 and 1000 gold coins
pays tax equal to 10% of the amount over 100 gold coins that he or she earns. Someone
who earns over 1000 gold coins must hand over to the King all of the money earned over
1000 in addition to the tax on the first 1000. (a) Draw a graph of the tax paid y versus the
money earned x, and give formulas for y in terms of x in each of the regions 0 ≤ x ≤ 100,
100 ≤ x ≤ 1000, and x ≥ 1000. (b) Suppose that the King of Xyg decides to use the second
of these line segments (for 100 ≤ x ≤ 1000) for x ≤ 100 as well. Explain in practical terms
what the King is doing, and what the meaning is of the y-intercept. ⇒

16. The tax for a single taxpayer is described in the figure 1.1.3. Use this information to graph
tax versus taxable income (i.e., x is the amount on Form 1040, line 37, and y is the amount on
Form 1040, line 38). Find the slope and y-intercept of each line that makes up the polygonal
graph, up to x = 97620. ⇒

1990 Tax Rate Schedules

Schedule X—Use if your filing status is
Single

If the amount Enter on of the

on Form 1040 But not Form 1040 amount

line 37 is over: over: line 38 over:

$0 $19,450 15% $0

19,450 47,050 $2,917.50+28% 19,450

47,050 97,620 $10,645.50+33% 47,050

Use Worksheet

97,620 ............ below to figure

your tax

Schedule Z—Use if your filing status is
Head of household

If the amount Enter on of the

on Form 1040 But not Form 1040 amount

line 37 is over: over: line 38 over:

$0 $26,050 15% $0

26,050 67,200 $3,907.50+28% 26,050

67,200 134,930 $15,429.50+33% 67,200

Use Worksheet

134,930 ............ below to figure

your tax

Figure 1.1.3 Tax Schedule.

17. Market research tells you that if you set the price of an item at $1.50, you will be able to sell
5000 items; and for every 10 cents you lower the price below $1.50 you will be able to sell
another 1000 items. Let x be the number of items you can sell, and let P be the price of an
item. (a) Express P linearly in terms of x, in other words, express P in the form P = mx+b.
(b) Express x linearly in terms of P . ⇒

18. An instructor gives a 100-point final exam, and decides that a score 90 or above will be a
grade of 4.0, a score of 40 or below will be a grade of 0.0, and between 40 and 90 the grading
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will be linear. Let x be the exam score, and let y be the corresponding grade. Find a formula
of the form y = mx+ b which applies to scores x between 40 and 90. ⇒

1.2 Distance Between Two Points; Circles

Given two points (x1, y1) and (x2, y2), recall that their horizontal distance from one another

is ∆x = x2−x1 and their vertical distance from one another is ∆y = y2−y1. (Actually, the

word “distance” normally denotes “positive distance”. ∆x and ∆y are signed distances,

but this is clear from context.) The actual (positive) distance from one point to the other

is the length of the hypotenuse of a right triangle with legs |∆x| and |∆y|, as shown in

figure 1.2.1. The Pythagorean theorem then says that the distance between the two points

is the square root of the sum of the squares of the horizontal and vertical sides:

distance =
√
(∆x)2 + (∆y)2 =

√
(x2 − x1)2 + (y2 − y1)2.

For example, the distance between points A(2, 1) and B(3, 3) is
√
(3− 2)2 + (3− 1)2 =

√
5.
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............
............
............
............
............
........

(x1, y1)

(x2, y2)

∆x

∆y

Figure 1.2.1 Distance between two points, ∆x and ∆y positive.

As a special case of the distance formula, suppose we want to know the distance of a

point (x, y) to the origin. According to the distance formula, this is
√
(x− 0)2 + (y − 0)2 =√

x2 + y2.

A point (x, y) is at a distance r from the origin if and only if
√

x2 + y2 = r, or, if we

square both sides: x2 + y2 = r2. This is the equation of the circle of radius r centered at

the origin. The special case r = 1 is called the unit circle; its equation is x2 + y2 = 1.

Similarly, if C(h, k) is any fixed point, then a point (x, y) is at a distance r from the

point C if and only if
√
(x− h)2 + (y − k)2 = r, i.e., if and only if

(x− h)2 + (y − k)2 = r2.

This is the equation of the circle of radius r centered at the point (h, k). For example, the

circle of radius 5 centered at the point (0,−6) has equation (x− 0)2 + (y −−6)2 = 25, or

x2+(y+6)2 = 25. If we expand this we get x2+y2+12y+36 = 25 or x2+y2+12y+11 = 0,

but the original form is usually more useful.
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EXAMPLE 1.2.1 Graph the circle x2 − 2x+ y2 + 4y − 11 = 0. With a little thought

we convert this to (x − 1)2 + (y + 2)2 − 16 = 0 or (x − 1)2 + (y + 2)2 = 16. Now we see

that this is the circle with radius 4 and center (1,−2), which is easy to graph.

Exercises 1.2.

1. Find the equation of the circle of radius 3 centered at:

a) (0, 0) d) (0, 3)

b) (5, 6) e) (0,−3)
c) (−5,−6) f) (3, 0)

⇒
2. For each pair of points A(x1, y1) and B(x2, y2) find (i) ∆x and ∆y in going from A to B,

(ii) the slope of the line joining A and B, (iii) the equation of the line joining A and B in
the form y = mx + b, (iv) the distance from A to B, and (v) an equation of the circle with
center at A that goes through B.

a) A(2, 0), B(4, 3) d) A(−2, 3), B(4, 3)

b) A(1,−1), B(0, 2) e) A(−3,−2), B(0, 0)

c) A(0, 0), B(−2,−2) f) A(0.01,−0.01), B(−0.01, 0.05)

⇒
3. Graph the circle x2 + y2 + 10y = 0.

4. Graph the circle x2 − 10x+ y2 = 24.

5. Graph the circle x2 − 6x+ y2 − 8y = 0.

6. Find the standard equation of the circle passing through (−2, 1) and tangent to the line
3x− 2y = 6 at the point (4, 3). Sketch. (Hint: The line through the center of the circle and
the point of tangency is perpendicular to the tangent line.) ⇒

1.3 Functions

A function y = f(x) is a rule for determining y when we’re given a value of x. For

example, the rule y = f(x) = 2x + 1 is a function. Any line y = mx + b is called a

linearfunction. The graph of a function looks like a curve above (or below) the x-axis,

where for any value of x the rule y = f(x) tells us how far to go above (or below) the

x-axis to reach the curve.

Functions can be defined in various ways: by an algebraic formula or several algebraic

formulas, by a graph, or by an experimentally determined table of values. (In the latter

case, the table gives a bunch of points in the plane, which we might then interpolate with

a smooth curve, if that makes sense.)

Given a value of x, a function must give at most one value of y. Thus, vertical lines

are not functions. For example, the line x = 1 has infinitely many values of y if x = 1. It
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is also true that if x is any number not 1 there is no y which corresponds to x, but that is

not a problem—only multiple y values is a problem.

In addition to lines, another familiar example of a function is the parabola y = f(x) =

x2. We can draw the graph of this function by taking various values of x (say, at regular

intervals) and plotting the points (x, f(x)) = (x, x2). Then connect the points with a

smooth curve. (See figure 1.3.1.)

The two examples y = f(x) = 2x + 1 and y = f(x) = x2 are both functions which

can be evaluated at any value of x from negative infinity to positive infinity. For many

functions, however, it only makes sense to take x in some interval or outside of some

“forbidden” region. The interval of x-values at which we’re allowed to evaluate the function

is called the domain of the function.

.................................................................................................................................................................................................................
................
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.........
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........
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......
......
......
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.....
..

y = f(x) = x2

........
........
.........
..........
..........
...........
.............
...............

.................
.....................

...........................

y = f(x) =
√
x

...................................................................................................................................................................................

...................................................................................................................................................................................

y = f(x) = 1/x

Figure 1.3.1 Some graphs.

For example, the square-root function y = f(x) =
√
x is the rule which says, given an

x-value, take the nonnegative number whose square is x. This rule only makes sense if x

is positive or zero. We say that the domain of this function is x ≥ 0, or more formally

{x ∈ R | x ≥ 0}. Alternately, we can use interval notation, and write that the domain is

[0,∞). (In interval notation, square brackets mean that the endpoint is included, and a

parenthesis means that the endpoint is not included.) The fact that the domain of y =
√
x

is [0,∞) means that in the graph of this function ((see figure 1.3.1) we have points (x, y)

only above x-values on the right side of the x-axis.

Another example of a function whose domain is not the entire x-axis is: y = f(x) =

1/x, the reciprocal function. We cannot substitute x = 0 in this formula. The function

makes sense, however, for any nonzero x, so we take the domain to be: {x ∈ R | x ̸= 0}.
The graph of this function does not have any point (x, y) with x = 0. As x gets close to

0 from either side, the graph goes off toward infinity. We call the vertical line x = 0 an

asymptote.

To summarize, two reasons why certain x-values are excluded from the domain of a

function are that (i) we cannot divide by zero, and (ii) we cannot take the square root
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of a negative number. We will encounter some other ways in which functions might be

undefined later.

Another reason why the domain of a function might be restricted is that in a given

situation the x-values outside of some range might have no practical meaning. For example,

if y is the area of a square of side x, then we can write y = f(x) = x2. In a purely

mathematical context the domain of the function y = x2 is all of R. But in the story-

problem context of finding areas of squares, we restrict the domain to positive values of x,

because a square with negative or zero side makes no sense.

In a problem in pure mathematics, we usually take the domain to be all values of x

at which the formulas can be evaluated. But in a story problem there might be further

restrictions on the domain because only certain values of x are of interest or make practical

sense.

In a story problem, often letters different from x and y are used. For example, the

volume V of a sphere is a function of the radius r, given by the formula V = f(r) = 4/3πr
3.

Also, letters different from f may be used. For example, if y is the velocity of something

at time t, we may write y = v(t) with the letter v (instead of f) standing for the velocity

function (and t playing the role of x).

The letter playing the role of x is called the independent variable, and the letter

playing the role of y is called the dependent variable (because its value “depends on”

the value of the independent variable). In story problems, when one has to translate from

English into mathematics, a crucial step is to determine what letters stand for variables.

If only words and no letters are given, then we have to decide which letters to use. Some

letters are traditional. For example, almost always, t stands for time.

EXAMPLE 1.3.1 An open-top box is made from an a×b rectangular piece of cardboard

by cutting out a square of side x from each of the four corners, and then folding the sides

up and sealing them with duct tape. Find a formula for the volume V of the box as a

function of x, and find the domain of this function.

The box we get will have height x and rectangular base of dimensions a−2x by b−2x.

Thus,

V = f(x) = x(a− 2x)(b− 2x).

Here a and b are constants, and V is the variable that depends on x, i.e., V is playing the

role of y.

This formula makes mathematical sense for any x, but in the story problem the domain

is much less. In the first place, x must be positive. In the second place, it must be less

than half the length of either of the sides of the cardboard. Thus, the domain is

{x ∈ R | 0 < x <
1

2
(minimum of a and b)}.
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In interval notation we write: the domain is the interval (0,min(a, b)/2). (You might think

about whether we could allow 0 or min(a, b)/2 to be in the domain. They make a certain

physical sense, though we normally would not call the result a box. If we were to allow

these values, what would the corresponding volumes be? Does that make sense?)

EXAMPLE 1.3.2 Circle of radius r centered at the origin The equation for

this circle is usually given in the form x2 + y2 = r2. To write the equation in the form

y = f(x) we solve for y, obtaining y = ±
√
r2 − x2. But this is not a function, because

when we substitute a value in (−r, r) for x there are two corresponding values of y. To get

a function, we must choose one of the two signs in front of the square root. If we choose

the positive sign, for example, we get the upper semicircle y = f(x) =
√
r2 − x2 (see

figure 1.3.2). The domain of this function is the interval [−r, r], i.e., x must be between −r

and r (including the endpoints). If x is outside of that interval, then r2 − x2 is negative,

and we cannot take the square root. In terms of the graph, this just means that there are

no points on the curve whose x-coordinate is greater than r or less than −r.

−r r
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Figure 1.3.2 Upper semicircle y =
√
r2 − x2

EXAMPLE 1.3.3 Find the domain of

y = f(x) =
1√

4x− x2
.

To answer this question, we must rule out the x-values that make 4x−x2 negative (because

we cannot take the square root of a negative number) and also the x-values that make

4x − x2 zero (because if 4x − x2 = 0, then when we take the square root we get 0, and

we cannot divide by 0). In other words, the domain consists of all x for which 4x− x2 is

strictly positive. We give two different methods to find out when 4x− x2 > 0.

First method. Factor 4x − x2 as x(4 − x). The product of two numbers is positive

when either both are positive or both are negative, i.e., if either x > 0 and 4 − x > 0,
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or else x < 0 and 4 − x < 0. The latter alternative is impossible, since if x is negative,

then 4 − x is greater than 4, and so cannot be negative. As for the first alternative, the

condition 4− x > 0 can be rewritten (adding x to both sides) as 4 > x, so we need: x > 0

and 4 > x (this is sometimes combined in the form 4 > x > 0, or, equivalently, 0 < x < 4).

In interval notation, this says that the domain is the interval (0, 4).

Second method. Write 4x − x2 as −(x2 − 4x), and then complete the square,

obtaining −
(
(x − 2)2 − 4

)
= 4 − (x − 2)2. For this to be positive we need (x − 2)2 < 4,

which means that x− 2 must be less than 2 and greater than −2: −2 < x− 2 < 2. Adding

2 to everything gives 0 < x < 4. Both of these methods are equally correct; you may use

either in a problem of this type.

A function does not always have to be given by a single formula, as we have already

seen (in the income tax problem, for example). Suppose that y = v(t) is the velocity

function for a car which starts out from rest (zero velocity) at time t = 0; then increases

its speed steadily to 20 m/sec, taking 10 seconds to do this; then travels at constant speed

20 m/sec for 15 seconds; and finally applies the brakes to decrease speed steadily to 0,

taking 5 seconds to do this. The formula for y = v(t) is different in each of the three time

intervals: first y = 2x, then y = 20, then y = −4x + 120. The graph of this function is

shown in figure 1.3.3.
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Figure 1.3.3 A velocity function.

Not all functions are given by formulas at all. A function can be given by an ex-

perimentally determined table of values, or by a description other than a formula. For

example, the population y of the U.S. is a function of the time t: we can write y = f(t).

This is a perfectly good function—we could graph it (up to the present) if we had data for

various t—but we can’t find an algebraic formula for it.
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Exercises 1.3.

Find the domain of each of the following functions:

1. y = f(x) =
√
2x− 3 ⇒

2. y = f(x) = 1/(x+ 1) ⇒
3. y = f(x) = 1/(x2 − 1) ⇒
4. y = f(x) =

√
−1/x ⇒

5. y = f(x) = 3
√
x ⇒

6. y = f(x) = 4
√
x ⇒

7. y = f(x) =
√

r2 − (x− h)2 , where r is a positive constant. ⇒
8. y = f(x) =

√
1− (1/x) ⇒

9. y = f(x) = 1/
√

1− (3x)2 ⇒
10. y = f(x) =

√
x+ 1/(x− 1) ⇒

11. y = f(x) = 1/(
√
x− 1) ⇒

12. Find the domain of h(x) =

{
(x2 − 9)/(x− 3) x ̸= 3
6 if x = 3.

⇒

13. Suppose f(x) = 3x − 9 and g(x) =
√
x. What is the domain of the composition (g ◦ f)(x)?

(Recall that composition is defined as (g ◦ f)(x) = g(f(x)).) What is the domain of
(f ◦ g)(x)? ⇒

14. A farmer wants to build a fence along a river. He has 500 feet of fencing and wants to enclose
a rectangular pen on three sides (with the river providing the fourth side). If x is the length
of the side perpendicular to the river, determine the area of the pen as a function of x. What
is the domain of this function? ⇒

15. A can in the shape of a cylinder is to be made with a total of 100 square centimeters of
material in the side, top, and bottom; the manufacturer wants the can to hold the maximum
possible volume. Write the volume as a function of the radius r of the can; find the domain
of the function. ⇒

16. A can in the shape of a cylinder is to be made to hold a volume of one liter (1000 cubic
centimeters). The manufacturer wants to use the least possible material for the can. Write
the surface area of the can (total of the top, bottom, and side) as a function of the radius r
of the can; find the domain of the function. ⇒

1.4 Shifts and Dilations

Many functions in applications are built up from simple functions by inserting constants

in various places. It is important to understand the effect such constants have on the

appearance of the graph.

Horizontal shifts. If we replace x by x−C everywhere it occurs in the formula for f(x),

then the graph shifts over C to the right. (If C is negative, then this means that the graph

shifts over |C| to the left.) For example, the graph of y = (x−2)2 is the x2-parabola shifted

over to have its vertex at the point 2 on the x-axis. The graph of y = (x+1)2 is the same
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parabola shifted over to the left so as to have its vertex at −1 on the x-axis. Note well:

when replacing x by x − C we must pay attention to meaning, not merely appearance.

Starting with y = x2 and literally replacing x by x− 2 gives y = x− 22. This is y = x− 4,

a line with slope 1, not a shifted parabola.

Vertical shifts. If we replace y by y − D, then the graph moves up D units. (If D is

negative, then this means that the graph moves down |D| units.) If the formula is written

in the form y = f(x) and if y is replaced by y−D to get y−D = f(x), we can equivalently

move D to the other side of the equation and write y = f(x) + D. Thus, this principle

can be stated: to get the graph of y = f(x) +D, take the graph of y = f(x) and move it

D units up. For example, the function y = x2 − 4x = (x − 2)2 − 4 can be obtained from

y = (x− 2)2 (see the last paragraph) by moving the graph 4 units down. The result is the

x2-parabola shifted 2 units to the right and 4 units down so as to have its vertex at the

point (2,−4).

Warning. Do not confuse f(x)+D and f(x+D). For example, if f(x) is the function x2,

then f(x) + 2 is the function x2 +2, while f(x+2) is the function (x+2)2 = x2 +4x+4.

EXAMPLE 1.4.1 Circles An important example of the above two principles starts

with the circle x2 + y2 = r2. This is the circle of radius r centered at the origin. (As we

saw, this is not a single function y = f(x), but rather two functions y = ±
√
r2 − x2 put

together; in any case, the two shifting principles apply to equations like this one that are

not in the form y = f(x).) If we replace x by x− C and replace y by y −D—getting the

equation (x − C)2 + (y − D)2 = r2—the effect on the circle is to move it C to the right

and D up, thereby obtaining the circle of radius r centered at the point (C,D). This tells

us how to write the equation of any circle, not necessarily centered at the origin.

We will later want to use two more principles concerning the effects of constants on

the appearance of the graph of a function.

Horizontal dilation. If x is replaced by x/A in a formula and A > 1, then the effect on

the graph is to expand it by a factor of A in the x-direction (away from the y-axis). If A

is between 0 and 1 then the effect on the graph is to contract by a factor of 1/A (towards

the y-axis). We use the word “dilate” to mean expand or contract.

For example, replacing x by x/0.5 = x/(1/2) = 2x has the effect of contracting toward

the y-axis by a factor of 2. If A is negative, we dilate by a factor of |A| and then flip

about the y-axis. Thus, replacing x by −x has the effect of taking the mirror image of the

graph with respect to the y-axis. For example, the function y =
√
−x, which has domain

{x ∈ R | x ≤ 0}, is obtained by taking the graph of
√
x and flipping it around the y-axis

into the second quadrant.
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Vertical dilation. If y is replaced by y/B in a formula and B > 0, then the effect on

the graph is to dilate it by a factor of B in the vertical direction. As before, this is an

expansion or contraction depending on whether B is larger or smaller than one. Note that

if we have a function y = f(x), replacing y by y/B is equivalent to multiplying the function

on the right by B: y = Bf(x). The effect on the graph is to expand the picture away from

the x-axis by a factor of B if B > 1, to contract it toward the x-axis by a factor of 1/B if

0 < B < 1, and to dilate by |B| and then flip about the x-axis if B is negative.

EXAMPLE 1.4.2 Ellipses A basic example of the two expansion principles is given

by an ellipse of semimajor axis a and semiminor axis b. We get such an ellipse by

starting with the unit circle—the circle of radius 1 centered at the origin, the equation

of which is x2 + y2 = 1—and dilating by a factor of a horizontally and by a factor of b

vertically. To get the equation of the resulting ellipse, which crosses the x-axis at ±a and

crosses the y-axis at ±b, we replace x by x/a and y by y/b in the equation for the unit

circle. This gives (x
a

)2
+
(y
b

)2
= 1 or

x2

a2
+

y2

b2
= 1.

Finally, if we want to analyze a function that involves both shifts and dilations, it

is usually simplest to work with the dilations first, and then the shifts. For instance, if

we want to dilate a function by a factor of A in the x-direction and then shift C to the

right, we do this by replacing x first by x/A and then by (x − C) in the formula. As an

example, suppose that, after dilating our unit circle by a in the x-direction and by b in the

y-direction to get the ellipse in the last paragraph, we then wanted to shift it a distance

h to the right and a distance k upward, so as to be centered at the point (h, k). The new

ellipse would have equation

(
x− h

a

)2

+

(
y − k

b

)2

= 1.

Note well that this is different than first doing shifts by h and k and then dilations by a

and b: (x
a
− h
)2

+
(y
b
− k
)2

= 1.

See figure 1.4.1.



28 Chapter 1 Analytic Geometry

1 2 3−1

1

2

3

4

−2

−1

.......

.......

.......

.......

.......

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
.........
.........
..........

...........
.............

..................

..............
............
..........
.........
.........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

0 1 2 3 4

0

1

2

3

4

5

6

.......

.......

.......

.......

.......

.......

.......

.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
.........
.........
..........

...........
.............

..................

..............
............
..........
.........
.........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

Figure 1.4.1 Ellipses:
(
x−1
2

)2
+

(
y−1
3

)2
= 1 on the left,

(
x
2
− 1

)2
+

(
y
3
− 1

)2
= 1 on the

right.

Exercises 1.4.

Starting with the graph of y =
√
x, the graph of y = 1/x, and the graph of y =

√
1− x2 (the

upper unit semicircle), sketch the graph of each of the following functions:

1. f(x) =
√
x− 2 2. f(x) = −1− 1/(x+ 2)

3. f(x) = 4 +
√
x+ 2 4. y = f(x) = x/(1− x)

5. y = f(x) = −
√
−x 6. f(x) = 2 +

√
1− (x− 1)2

7. f(x) = −4 +
√
−(x− 2) 8. f(x) = 2

√
1− (x/3)2

9. f(x) = 1/(x+ 1) 10. f(x) = 4 + 2
√

1− (x− 5)2/9

11. f(x) = 1 + 1/(x− 1) 12. f(x) =
√

100− 25(x− 1)2 + 2

The graph of f(x) is shown below. Sketch the graphs of the following functions.

13. y = f(x− 1)
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14. y = 1 + f(x+ 2)

15. y = 1 + 2f(x)

16. y = 2f(3x)

17. y = 2f(3(x− 2)) + 1

18. y = (1/2)f(3x− 3)

19. y = f(1 + x/3) + 2



2
Instantaneous Rate of Change:

The Derivative

2.1 The slope of a function

Suppose that y is a function of x, say y = f(x). It is often necessary to know how sensitive

the value of y is to small changes in x.

EXAMPLE 2.1.1 Take, for example, y = f(x) =
√
625− x2 (the upper semicircle of

radius 25 centered at the origin). When x = 7, we find that y =
√
625− 49 = 24. Suppose

we want to know how much y changes when x increases a little, say to 7.1 or 7.01.

In the case of a straight line y = mx+b, the slope m = ∆y/∆x measures the change in

y per unit change in x. This can be interpreted as a measure of “sensitivity”; for example,

if y = 100x + 5, a small change in x corresponds to a change one hundred times as large

in y, so y is quite sensitive to changes in x.

Let us look at the same ratio ∆y/∆x for our function y = f(x) =
√

625− x2 when x

changes from 7 to 7.1. Here ∆x = 7.1− 7 = 0.1 is the change in x, and

∆y = f(x+∆x)− f(x) = f(7.1)− f(7)

=
√
625− 7.12 −

√
625− 72 ≈ 23.9706− 24 = −0.0294.

Thus, ∆y/∆x ≈ −0.0294/0.1 = −0.294. This means that y changes by less than one

third the change in x, so apparently y is not very sensitive to changes in x at x = 7.

We say “apparently” here because we don’t really know what happens between 7 and 7.1.

Perhaps y changes dramatically as x runs through the values from 7 to 7.1, but at 7.1 y

just happens to be close to its value at 7. This is not in fact the case for this particular

function, but we don’t yet know why.

29
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One way to interpret the above calculation is by reference to a line. We have computed

the slope of the line through (7, 24) and (7.1, 23.9706), called a chord of the circle. In

general, if we draw the chord from the point (7, 24) to a nearby point on the semicircle

(7 + ∆x, f(7 + ∆x)), the slope of this chord is the so-called difference quotient

slope of chord =
f(7 + ∆x)− f(7)

∆x
=

√
625− (7 + ∆x)2 − 24

∆x
.

For example, if x changes only from 7 to 7.01, then the difference quotient (slope of the

chord) is approximately equal to (23.997081 − 24)/0.01 = −0.2919. This is slightly less

steep than the chord from (7, 24) to (7.1, 23.9706).

As the second value 7 + ∆x moves in towards 7, the chord joining (7, f(7)) to (7 +

∆x, f(7+∆x)) shifts slightly. As indicated in figure 2.1.1, as ∆x gets smaller and smaller,

the chord joining (7, 24) to (7+∆x, f(7+∆x)) gets closer and closer to the tangent line

to the circle at the point (7, 24). (Recall that the tangent line is the line that just grazes

the circle at that point, i.e., it doesn’t meet the circle at any second point.) Thus, as ∆x

gets smaller and smaller, the slope ∆y/∆x of the chord gets closer and closer to the slope

of the tangent line. This is actually quite difficult to see when ∆x is small, because of the

scale of the graph. The values of ∆x used for the figure are 1, 5, 10 and 15, not really very

small values. The tangent line is the one that is uppermost at the right hand endpoint.
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Figure 2.1.1 Chords approximating the tangent line. (AP)

So far we have found the slopes of two chords that should be close to the slope of

the tangent line, but what is the slope of the tangent line exactly? Since the tangent line

touches the circle at just one point, we will never be able to calculate its slope directly,

using two “known” points on the line. What we need is a way to capture what happens

to the slopes of the chords as they get “closer and closer” to the tangent line.

http://www.whitman.edu/mathematics/calculus_applets/jsxgraph/secant_lines.html
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Instead of looking at more particular values of ∆x, let’s see what happens if we do

some algebra with the difference quotient using just ∆x. The slope of a chord from (7, 24)

to a nearby point is given by√
625− (7 + ∆x)2 − 24

∆x
=

√
625− (7 + ∆x)2 − 24

∆x

√
625− (7 + ∆x)2 + 24√
625− (7 + ∆x)2 + 24

=
625− (7 + ∆x)2 − 242

∆x(
√

625− (7 + ∆x)2 + 24)

=
49− 49− 14∆x−∆x2

∆x(
√

625− (7 + ∆x)2 + 24)

=
∆x(−14−∆x)

∆x(
√

625− (7 + ∆x)2 + 24)

=
−14−∆x√

625− (7 + ∆x)2 + 24

Now, can we tell by looking at this last formula what happens when ∆x gets very close to

zero? The numerator clearly gets very close to −14 while the denominator gets very close to√
625− 72+24 = 48. Is the fraction therefore very close to −14/48 = −7/24 ∼= −0.29167?

It certainly seems reasonable, and in fact it is true: as ∆x gets closer and closer to zero,

the difference quotient does in fact get closer and closer to −7/24, and so the slope of the

tangent line is exactly −7/24.

What about the slope of the tangent line at x = 12? Well, 12 can’t be all that different

from 7; we just have to redo the calculation with 12 instead of 7. This won’t be hard, but

it will be a bit tedious. What if we try to do all the algebra without using a specific value

for x? Let’s copy from above, replacing 7 by x. We’ll have to do a bit more than that—for
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example, the “24” in the calculation came from
√
625− 72, so we’ll need to fix that too.√

625− (x+∆x)2 −
√
625− x2

∆x
=

=

√
625− (x+∆x)2 −

√
625− x2

∆x

√
625− (x+∆x)2 +

√
625− x2√

625− (x+∆x)2 +
√
625− x2

=
625− (x+∆x)2 − 625 + x2

∆x(
√
625− (x+∆x)2 +

√
625− x2)

=
625− x2 − 2x∆x−∆x2 − 625 + x2

∆x(
√
625− (x+∆x)2 +

√
625− x2)

=
∆x(−2x−∆x)

∆x(
√
625− (x+∆x)2 +

√
625− x2)

=
−2x−∆x√

625− (x+∆x)2 +
√
625− x2

Now what happens when ∆x is very close to zero? Again it seems apparent that the

quotient will be very close to

−2x√
625− x2 +

√
625− x2

=
−2x

2
√
625− x2

=
−x√

625− x2
.

Replacing x by 7 gives −7/24, as before, and now we can easily do the computation for 12

or any other value of x between −25 and 25.

So now we have a single, simple formula, −x/
√
625− x2, that tells us the slope of the

tangent line for any value of x. This slope, in turn, tells us how sensitive the value of y is

to changes in the value of x.

What do we call such a formula? That is, a formula with one variable, so that substi-

tuting an “input” value for the variable produces a new “output” value? This is a function.

Starting with one function,
√
625− x2, we have derived, by means of some slightly nasty

algebra, a new function, −x/
√

625− x2, that gives us important information about the

original function. This new function in fact is called the derivative of the original func-

tion. If the original is referred to as f or y then the derivative is often written f ′ or y′ and

pronounced “f prime” or “y prime”, so in this case we might write f ′(x) = −x/
√
625− x2.

At a particular point, say x = 7, we say that f ′(7) = −7/24 or “f prime of 7 is −7/24” or

“the derivative of f at 7 is −7/24.”

To summarize, we compute the derivative of f(x) by forming the difference quotient

f(x+∆x)− f(x)

∆x
, (2.1.1)

which is the slope of a line, then we figure out what happens when ∆x gets very close to

0.
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We should note that in the particular case of a circle, there’s a simple way to find the

derivative. Since the tangent to a circle at a point is perpendicular to the radius drawn

to the point of contact, its slope is the negative reciprocal of the slope of the radius. The

radius joining (0, 0) to (7, 24) has slope 24/7. Hence, the tangent line has slope −7/24. In

general, a radius to the point (x,
√

625− x2) has slope
√
625− x2/x, so the slope of the

tangent line is −x/
√
625− x2, as before. It is NOT always true that a tangent line is

perpendicular to a line from the origin—don’t use this shortcut in any other circumstance.

As above, and as you might expect, for different values of x we generally get different

values of the derivative f ′(x). Could it be that the derivative always has the same value?

This would mean that the slope of f , or the slope of its tangent line, is the same everywhere.

One curve that always has the same slope is a line; it seems odd to talk about the tangent

line to a line, but if it makes sense at all the tangent line must be the line itself. It is not

hard to see that the derivative of f(x) = mx+ b is f ′(x) = m; see exercise 6.

Exercises 2.1.

1. Draw the graph of the function y = f(x) =
√

169− x2 between x = 0 and x = 13. Find the
slope ∆y/∆x of the chord between the points of the circle lying over (a) x = 12 and x = 13,
(b) x = 12 and x = 12.1, (c) x = 12 and x = 12.01, (d) x = 12 and x = 12.001. Now use
the geometry of tangent lines on a circle to find (e) the exact value of the derivative f ′(12).
Your answers to (a)–(d) should be getting closer and closer to your answer to (e). ⇒

2. Use geometry to find the derivative f ′(x) of the function f(x) =
√

625− x2 in the text for
each of the following x: (a) 20, (b) 24, (c) −7, (d) −15. Draw a graph of the upper semicircle,
and draw the tangent line at each of these four points. ⇒

3. Draw the graph of the function y = f(x) = 1/x between x = 1/2 and x = 4. Find the slope
of the chord between (a) x = 3 and x = 3.1, (b) x = 3 and x = 3.01, (c) x = 3 and x = 3.001.
Now use algebra to find a simple formula for the slope of the chord between (3, f(3)) and
(3 + ∆x, f(3 + ∆x)). Determine what happens when ∆x approaches 0. In your graph of
y = 1/x, draw the straight line through the point (3, 1/3) whose slope is this limiting value
of the difference quotient as ∆x approaches 0. ⇒

4. Find an algebraic expression for the difference quotient
(
f(1+∆x)−f(1)

)
/∆x when f(x) =

x2 − (1/x). Simplify the expression as much as possible. Then determine what happens as
∆x approaches 0. That value is f ′(1). ⇒

5. Draw the graph of y = f(x) = x3 between x = 0 and x = 1.5. Find the slope of the chord
between (a) x = 1 and x = 1.1, (b) x = 1 and x = 1.001, (c) x = 1 and x = 1.00001.
Then use algebra to find a simple formula for the slope of the chord between 1 and 1 + ∆x.
(Use the expansion (A+B)3 = A3 + 3A2B + 3AB2 +B3.) Determine what happens as ∆x
approaches 0, and in your graph of y = x3 draw the straight line through the point (1, 1)
whose slope is equal to the value you just found. ⇒

6. Find an algebraic expression for the difference quotient (f(x+∆x)− f(x))/∆x when f(x) =
mx+ b. Simplify the expression as much as possible. Then determine what happens as ∆x
approaches 0. That value is f ′(x). ⇒
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7. Sketch the unit circle. Discuss the behavior of the slope of the tangent line at various angles
around the circle. Which trigonometric function gives the slope of the tangent line at an
angle θ? Why? Hint: think in terms of ratios of sides of triangles.

8. Sketch the parabola y = x2. For what values of x on the parabola is the slope of the tangent
line positive? Negative? What do you notice about the graph at the point(s) where the sign
of the slope changes from positive to negative and vice versa?

2.2 An example

We started the last section by saying, “It is often necessary to know how sensitive the

value of y is to small changes in x.” We have seen one purely mathematical example of

this: finding the “steepness” of a curve at a point is precisely this problem. Here is a more

applied example.

With careful measurement it might be possible to discover that a dropped ball has

height h(t) = h0−kt2, t seconds after it is released. (Here h0 is the initial height of the ball,

when t = 0, and k is some number determined by the experiment.) A natural question is

then, “How fast is the ball going at time t?” We can certainly get a pretty good idea with a

little simple arithmetic. To make the calculation more concrete, let’s say h0 = 100 meters

and k = 4.9 and suppose we’re interested in the speed at t = 2. We know that when t = 2

the height is 100−4 ·4.9 = 80.4. A second later, at t = 3, the height is 100−9 ·4.9 = 55.9,

so in that second the ball has traveled 80.4 − 55.9 = 24.5 meters. This means that the

average speed during that time was 24.5 meters per second. So we might guess that 24.5

meters per second is not a terrible estimate of the speed at t = 2. But certainly we can

do better. At t = 2.5 the height is 100− 4.9(2.5)2 = 69.375. During the half second from

t = 2 to t = 2.5 the ball dropped 80.4 − 69.375 = 11.025 meters, at an average speed of

11.025/(1/2) = 22.05 meters per second; this should be a better estimate of the speed at

t = 2. So it’s clear now how to get better and better approximations: compute average

speeds over shorter and shorter time intervals. Between t = 2 and t = 2.01, for example,

the ball drops 0.19649 meters in one hundredth of a second, at an average speed of 19.649

meters per second.

We can’t do this forever, and we still might reasonably ask what the actual speed

precisely at t = 2 is. If ∆t is some tiny amount of time, what we want to know is what

happens to the average speed (h(2)−h(2+∆t))/∆t as ∆t gets smaller and smaller. Doing
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a bit of algebra:

h(2)− h(2 + ∆t)

∆t
=

80.4− (100− 4.9(2 + ∆t)2)

∆t

=
80.4− 100 + 19.6 + 19.6∆t+ 4.9∆t2

∆t

=
19.6∆t+ 4.9∆t2

∆t

= 19.6 + 4.9∆t

When ∆t is very small, this is very close to 19.6, and indeed it seems clear that as ∆t

goes to zero, the average speed goes to 19.6, so the exact speed at t = 2 is 19.6 meters per

second. This calculation should look very familiar. In the language of the previous section,

we might have started with f(x) = 100− 4.9x2 and asked for the slope of the tangent line

at x = 2. We would have answered that question by computing

f(2 + ∆x)− f(2)

∆x
=

−19.6∆x− 4.9∆x2

∆x
= −19.6− 4.9∆x

The algebra is the same, except that following the pattern of the previous section the

subtraction would be reversed, and we would say that the slope of the tangent line is

−19.6. Indeed, in hindsight, perhaps we should have subtracted the other way even for

the dropping ball. At t = 2 the height is 80.4; one second later the height is 55.9. The

usual way to compute a “distance traveled” is to subtract the earlier position from the

later one, or 55.9 − 80.4 = −24.5. This tells us that the distance traveled is 24.5 meters,

and the negative sign tells us that the height went down during the second. If we continue

the original calculation we then get −19.6 meters per second as the exact speed at t = 2.

If we interpret the negative sign as meaning that the motion is downward, which seems

reasonable, then in fact this is the same answer as before, but with even more information,

since the numerical answer contains the direction of motion as well as the speed. Thus,

the speed of the ball is the value of the derivative of a certain function, namely, of the

function that gives the position of the ball. (More properly, this is the velocity of the ball;

velocity is signed speed, that is, speed with a direction indicated by the sign.)

The upshot is that this problem, finding the speed of the ball, is exactly the same

problem mathematically as finding the slope of a curve. This may already be enough

evidence to convince you that whenever some quantity is changing (the height of a curve

or the height of a ball or the size of the economy or the distance of a space probe from

earth or the population of the world) the rate at which the quantity is changing can, in

principle, be computed in exactly the same way, by finding a derivative.
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Exercises 2.2.

1. An object is traveling in a straight line so that its position (that is, distance from some fixed
point) is given by this table:

time (seconds) 0 1 2 3

distance (meters) 0 10 25 60

Find the average speed of the object during the following time intervals: [0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]. If you had to guess the speed at t = 2 just on the basis of these, what
would you guess? ⇒

2. Let y = f(t) = t2, where t is the time in seconds and y is the distance in meters that an
object falls on a certain airless planet. Draw a graph of this function between t = 0 and
t = 3. Make a table of the average speed of the falling object between (a) 2 sec and 3 sec,
(b) 2 sec and 2.1 sec, (c) 2 sec and 2.01 sec, (d) 2 sec and 2.001 sec. Then use algebra to find
a simple formula for the average speed between time 2 and time 2 + ∆t. (If you substitute
∆t = 1, 0.1, 0.01, 0.001 in this formula you should again get the answers to parts (a)–(d).)
Next, in your formula for average speed (which should be in simplified form) determine what
happens as ∆t approaches zero. This is the instantaneous speed. Finally, in your graph
of y = t2 draw the straight line through the point (2, 4) whose slope is the instantaneous
velocity you just computed; it should of course be the tangent line. ⇒

3. If an object is dropped from an 80-meter high window, its height y above the ground at time
t seconds is given by the formula y = f(t) = 80−4.9t2. (Here we are neglecting air resistance;
the graph of this function was shown in figure 1.0.1.) Find the average velocity of the falling
object between (a) 1 sec and 1.1 sec, (b) 1 sec and 1.01 sec, (c) 1 sec and 1.001 sec. Now use
algebra to find a simple formula for the average velocity of the falling object between 1 sec
and 1 +∆t sec. Determine what happens to this average velocity as ∆t approaches 0. That
is the instantaneous velocity at time t = 1 second (it will be negative, because the object is
falling). ⇒

2.3 Limits

In the previous two sections we computed some quantities of interest (slope, velocity) by

seeing that some expression “goes to” or “approaches” or “gets really close to” a particular

value. In the examples we saw, this idea may have been clear enough, but it is too fuzzy

to rely on in more difficult circumstances. In this section we will see how to make the idea

more precise.

There is an important feature of the examples we have seen. Consider again the

formula
−19.6∆x− 4.9∆x2

∆x
.

We wanted to know what happens to this fraction as “∆x goes to zero.” Because we were

able to simplify the fraction, it was easy to see the answer, but it was not quite as simple
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as “substituting zero for ∆x,” as that would give

−19.6 · 0− 4.9 · 0
0

,

which is meaningless. The quantity we are really interested in does not make sense “at

zero,” and this is why the answer to the original problem (finding a velocity or a slope)

was not immediately obvious. In other words, we are generally going to want to figure

out what a quantity “approaches” in situations where we can’t merely plug in a value. If

you would like to think about a hard example (which we will analyze later) consider what

happens to (sinx)/x as x approaches zero.

EXAMPLE 2.3.1 Does
√
x approach 1.41 as x approaches 2? In this case it is possible

to compute the actual value
√
2 to a high precision to answer the question. But since

in general we won’t be able to do that, let’s not. We might start by computing
√
x for

values of x close to 2, as we did in the previous sections. Here are some values:
√
2.05 =

1.431782106,
√
2.04 = 1.428285686,

√
2.03 = 1.424780685,

√
2.02 = 1.421267040,

√
2.01 =

1.417744688,
√
2.005 = 1.415980226,

√
2.004 = 1.415627070,

√
2.003 = 1.415273825,√

2.002 = 1.414920492,
√
2.001 = 1.414567072. So it looks at least possible that indeed

these values “approach” 1.41—already
√
2.001 is quite close. If we continue this process,

however, at some point we will appear to “stall.” In fact,
√
2 = 1.414213562 . . ., so we will

never even get as far as 1.4142, no matter how long we continue the sequence.

So in a fuzzy, everyday sort of sense, it is true that
√
x “gets close to” 1.41, but it

does not “approach” 1.41 in the sense we want. To compute an exact slope or an exact

velocity, what we want to know is that a given quantity becomes “arbitrarily close” to a

fixed value, meaning that the first quantity can be made “as close as we like” to the fixed

value. Consider again the quantities

−19.6∆x− 4.9∆x2

∆x
= −19.6− 4.9∆x.

These two quantities are equal as long as ∆x is not zero; if ∆x is zero, the left hand

quantity is meaningless, while the right hand one is −19.6. Can we say more than we

did before about why the right hand side “approaches” −19.6, in the desired sense? Can

we really make it “as close as we want” to −19.6? Let’s try a test case. Can we make

−19.6− 4.9∆x within one millionth (0.000001) of −19.6? The values within a millionth of

−19.6 are those in the interval (−19.600001,−19.599999). As ∆x approaches zero, does

−19.6− 4.9∆x eventually reside inside this interval? If ∆x is positive, this would require

that −19.6 − 4.9∆x > −19.600001. This is something we can manipulate with a little
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algebra:

−19.6− 4.9∆x > −19.600001

−4.9∆x > −0.000001

∆x < −0.000001/− 4.9

∆x < 0.0000002040816327 . . .

Thus, we can say with certainty that if ∆x is positive and less than 0.0000002, then

∆x < 0.0000002040816327 . . . and so −19.6− 4.9∆x > −19.600001. We could do a similar

calculation if ∆x is negative.

So now we know that we can make −19.6− 4.9∆x within one millionth of −19.6. But

can we make it “as close as we want”? In this case, it is quite simple to see that the answer

is yes, by modifying the calculation we’ve just done. It may be helpful to think of this as

a game. I claim that I can make −19.6− 4.9∆x as close as you desire to −19.6 by making

∆x “close enough” to zero. So the game is: you give me a number, like 10−6, and I have

to come up with a number representing how close ∆x must be to zero to guarantee that

−19.6− 4.9∆x is at least as close to −19.6 as you have requested.

Now if we actually play this game, I could redo the calculation above for each new

number you provide. What I’d like to do is somehow see that I will always succeed, and

even more, I’d like to have a simple strategy so that I don’t have to do all that algebra

every time. A strategy in this case would be a formula that gives me a correct answer no

matter what you specify. So suppose the number you give me is ϵ. How close does ∆x

have to be to zero to guarantee that −19.6− 4.9∆x is in (−19.6− ϵ,−19.6 + ϵ)? If ∆x is

positive, we need:

−19.6− 4.9∆x > −19.6− ϵ

−4.9∆x > −ϵ

∆x < −ϵ/− 4.9

∆x < ϵ/4.9

So if I pick any number δ that is less than ϵ/4.9, the algebra tells me that whenever ∆x < δ

then ∆x < ϵ/4.9 and so −19.6 − 4.9∆x is within ϵ of −19.6. (This is exactly what I did

in the example: I picked δ = 0.0000002 < 0.0000002040816327 . . ..) A similar calculation

again works for negative ∆x. The important fact is that this is now a completely general

result—it shows that I can always win, no matter what “move” you make.

Now we can codify this by giving a precise definition to replace the fuzzy, “gets closer

and closer” language we have used so far. Henceforward, we will say something like “the

limit of (−19.6∆x−4.9∆x2)/∆x as ∆x goes to zero is−19.6,” and abbreviate this mouthful
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as

lim
∆x→0

−19.6∆x− 4.9∆x2

∆x
= −19.6.

Here is the actual, official definition of “limit”.

DEFINITION 2.3.2 Limit Suppose f is a function. We say that lim
x→a

f(x) = L if

for every ϵ > 0 there is a δ > 0 so that whenever 0 < |x− a| < δ, |f(x)− L| < ϵ.

The ϵ and δ here play exactly the role they did in the preceding discussion. The

definition says, in a very precise way, that f(x) can be made as close as desired to L

(that’s the |f(x) − L| < ϵ part) by making x close enough to a (the 0 < |x − a| < δ

part). Note that we specifically make no mention of what must happen if x = a, that is,

if |x− a| = 0. This is because in the cases we are most interested in, substituting a for x

doesn’t even make sense.

Make sure you are not confused by the names of important quantities. The generic

definition talks about f(x), but the function and the variable might have other names. In

the discussion above, the function we analyzed was

−19.6∆x− 4.9∆x2

∆x
.

and the variable of the limit was not x but ∆x. The x was the variable of the original

function; when we were trying to compute a slope or a velocity, x was essentially a fixed

quantity, telling us at what point we wanted the slope. (In the velocity problem, it was

literally a fixed quantity, as we focused on the time 2.) The quantity a of the definition

in all the examples was zero: we were always interested in what happened as ∆x became

very close to zero.

Armed with a precise definition, we can now prove that certain quantities behave in a

particular way. The bad news is that even proofs for simple quantities can be quite tedious

and complicated; the good news is that we rarely need to do such proofs, because most

expressions act the way you would expect, and this can be proved once and for all.

EXAMPLE 2.3.3 Let’s show carefully that lim
x→2

x + 4 = 6. This is not something we

“need” to prove, since it is “obviously” true. But if we couldn’t prove it using our official

definition there would be something very wrong with the definition.

As is often the case in mathematical proofs, it helps to work backwards. We want to

end up showing that under certain circumstances x+ 4 is close to 6; precisely, we want to

show that |x+ 4− 6| < ϵ, or |x− 2| < ϵ. Under what circumstances? We want this to be

true whenever 0 < |x− 2| < δ. So the question becomes: can we choose a value for δ that
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guarantees that 0 < |x− 2| < δ implies |x− 2| < ϵ? Of course: no matter what ϵ is, δ = ϵ

works.

So it turns out to be very easy to prove something “obvious,” which is nice. It doesn’t

take long before things get trickier, however.

EXAMPLE 2.3.4 It seems clear that lim
x→2

x2 = 4. Let’s try to prove it. We will want

to be able to show that |x2 − 4| < ϵ whenever 0 < |x− 2| < δ, by choosing δ carefully. Is

there any connection between |x− 2| and |x2 − 4|? Yes, and it’s not hard to spot, but it is

not so simple as the previous example. We can write |x2−4| = |(x+2)(x−2)|. Now when

|x−2| is small, part of |(x+2)(x−2)| is small, namely (x−2). What about (x+2)? If x is

close to 2, (x+ 2) certainly can’t be too big, but we need to somehow be precise about it.

Let’s recall the “game” version of what is going on here. You get to pick an ϵ and I have to

pick a δ that makes things work out. Presumably it is the really tiny values of ϵ I need to

worry about, but I have to be prepared for anything, even an apparently “bad” move like

ϵ = 1000. I expect that ϵ is going to be small, and that the corresponding δ will be small,

certainly less than 1. If δ ≤ 1 then |x+2| < 5 when |x− 2| < δ (because if x is within 1 of

2, then x is between 1 and 3 and x+ 2 is between 3 and 5). So then I’d be trying to show

that |(x + 2)(x − 2)| < 5|x − 2| < ϵ. So now how can I pick δ so that |x − 2| < δ implies

5|x − 2| < ϵ? This is easy: use δ = ϵ/5, so 5|x − 2| < 5(ϵ/5) = ϵ. But what if the ϵ you

choose is not small? If you choose ϵ = 1000, should I pick δ = 200? No, to keep things

“sane” I will never pick a δ bigger than 1. Here’s the final “game strategy:” When you

pick a value for ϵ I will pick δ = ϵ/5 or δ = 1, whichever is smaller. Now when |x− 2| < δ,

I know both that |x+ 2| < 5 and that |x− 2| < ϵ/5. Thus |(x+ 2)(x− 2)| < 5(ϵ/5) = ϵ.

This has been a long discussion, but most of it was explanation and scratch work. If

this were written down as a proof, it would be quite short, like this:

Proof that lim
x→2

x2 = 4. Given any ϵ, pick δ = ϵ/5 or δ = 1, whichever is smaller. Then

when |x−2| < δ, |x+2| < 5 and |x−2| < ϵ/5. Hence |x2−4| = |(x+2)(x−2)| < 5(ϵ/5) =

ϵ.

It probably seems obvious that lim
x→2

x2 = 4, and it is worth examining more closely

why it seems obvious. If we write x2 = x · x, and ask what happens when x approaches 2,

we might say something like, “Well, the first x approaches 2, and the second x approaches

2, so the product must approach 2 · 2.” In fact this is pretty much right on the money,

except for that word “must.” Is it really true that if x approaches a and y approaches b

then xy approaches ab? It is, but it is not really obvious, since x and y might be quite

complicated. The good news is that we can see that this is true once and for all, and then
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we don’t have to worry about it ever again. When we say that x might be “complicated”

we really mean that in practice it might be a function. Here is then what we want to know:

THEOREM 2.3.5 Suppose lim
x→a

f(x) = L and lim
x→a

g(x) = M . Then

limx→a f(x)g(x) = LM .

Proof. We have to use the official definition of limit to make sense of this. So given any

ϵ we need to find a δ so that 0 < |x − a| < δ implies |f(x)g(x) − LM | < ϵ. What do we

have to work with? We know that we can make f(x) close to L and g(x) close to M , and

we have to somehow connect these facts to make f(x)g(x) close to LM .

We use, as is so often the case, a little algebraic trick:

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |

= |f(x)(g(x)−M) + (f(x)− L)M |

≤ |f(x)(g(x)−M)|+ |(f(x)− L)M |

= |f(x)||g(x)−M |+ |f(x)− L||M |.

This is all straightforward except perhaps for the “≤”. That is an example of the triangle

inequality , which says that if a and b are any real numbers then |a + b| ≤ |a| + |b|. If

you look at a few examples, using positive and negative numbers in various combinations

for a and b, you should quickly understand why this is true; we will not prove it formally.

Since lim
x→a

f(x) = L, there is a value δ1 so that 0 < |x − a| < δ1 implies |f(x) − L| <

|ϵ/(2M)|, This means that 0 < |x − a| < δ1 implies |f(x) − L||M | < ϵ/2. You can see

where this is going: if we can make |f(x)||g(x)−M | < ϵ/2 also, then we’ll be done.

We can make |g(x) − M | smaller than any fixed number by making x close enough

to a; unfortunately, ϵ/(2f(x)) is not a fixed number, since x is a variable. Here we need

another little trick, just like the one we used in analyzing x2. We can find a δ2 so that

|x− a| < δ2 implies that |f(x)− L| < 1, meaning that L− 1 < f(x) < L+ 1. This means

that |f(x)| < N , where N is either |L− 1| or |L+ 1|, depending on whether L is negative

or positive. The important point is that N doesn’t depend on x. Finally, we know that

there is a δ3 so that 0 < |x − a| < δ3 implies |g(x) −M | < ϵ/(2N). Now we’re ready to

put everything together. Let δ be the smallest of δ1, δ2, and δ3. Then |x− a| < δ implies

that |f(x)− L| < |ϵ/(2M)|, |f(x)| < N , and |g(x)−M | < ϵ/(2N). Then

|f(x)g(x)− LM | ≤ |f(x)||g(x)−M |+ |f(x)− L||M |

< N
ϵ

2N
+
∣∣∣ ϵ

2M

∣∣∣ |M |

=
ϵ

2
+

ϵ

2
= ϵ.

This is just what we needed, so by the official definition, lim
x→a

f(x)g(x) = LM .
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A handful of such theorems give us the tools to compute many limits without explicitly

working with the definition of limit.

THEOREM 2.3.6 Suppose that lim
x→a

f(x) = L and lim
x→a

g(x) = M and k is some

constant. Then

lim
x→a

kf(x) = k lim
x→a

f(x) = kL

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x) = L+M

lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) = L−M

lim
x→a

(f(x)g(x)) = lim
x→a

f(x) · lim
x→a

g(x) = LM

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
=

L

M
, if M is not 0

Roughly speaking, these rules say that to compute the limit of an algebraic expression,

it is enough to compute the limits of the “innermost bits” and then combine these limits.

This often means that it is possible to simply plug in a value for the variable, since

lim
x→a

x = a.

EXAMPLE 2.3.7 Compute lim
x→1

x2 − 3x+ 5

x− 2
. If we apply the theorem in all its gory

detail, we get

lim
x→1

x2 − 3x+ 5

x− 2
=

limx→1(x
2 − 3x+ 5)

limx→1(x− 2)

=
(limx→1 x

2)− (limx→1 3x) + (limx→1 5)

(limx→1 x)− (limx→1 2)

=
(limx→1 x)

2 − 3(limx→1 x) + 5

(limx→1 x)− 2

=
12 − 3 · 1 + 5

1− 2

=
1− 3 + 5

−1
= −3

It is worth commenting on the trivial limit lim
x→1

5. From one point of view this might

seem meaningless, as the number 5 can’t “approach” any value, since it is simply a fixed
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number. But 5 can, and should, be interpreted here as the function that has value 5

everywhere, f(x) = 5, with graph a horizontal line. From this point of view it makes sense

to ask what happens to the height of the function as x approaches 1.

Of course, as we’ve already seen, we’re primarily interested in limits that aren’t so easy,

namely, limits in which a denominator approaches zero. There are a handful of algebraic

tricks that work on many of these limits.

EXAMPLE 2.3.8 Compute lim
x→1

x2 + 2x− 3

x− 1
. We can’t simply plug in x = 1 because

that makes the denominator zero. However:

lim
x→1

x2 + 2x− 3

x− 1
= lim

x→1

(x− 1)(x+ 3)

x− 1

= lim
x→1

(x+ 3) = 4

While theorem 2.3.6 is very helpful, we need a bit more to work easily with limits.

Since the theorem applies when some limits are already known, we need to know the

behavior of some functions that cannot themselves be constructed from the simple arith-

metic operations of the theorem, such as
√
x. Also, there is one other extraordinarily

useful way to put functions together: composition. If f(x) and g(x) are functions, we can

form two functions by composition: f(g(x)) and g(f(x)). For example, if f(x) =
√
x and

g(x) = x2 + 5, then f(g(x)) =
√
x2 + 5 and g(f(x)) = (

√
x)2 + 5 = x + 5. Here is a

companion to theorem 2.3.6 for composition:

THEOREM 2.3.9 Suppose that lim
x→a

g(x) = L and lim
x→L

f(x) = f(L). Then

lim
x→a

f(g(x)) = f(L).

Note the special form of the condition on f : it is not enough to know that lim
x→L

f(x) =

M , though it is a bit tricky to see why. Many of the most familiar functions do have this

property, and this theorem can therefore be applied. For example:

THEOREM 2.3.10 Suppose that n is a positive integer. Then

lim
x→a

n
√
x = n

√
a,

provided that a is positive if n is even.
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This theorem is not too difficult to prove from the definition of limit.

Another of the most common algebraic tricks was used in section 2.1. Here’s another

example:

EXAMPLE 2.3.11 Compute lim
x→−1

√
x+ 5− 2

x+ 1
.

lim
x→−1

√
x+ 5− 2

x+ 1
= lim

x→−1

√
x+ 5− 2

x+ 1

√
x+ 5 + 2√
x+ 5 + 2

= lim
x→−1

x+ 5− 4

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

x+ 1

(x+ 1)(
√
x+ 5 + 2)

= lim
x→−1

1√
x+ 5 + 2

=
1

4

At the very last step we have used theorems 2.3.9 and 2.3.10.

Occasionally we will need a slightly modified version of the limit definition. Consider

the function f(x) =
√
1− x2, the upper half of the unit circle. What can we say about

lim
x→1

f(x)? It is apparent from the graph of this familiar function that as x gets close to 1

from the left, the value of f(x) gets close to zero. It does not even make sense to ask what

happens as x approaches 1 from the right, since f(x) is not defined there. The definition

of the limit, however, demands that f(1 + ∆x) be close to f(1) whether ∆x is positive or

negative. Sometimes the limit of a function exists from one side or the other (or both) even

though the limit does not exist. Since it is useful to be able to talk about this situation,

we introduce the concept of one sided limit:

DEFINITION 2.3.12 One-sided limit Suppose that f(x) is a function. We say

that lim
x→a−

f(x) = L if for every ϵ > 0 there is a δ > 0 so that whenever 0 < a − x < δ,

|f(x) − L| < ϵ. We say that limx→a+ f(x) = L if for every ϵ > 0 there is a δ > 0 so that

whenever 0 < x− a < δ, |f(x)− L| < ϵ.

Usually lim
x→a−

f(x) is read “the limit of f(x) from the left” and lim
x→a+

f(x) is read “the

limit of f(x) from the right”.

EXAMPLE 2.3.13 Discuss lim
x→0

x

|x|
, lim
x→0−

x

|x|
, and lim

x→0+

x

|x|
.

The function f(x) = x/|x| is undefined at 0; when x > 0, |x| = x and so f(x) = 1;

when x < 0, |x| = −x and f(x) = −1. Thus lim
x→0−

x

|x|
= lim

x→0−
−1 = −1 while lim

x→0+

x

|x|
=
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lim
x→0+

1 = 1. The limit of f(x) must be equal to both the left and right limits; since they

are different, the limit lim
x→0

x

|x|
does not exist.

Exercises 2.3.

Compute the limits. If a limit does not exist, explain why.

1. lim
x→3

x2 + x− 12

x− 3
⇒ 2. lim

x→1

x2 + x− 12

x− 3
⇒

3. lim
x→−4

x2 + x− 12

x− 3
⇒ 4. lim

x→2

x2 + x− 12

x− 2
⇒

5. lim
x→1

√
x+ 8− 3

x− 1
⇒ 6. lim

x→0+

√
1

x
+ 2−

√
1

x
. ⇒

7. lim
x→2

3 ⇒ 8. lim
x→4

3x3 − 5x ⇒

9. lim
x→0

4x− 5x2

x− 1
⇒ 10. lim

x→1

x2 − 1

x− 1
⇒

11. lim
x→0+

√
2− x2

x
⇒ 12. lim

x→0+

√
2− x2

x+ 1
⇒

13. lim
x→a

x3 − a3

x− a
⇒ 14. lim

x→2
(x2 + 4)3 ⇒

15. lim
x→1

{
x− 5 x ̸= 1,
7 x = 1.

⇒

16. lim
x→0

x sin

(
1

x

)
(Hint: Use the fact that | sin a| < 1 for any real number a. You should

probably use the definition of a limit here.) ⇒
17. Give an ϵ–δ proof, similar to example 2.3.3, of the fact that lim

x→4
(2x− 5) = 3.



46 Chapter 2 Instantaneous Rate of Change: The Derivative

18. Evaluate the expressions by reference to this graph:

x
K4 K2 0 2 4 6

K2

2

4

6

8

10

(a) lim
x→4

f(x) (b) lim
x→−3

f(x) (c) lim
x→0

f(x)

(d) lim
x→0−

f(x) (e) lim
x→0+

f(x) (f) f(−2)
(g) lim

x→2−
f(x) (h) lim

x→−2−
f(x) (i) lim

x→0
f(x+ 1)

(j) f(0) (k) lim
x→1−

f(x− 4) (l) lim
x→0+

f(x− 2)

⇒

19. Use a calculator to estimate lim
x→0

sinx

x
.

20. Use a calculator to estimate lim
x→0

tan(3x)

tan(5x)
.

2.4 The Derivative Function

We have seen how to create, or derive, a new function f ′(x) from a function f(x), summa-

rized in the paragraph containing equation 2.1.1. Now that we have the concept of limits,

we can make this more precise.

DEFINITION 2.4.1 The derivative of a function f , denoted f ′, is

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
.
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We know that f ′ carries important information about the original function f . In one

example we saw that f ′(x) tells us how steep the graph of f(x) is; in another we saw that

f ′(x) tells us the velocity of an object if f(x) tells us the position of the object at time x.

As we said earlier, this same mathematical idea is useful whenever f(x) represents some

changing quantity and we want to know something about how it changes, or roughly, the

“rate” at which it changes. Most functions encountered in practice are built up from a

small collection of “primitive” functions in a few simple ways, for example, by adding or

multiplying functions together to get new, more complicated functions. To make good use

of the information provided by f ′(x) we need to be able to compute it for a variety of such

functions.

We will begin to use different notations for the derivative of a function. While initially

confusing, each is often useful so it is worth maintaining multiple versions of the same

thing.

Consider again the function f(x) =
√
625− x2. We have computed the derivative

f ′(x) = −x/
√

625− x2, and have already noted that if we use the alternate notation

y =
√

625− x2 then we might write y′ = −x/
√
625− x2. Another notation is quite

different, and in time it will become clear why it is often a useful one. Recall that to

compute the the derivative of f we computed

lim
∆x→0

√
625− (7 + ∆x)2 − 24

∆x
.

The denominator here measures a distance in the x direction, sometimes called the “run”,

and the numerator measures a distance in the y direction, sometimes called the “rise,” and

“rise over run” is the slope of a line. Recall that sometimes such a numerator is abbreviated

∆y, exchanging brevity for a more detailed expression. So in general, a derivative is given

by

y′ = lim
∆x→0

∆y

∆x
.

To recall the form of the limit, we sometimes say instead that

dy

dx
= lim

∆x→0

∆y

∆x
.

In other words, dy/dx is another notation for the derivative, and it reminds us that it is

related to an actual slope between two points. This notation is called Leibniz notation,

after Gottfried Leibniz, who developed the fundamentals of calculus independently, at

about the same time that Isaac Newton did. Again, since we often use f and f(x) to mean

the original function, we sometimes use df/dx and df(x)/dx to refer to the derivative. If
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the function f(x) is written out in full we often write the last of these something like this

f ′(x) =
d

dx

√
625− x2

with the function written to the side, instead of trying to fit it into the numerator.

EXAMPLE 2.4.2 Find the derivative of y = f(t) = t2.

We compute

y′ = lim
∆t→0

∆y

∆t
= lim

∆t→0

(t+∆t)2 − t2

∆t

= lim
∆t→0

t2 + 2t∆t+∆t2 − t2

∆t

= lim
∆t→0

2t∆t+∆t2

∆t

= lim
∆t→0

2t+∆t = 2t.

Remember that ∆t is a single quantity, not a “∆” times a “t”, and so ∆t2 is (∆t)2 not

∆(t2).

EXAMPLE 2.4.3 Find the derivative of y = f(x) = 1/x.

The computation:

y′ = lim
∆x→0

∆y

∆x
= lim

∆x→0

1
x+∆x − 1

x

∆x

= lim
∆x→0

x
x(x+∆x) −

x+∆x
x(x+∆x)

∆x

= lim
∆x→0

x−(x+∆x)
x(x+∆x)

∆x

= lim
∆x→0

x− x−∆x

x(x+∆x)∆x

= lim
∆x→0

−∆x

x(x+∆x)∆x

= lim
∆x→0

−1

x(x+∆x)
=

−1

x2

Note. If you happen to know some “derivative formulas” from an earlier course, for

the time being you should pretend that you do not know them. In examples like the

ones above and the exercises below, you are required to know how to find the derivative



2.4 The Derivative Function 49

formula starting from basic principles. We will later develop some formulas so that we do

not always need to do such computations, but we will continue to need to know how to do

the more involved computations.

Sometimes one encounters a point in the domain of a function y = f(x) where there

is no derivative, because there is no tangent line. In order for the notion of the tangent

line at a point to make sense, the curve must be “smooth” at that point. This means that

if you imagine a particle traveling at some steady speed along the curve, then the particle

does not experience an abrupt change of direction. There are two types of situations you

should be aware of—corners and cusps—where there’s a sudden change of direction and

hence no derivative.

EXAMPLE 2.4.4 Discuss the derivative of the absolute value function y = f(x) = |x|.
If x is positive, then this is the function y = x, whose derivative is the constant 1.

(Recall that when y = f(x) = mx+ b, the derivative is the slope m.) If x is negative, then

we’re dealing with the function y = −x, whose derivative is the constant −1. If x = 0,

then the function has a corner, i.e., there is no tangent line. A tangent line would have

to point in the direction of the curve—but there are two directions of the curve that come

together at the origin. We can summarize this as

y′ =

{
1 if x > 0;
−1 if x < 0;
undefined if x = 0.

EXAMPLE 2.4.5

Discuss the derivative of the function y = x2/3, shown in figure 2.4.1. We will later see

how to compute this derivative; for now we use the fact that y′ = (2/3)x−1/3. Visually this

looks much like the absolute value function, but it technically has a cusp, not a corner. The

absolute value function has no tangent line at 0 because there are (at least) two obvious

contenders—the tangent line of the left side of the curve and the tangent line of the right

side. The function y = x2/3 does not have a tangent line at 0, but unlike the absolute value

function it can be said to have a single direction: as we approach 0 from either side the

tangent line becomes closer and closer to a vertical line; the curve is vertical at 0. But as

before, if you imagine traveling along the curve, an abrupt change in direction is required

at 0: a full 180 degree turn.

In practice we won’t worry much about the distinction between these examples; in both

cases the function has a “sharp point” where there is no tangent line and no derivative.
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Figure 2.4.1 A cusp on x2/3.

Exercises 2.4.

1. Find the derivative of y = f(x) =
√

169− x2. ⇒
2. Find the derivative of y = f(t) = 80− 4.9t2. ⇒
3. Find the derivative of y = f(x) = x2 − (1/x). ⇒
4. Find the derivative of y = f(x) = ax2 + bx+ c (where a, b, and c are constants). ⇒
5. Find the derivative of y = f(x) = x3. ⇒
6. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by estimating the derivative

at a number of points in the interval: estimate the derivative at regular intervals from one
end of the interval to the other, and also at “special” points, as when the derivative is zero.
Make sure you indicate any places where the derivative does not exist.
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7. Shown is the graph of a function f(x). Sketch the graph of f ′(x) by estimating the derivative
at a number of points in the interval: estimate the derivative at regular intervals from one
end of the interval to the other, and also at “special” points, as when the derivative is zero.
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Make sure you indicate any places where the derivative does not exist.
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8. Find the derivative of y = f(x) = 2/
√
2x+ 1 ⇒

9. Find the derivative of y = g(t) = (2t− 1)/(t+ 2) ⇒
10. Find an equation for the tangent line to the graph of f(x) = 5− x− 3x2 at the point x = 2

⇒
11. Find a value for a so that the graph of f(x) = x2 + ax − 3 has a horizontal tangent line at

x = 4. ⇒

2.5 Adjectives For Functions

As we have defined it in Section 1.3, a function is a very general object. At this point, it

is useful to introduce a collection of adjectives to describe certain kinds of functions; these

adjectives name useful properties that functions may have. Consider the graphs of the

functions in Figure 2.5.1. It would clearly be useful to have words to help us describe the

distinct features of each of them. We will point out and define a few adjectives (there are

many more) for the functions pictured here. For the sake of the discussion, we will assume

that the graphs do not exhibit any unusual behavior off-stage (i.e., outside the view of the

graphs).

Functions. Each graph in Figure 2.5.1 certainly represents a function—since each passes

the vertical line test. In other words, as you sweep a vertical line across the graph of each

function, the line never intersects the graph more than once. If it did, then the graph

would not represent a function.

Bounded. The graph in (c) appears to approach zero as x goes to both positive and

negative infinity. It also never exceeds the value 1 or drops below the value 0. Because the
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Figure 2.5.1 Function Types: (a) a discontinuous function, (b) a continuous function, (c)
a bounded, differentiable function, (d) an unbounded, differentiable function

graph never increases or decreases without bound, we say that the function represented by

the graph in (c) is a bounded function.

DEFINITION 2.5.1 Bounded A function f is bounded if there is a number M

such that |f(x)| < M for every x in the domain of f .

For the function in (c), one such choice for M would be 10. However, the smallest

(optimal) choice would be M = 1. In either case, simply finding an M is enough to

establish boundedness. No such M exists for the hyperbola in (d) and hence we can say

that it is unbounded.

Continuity. The graphs shown in (b) and (c) both represent continuous functions.

Geometrically, this is because there are no jumps in the graphs. That is, if you pick a

point on the graph and approach it from the left and right, the values of the function
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approach the value of the function at that point. For example, we can see that this is not

true for function values near x = −1 on the graph in (a) which is not continuous at that

location.

DEFINITION 2.5.2 Continuous at a Point A function f is continuous at a point

a if lim
x→a

f(x) = f(a).

DEFINITION 2.5.3 Continuous A function f is continuous if it is continuous at

every point in its domain.

Strangely, we can also say that (d) is continuous even though there is a vertical asymp-

tote. A careful reading of the definition of continuous reveals the phrase “at every point

in its domain.” Because the location of the asymptote, x = 0, is not in the domain of

the function, and because the rest of the function is well-behaved, we can say that (d) is

continuous.

Differentiability. Now that we have introduced the derivative of a function at a point,

we can begin to use the adjective differentiable. We can see that the tangent line is well-

defined at every point on the graph in (c). Therefore, we can say that (c) is a differentiable

function.

DEFINITION 2.5.4 Differentiable at a Point A function f is differentiable at

point a if f ′(a) exists.

DEFINITION 2.5.5 Differentiable A function f is differentiable if is differentiable

at every point (excluding endpoints and isolated points in the domain of f) in the domain

of f .

Take note that, for technical reasons not discussed here, both of these definitions

exclude endpoints and isolated points in the domain from consideration.

We now have a collection of adjectives to describe the very rich and complex set of

objects known as functions.

We close with a useful theorem about continuous functions:

THEOREM 2.5.6 Intermediate Value Theorem If f is continuous on the interval

[a, b] and d is between f(a) and f(b), then there is a number c in [a, b] such that f(c) = d.

This is most frequently used when d = 0.
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EXAMPLE 2.5.7 Explain why the function f = x3 + 3x2 + x− 2 has a root between

0 and 1.

By theorem 2.3.6, f is continuous. Since f(0) = −2 and f(1) = 3, and 0 is between

−2 and 3, there is a c ∈ [0, 1] such that f(c) = 0.

This example also points the way to a simple method for approximating roots.

EXAMPLE 2.5.8 Approximate the root of the previous example to one decimal place.

If we compute f(0.1), f(0.2), and so on, we find that f(0.6) < 0 and f(0.7) > 0, so by

the Intermediate Value Theorem, f has a root between 0.6 and 0.7. Repeating the process

with f(0.61), f(0.62), and so on, we find that f(0.61) < 0 and f(0.62) > 0, so f has a root

between 0.61 and 0.62, and the root is 0.6 rounded to one decimal place.

Exercises 2.5.

1. Along the lines of Figure 2.5.1, for each part below sketch the graph of a function that is:

a. bounded, but not continuous.

b. differentiable and unbounded.

c. continuous at x = 0, not continuous at x = 1, and bounded.

d. differentiable everywhere except at x = −1, continuous, and unbounded.

2. Is f(x) = sin(x) a bounded function? If so, find the smallest M .

3. Is s(t) = 1/(1 + t2) a bounded function? If so, find the smallest M .

4. Is v(u) = 2 ln |u| a bounded function? If so, find the smallest M .

5. Consider the function

h(x) =

{
2x− 3, if x < 1
0, if x ≥ 1.

Show that it is continuous at the point x = 0. Is h a continuous function?

6. Approximate a root of f = x3 − 4x2 + 2x+ 2 to one decimal place.

7. Approximate a root of f = x4 + x3 − 5x+ 1 to one decimal place.



3
Rules for Finding Derivatives

It is tedious to compute a limit every time we need to know the derivative of a function.

Fortunately, we can develop a small collection of examples and rules that allow us to

compute the derivative of almost any function we are likely to encounter. Many functions

involve quantities raised to a constant power, such as polynomials and more complicated

combinations like y = (sinx)4. So we start by examining powers of a single variable; this

gives us a building block for more complicated examples.

3.1 The Power Rule

We start with the derivative of a power function, f(x) = xn. Here n is a number of

any kind: integer, rational, positive, negative, even irrational, as in xπ. We have already

computed some simple examples, so the formula should not be a complete surprise:

d

dx
xn = nxn−1.

It is not easy to show this is true for any n. We will do some of the easier cases now, and

discuss the rest later.

The easiest, and most common, is the case that n is a positive integer. To compute

the derivative we need to compute the following limit:

d

dx
xn = lim

∆x→0

(x+∆x)n − xn

∆x
.

For a specific, fairly small value of n, we could do this by straightforward algebra.

55
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EXAMPLE 3.1.1 Find the derivative of f(x) = x3.

d

dx
x3 = lim

∆x→0

(x+∆x)3 − x3

∆x
.

= lim
∆x→0

x3 + 3x2∆x+ 3x∆x2 +∆x3 − x3

∆x
.

= lim
∆x→0

3x2∆x+ 3x∆x2 +∆x3

∆x
.

= lim
∆x→0

3x2 + 3x∆x+∆x2 = 3x2.

The general case is really not much harder as long as we don’t try to do too much.

The key is understanding what happens when (x+∆x)n is multiplied out:

(x+∆x)n = xn + nxn−1∆x+ a2x
n−2∆x2 + · · ·++an−1x∆xn−1 +∆xn.

We know that multiplying out will give a large number of terms all of the form xi∆xj , and

in fact that i+ j = n in every term. One way to see this is to understand that one method

for multiplying out (x+∆x)n is the following: In every (x+∆x) factor, pick either the x

or the ∆x, then multiply the n choices together; do this in all possible ways. For example,

for (x+∆x)3, there are eight possible ways to do this:

(x+∆x)(x+∆x)(x+∆x) = xxx+ xx∆x+ x∆xx+ x∆x∆x

+∆xxx+∆xx∆x+∆x∆xx+∆x∆x∆x

= x3 + x2∆x+ x2∆x+ x∆x2

+ x2∆x+ x∆x2 + x∆x2 +∆x3

= x3 + 3x2∆x+ 3x∆x2 +∆x3

No matter what n is, there are n ways to pick ∆x in one factor and x in the remaining

n−1 factors; this means one term is nxn−1∆x. The other coefficients are somewhat harder

to understand, but we don’t really need them, so in the formula above they have simply

been called a2, a3, and so on. We know that every one of these terms contains ∆x to at

least the power 2. Now let’s look at the limit:

d

dx
xn = lim

∆x→0

(x+∆x)n − xn

∆x

= lim
∆x→0

xn + nxn−1∆x+ a2x
n−2∆x2 + · · ·+ an−1x∆xn−1 +∆xn − xn

∆x

= lim
∆x→0

nxn−1∆x+ a2x
n−2∆x2 + · · ·+ an−1x∆xn−1 +∆xn

∆x

= lim
∆x→0

nxn−1 + a2x
n−2∆x+ · · ·+ an−1x∆xn−2 +∆xn−1 = nxn−1.
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Now without much trouble we can verify the formula for negative integers. First let’s

look at an example:

EXAMPLE 3.1.2 Find the derivative of y = x−3. Using the formula, y′ = −3x−3−1 =

−3x−4.

Here is the general computation. Suppose n is a negative integer; the algebra is easier

to follow if we use n = −m in the computation, where m is a positive integer.

d

dx
xn =

d

dx
x−m = lim

∆x→0

(x+∆x)−m − x−m

∆x

= lim
∆x→0

1
(x+∆x)m − 1

xm

∆x

= lim
∆x→0

xm − (x+∆x)m

(x+∆x)mxm∆x

= lim
∆x→0

xm − (xm +mxm−1∆x+ a2x
m−2∆x2 + · · ·+ am−1x∆xm−1 +∆xm)

(x+∆x)mxm∆x

= lim
∆x→0

−mxm−1 − a2x
m−2∆x− · · · − am−1x∆xm−2 −∆xm−1)

(x+∆x)mxm

=
−mxm−1

xmxm
=

−mxm−1

x2m
= −mxm−1−2m = nx−m−1 = nxn−1.

We will later see why the other cases of the power rule work, but from now on we will

use the power rule whenever n is any real number. Let’s note here a simple case in which

the power rule applies, or almost applies, but is not really needed. Suppose that f(x) = 1;

remember that this “1” is a function, not “merely” a number, and that f(x) = 1 has a

graph that is a horizontal line, with slope zero everywhere. So we know that f ′(x) = 0.

We might also write f(x) = x0, though there is some question about just what this means

at x = 0. If we apply the power rule, we get f ′(x) = 0x−1 = 0/x = 0, again noting that

there is a problem at x = 0. So the power rule “works” in this case, but it’s really best to

just remember that the derivative of any constant function is zero.

Exercises 3.1.

Find the derivatives of the given functions.

1. x100 ⇒ 2. x−100 ⇒

3.
1

x5
⇒ 4. xπ ⇒

5. x3/4 ⇒ 6. x−9/7 ⇒
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3.2 Linearity of the Derivative

An operation is linear if it behaves “nicely” with respect to multiplication by a constant

and addition. The name comes from the equation of a line through the origin, f(x) = mx,

and the following two properties of this equation. First, f(cx) = m(cx) = c(mx) = cf(x),

so the constant c can be “moved outside” or “moved through” the function f . Second,

f(x + y) = m(x + y) = mx +my = f(x) + f(y), so the addition symbol likewise can be

moved through the function.

The corresponding properties for the derivative are:

(cf(x))′ =
d

dx
cf(x) = c

d

dx
f(x) = cf ′(x),

and

(f(x) + g(x))′ =
d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x) = f ′(x) + g′(x).

It is easy to see, or at least to believe, that these are true by thinking of the dis-

tance/speed interpretation of derivatives. If one object is at position f(t) at time t, we

know its speed is given by f ′(t). Suppose another object is at position 5f(t) at time t,

namely, that it is always 5 times as far along the route as the first object. Then it “must”

be going 5 times as fast at all times.

The second rule is somewhat more complicated, but here is one way to picture it.

Suppose a flat bed railroad car is at position f(t) at time t, so the car is traveling at a

speed of f ′(t) (to be specific, let’s say that f(t) gives the position on the track of the rear

end of the car). Suppose that an ant is crawling from the back of the car to the front so

that its position on the car is g(t) and its speed relative to the car is g′(t). Then in reality,

at time t, the ant is at position f(t) + g(t) along the track, and its speed is “obviously”

f ′(t) + g′(t).

We don’t want to rely on some more-or-less obvious physical interpretation to deter-

mine what is true mathematically, so let’s see how to verify these rules by computation.
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We’ll do one and leave the other for the exercises.

d

dx
(f(x) + g(x)) = lim

∆x→0

f(x+∆x) + g(x+∆x)− (f(x) + g(x))

∆x

= lim
∆x→0

f(x+∆x) + g(x+∆x)− f(x)− g(x)

∆x

= lim
∆x→0

f(x+∆x)− f(x) + g(x+∆x)− g(x)

∆x

= lim
∆x→0

(
f(x+∆x)− f(x)

∆x
+

g(x+∆x)− g(x)

∆x

)
= lim

∆x→0

f(x+∆x)− f(x)

∆x
+ lim

∆x→0

g(x+∆x)− g(x)

∆x

= f ′(x) + g′(x)

This is sometimes called the sum rule for derivatives.

EXAMPLE 3.2.1 Find the derivative of f(x) = x5 + 5x2. We have to invoke linearity

twice here:

f ′(x) =
d

dx
(x5 + 5x2) =

d

dx
x5 +

d

dx
(5x2) = 5x4 + 5

d

dx
(x2) = 5x4 + 5 · 2x1 = 5x4 + 10x.

Because it is so easy with a little practice, we can usually combine all uses of linearity

into a single step. The following example shows an acceptably detailed computation.

EXAMPLE 3.2.2 Find the derivative of f(x) = 3/x4 − 2x2 + 6x− 7.

f ′(x) =
d

dx

(
3

x4
− 2x2 + 6x− 7

)
=

d

dx
(3x−4 − 2x2 + 6x− 7) = −12x−5 − 4x+ 6.

Exercises 3.2.

Find the derivatives of the functions in 1–6.

1. 5x3 + 12x2 − 15 ⇒
2. −4x5 + 3x2 − 5/x2 ⇒
3. 5(−3x2 + 5x+ 1) ⇒
4. f(x) + g(x), where f(x) = x2 − 3x+ 2 and g(x) = 2x3 − 5x ⇒
5. (x+ 1)(x2 + 2x− 3) ⇒

6.
√

625− x2 + 3x3 + 12 (See section 2.1.) ⇒
7. Find an equation for the tangent line to f(x) = x3/4− 1/x at x = −2. ⇒
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8. Find an equation for the tangent line to f(x) = 3x2 − π3 at x = 4. ⇒
9. Suppose the position of an object at time t is given by f(t) = −49t2/10 + 5t + 10. Find a

function giving the speed of the object at time t. The acceleration of an object is the rate at
which its speed is changing, which means it is given by the derivative of the speed function.
Find the acceleration of the object at time t. ⇒

10. Let f(x) = x3 and c = 3. Sketch the graphs of f , cf , f ′, and (cf)′ on the same diagram.

11. The general polynomial P of degree n in the variable x has the form P (x) =

n∑
k=0

akx
k =

a0 + a1x+ . . .+ anx
n. What is the derivative (with respect to x) of P? ⇒

12. Find a cubic polynomial whose graph has horizontal tangents at (−2, 5) and (2, 3). ⇒

13. Prove that
d

dx
(cf(x)) = cf ′(x) using the definition of the derivative.

14. Suppose that f and g are differentiable at x. Show that f − g is differentiable at x using the
two linearity properties from this section.

3.3 The Product Rule

Consider the product of two simple functions, say f(x) = (x2 + 1)(x3 − 3x). An obvious

guess for the derivative of f is the product of the derivatives of the constituent functions:

(2x)(3x2−3) = 6x3−6x. Is this correct? We can easily check, by rewriting f and doing the

calculation in a way that is known to work. First, f(x) = x5−3x3+x3−3x = x5−2x3−3x,

and then f ′(x) = 5x4−6x2−3. Not even close! What went “wrong”? Well, nothing really,

except the guess was wrong.

So the derivative of f(x)g(x) is NOT as simple as f ′(x)g′(x). Surely there is some

rule for such a situation? There is, and it is instructive to “discover” it by trying to do

the general calculation even without knowing the answer in advance.

d

dx
(f(x)g(x)) = lim

∆x→0

f(x+∆x)g(x+∆x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)g(x+∆x)− f(x+∆x)g(x) + f(x+∆x)g(x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)g(x+∆x)− f(x+∆x)g(x)

∆x
+ lim

∆x→0

f(x+∆x)g(x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)
g(x+∆x)− g(x)

∆x
+ lim

∆x→0

f(x+∆x)− f(x)

∆x
g(x)

= f(x)g′(x) + f ′(x)g(x)

A couple of items here need discussion. First, we used a standard trick, “add and subtract

the same thing”, to transform what we had into a more useful form. After some rewriting,

we realize that we have two limits that produce f ′(x) and g′(x). Of course, f ′(x) and
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g′(x) must actually exist for this to make sense. We also replaced lim
∆x→0

f(x + ∆x) with

f(x)—why is this justified?

What we really need to know here is that lim
∆x→0

f(x+∆x) = f(x), or in the language

of section 2.5, that f is continuous at x. We already know that f ′(x) exists (or the whole

approach, writing the derivative of fg in terms of f ′ and g′, doesn’t make sense). This

turns out to imply that f is continuous as well. Here’s why:

lim
∆x→0

f(x+∆x) = lim
∆x→0

(f(x+∆x)− f(x) + f(x))

= lim
∆x→0

f(x+∆x)− f(x)

∆x
∆x+ lim

∆x→0
f(x)

= f ′(x) · 0 + f(x) = f(x)

To summarize: the product rule says that

d

dx
(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x).

Returning to the example we started with, let f(x) = (x2+1)(x3−3x). Then f ′(x) =

(x2 + 1)(3x2 − 3) + (2x)(x3 − 3x) = 3x4 − 3x2 + 3x2 − 3 + 2x4 − 6x2 = 5x4 − 6x2 − 3,

as before. In this case it is probably simpler to multiply f(x) out first, then compute the

derivative; here’s an example for which we really need the product rule.

EXAMPLE 3.3.1 Compute the derivative of f(x) = x2
√
625− x2. We have already

computed
d

dx

√
625− x2 =

−x√
625− x2

. Now

f ′(x) = x2 −x√
625− x2

+ 2x
√
625− x2 =

−x3 + 2x(625− x2)√
625− x2

=
−3x3 + 1250x√

625− x2
.

Exercises 3.3.

In 1–4, find the derivatives of the functions using the product rule.

1. x3(x3 − 5x+ 10) ⇒
2. (x2 + 5x− 3)(x5 − 6x3 + 3x2 − 7x+ 1) ⇒

3.
√
x
√

625− x2 ⇒

4.

√
625− x2

x20
⇒

5. Use the product rule to compute the derivative of f(x) = (2x − 3)2. Sketch the function.
Find an equation of the tangent line to the curve at x = 2. Sketch the tangent line at x = 2.
⇒
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6. Suppose that f , g, and h are differentiable functions. Show that (fgh)′(x) = f ′(x)g(x)h(x)+
f(x)g′(x)h(x) + f(x)g(x)h′(x).

7. State and prove a rule to compute (fghi)′(x), similar to the rule in the previous problem.

Product notation. Suppose f1, f2, . . . fn are functions. The product of all these functions
can be written

n∏
k=1

fk.

This is similar to the use of
∑

to denote a sum. For example,

5∏
k=1

fk = f1f2f3f4f5

and
n∏

k=1

k = 1 · 2 · . . . · n = n!.

We sometimes use somewhat more complicated conditions; for example
n∏

k=1,k ̸=j

fk

denotes the product of f1 through fn except for fj . For example,

5∏
k=1,k ̸=4

xk = x · x2 · x3 · x5 = x11.

8. The generalized product rule says that if f1, f2, . . . , fn are differentiable functions at x
then

d

dx

n∏
k=1

fk(x) =

n∑
j=1

f ′
j(x)

n∏
k=1,k ̸=j

fk(x)

 .

Verify that this is the same as your answer to the previous problem when n = 4, and write
out what this says when n = 5.

3.4 The Quotient Rule

What is the derivative of (x2 + 1)/(x3 − 3x)? More generally, we’d like to have a formula

to compute the derivative of f(x)/g(x) if we already know f ′(x) and g′(x). Instead of

attacking this problem head-on, let’s notice that we’ve already done part of the problem:

f(x)/g(x) = f(x) · (1/g(x)), that is, this is “really” a product, and we can compute the

derivative if we know f ′(x) and (1/g(x))′. So really the only new bit of information we

need is (1/g(x))′ in terms of g′(x). As with the product rule, let’s set this up and see how
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far we can get:

d

dx

1

g(x)
= lim

∆x→0

1
g(x+∆x) −

1
g(x)

∆x

= lim
∆x→0

g(x)−g(x+∆x)
g(x+∆x)g(x)

∆x

= lim
∆x→0

g(x)− g(x+∆x)

g(x+∆x)g(x)∆x

= lim
∆x→0

−g(x+∆x)− g(x)

∆x

1

g(x+∆x)g(x)

= − g′(x)

g(x)2

Now we can put this together with the product rule:

d

dx

f(x)

g(x)
= f(x)

−g′(x)

g(x)2
+ f ′(x)

1

g(x)
=

−f(x)g′(x) + f ′(x)g(x)

g(x)2
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
.

EXAMPLE 3.4.1 Compute the derivative of (x2 + 1)/(x3 − 3x).

d

dx

x2 + 1

x3 − 3x
=

2x(x3 − 3x)− (x2 + 1)(3x2 − 3)

(x3 − 3x)2
=

−x4 − 6x2 + 3

(x3 − 3x)2
.

It is often possible to calculate derivatives in more than one way, as we have already

seen. Since every quotient can be written as a product, it is always possible to use the

product rule to compute the derivative, though it is not always simpler.

EXAMPLE 3.4.2 Find the derivative of
√
625− x2/

√
x in two ways: using the quotient

rule, and using the product rule.

Quotient rule:

d

dx

√
625− x2

√
x

=

√
x(−x/

√
625− x2)−

√
625− x2 · 1/(2

√
x)

x
.

Note that we have used
√
x = x1/2 to compute the derivative of

√
x by the power rule.

Product rule:

d

dx

√
625− x2x−1/2 =

√
625− x2

−1

2
x−3/2 +

−x√
625− x2

x−1/2.

With a bit of algebra, both of these simplify to

− x2 + 625

2
√
625− x2x3/2

.
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Occasionally you will need to compute the derivative of a quotient with a constant

numerator, like 10/x2. Of course you can use the quotient rule, but it is usually not the

easiest method. If we do use it here, we get

d

dx

10

x2
=

x2 · 0− 10 · 2x
x4

=
−20

x3
,

since the derivative of 10 is 0. But it is simpler to do this:

d

dx

10

x2
=

d

dx
10x−2 = −20x−3.

Admittedly, x2 is a particularly simple denominator, but we will see that a similar calcu-

lation is usually possible. Another approach is to remember that

d

dx

1

g(x)
=

−g′(x)

g(x)2
,

but this requires extra memorization. Using this formula,

d

dx

10

x2
= 10

−2x

x4
.

Note that we first use linearity of the derivative to pull the 10 out in front.

Exercises 3.4.

Find the derivatives of the functions in 1–4 using the quotient rule.

1.
x3

x3 − 5x+ 10
⇒ 2.

x2 + 5x− 3

x5 − 6x3 + 3x2 − 7x+ 1
⇒

3.

√
x√

625− x2
⇒ 4.

√
625− x2

x20
⇒

5. Find an equation for the tangent line to f(x) = (x2 − 4)/(5− x) at x = 3. ⇒
6. Find an equation for the tangent line to f(x) = (x− 2)/(x3 + 4x− 1) at x = 1. ⇒
7. Let P be a polynomial of degree n and let Q be a polynomial of degree m (with Q not the

zero polynomial). Using sigma notation we can write

P =
n∑

k=0

akx
k, Q =

m∑
k=0

bkx
k.

Use sigma notation to write the derivative of the rational function P/Q.

8. The curve y = 1/(1 + x2) is an example of a class of curves each of which is called a witch
of Agnesi. Sketch the curve and find the tangent line to the curve at x = 5. (The word
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witch here is a mistranslation of the original Italian, as described at

http://mathworld.wolfram.com/WitchofAgnesi.html

and
http://instructional1.calstatela.edu/sgray/Agnesi/

WitchHistory/Historynamewitch.html.)

⇒

9. If f ′(4) = 5, g′(4) = 12, (fg)(4) = f(4)g(4) = 2, and g(4) = 6, compute f(4) and
d

dx

f

g
at 4.

⇒

3.5 The Chain Rule

So far we have seen how to compute the derivative of a function built up from other

functions by addition, subtraction, multiplication and division. There is another very

important way that we combine simple functions to make more complicated functions:

function composition, as discussed in section 2.3. For example, consider
√
625− x2. This

function has many simpler components, like 625 and x2, and then there is that square root

symbol, so the square root function
√
x = x1/2 is involved. The obvious question is: can

we compute the derivative using the derivatives of the constituents 625− x2 and
√
x? We

can indeed. In general, if f(x) and g(x) are functions, we can compute the derivatives of

f(g(x)) and g(f(x)) in terms of f ′(x) and g′(x).

EXAMPLE 3.5.1 Form the two possible compositions of f(x) =
√
x and g(x) =

625 − x2 and compute the derivatives. First, f(g(x)) =
√

625− x2, and the derivative

is −x/
√
625− x2 as we have seen. Second, g(f(x)) = 625− (

√
x)2 = 625− x with deriva-

tive −1. Of course, these calculations do not use anything new, and in particular the

derivative of f(g(x)) was somewhat tedious to compute from the definition.

Suppose we want the derivative of f(g(x)). Again, let’s set up the derivative and play

some algebraic tricks:

d

dx
f(g(x)) = lim

∆x→0

f(g(x+∆x))− f(g(x))

∆x

= lim
∆x→0

f(g(x+∆x))− f(g(x))

g(x+∆x))− g(x)

g(x+∆x))− g(x)

∆x

Now we see immediately that the second fraction turns into g′(x) when we take the limit.

The first fraction is more complicated, but it too looks something like a derivative. The

denominator, g(x + ∆x)) − g(x), is a change in the value of g, so let’s abbreviate it as

http://mathworld.wolfram.com/WitchofAgnesi.html
http://instructional1.calstatela.edu/sgray/Agnesi/WitchHistory/Historynamewitch.html
http://instructional1.calstatela.edu/sgray/Agnesi/WitchHistory/Historynamewitch.html
http://instructional1.calstatela.edu/sgray/Agnesi/WitchHistory/Historynamewitch.html
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∆g = g(x+∆x))− g(x), which also means g(x+∆x) = g(x) + ∆g. This gives us

lim
∆x→0

f(g(x) + ∆g)− f(g(x))

∆g
.

As ∆x goes to 0, it is also true that ∆g goes to 0, because g(x+∆x) goes to g(x). So we

can rewrite this limit as

lim
∆g→0

f(g(x) + ∆g)− f(g(x))

∆g
.

Now this looks exactly like a derivative, namely f ′(g(x)), that is, the function f ′(x) with

x replaced by g(x). If this all withstands scrutiny, we then get

d

dx
f(g(x)) = f ′(g(x))g′(x).

Unfortunately, there is a small flaw in the argument. Recall that what we mean by lim∆x→0

involves what happens when ∆x is close to 0 but not equal to 0. The qualification is very

important, since we must be able to divide by ∆x. But when ∆x is close to 0 but not equal

to 0, ∆g = g(x+∆x))− g(x) is close to 0 and possibly equal to 0. This means it doesn’t

really make sense to divide by ∆g. Fortunately, it is possible to recast the argument to

avoid this difficulty, but it is a bit tricky; we will not include the details, which can be

found in many calculus books. Note that many functions g do have the property that

g(x + ∆x) − g(x) ̸= 0 when ∆x is small, and for these functions the argument above is

fine.

The chain rule has a particularly simple expression if we use the Leibniz notation for

the derivative. The quantity f ′(g(x)) is the derivative of f with x replaced by g; this can

be written df/dg. As usual, g′(x) = dg/dx. Then the chain rule becomes

df

dx
=

df

dg

dg

dx
.

This looks like trivial arithmetic, but it is not: dg/dx is not a fraction, that is, not literal

division, but a single symbol that means g′(x). Nevertheless, it turns out that what looks

like trivial arithmetic, and is therefore easy to remember, is really true.

It will take a bit of practice to make the use of the chain rule come naturally—it is

more complicated than the earlier differentiation rules we have seen.

EXAMPLE 3.5.2 Compute the derivative of
√
625− x2. We already know that the

answer is −x/
√
625− x2, computed directly from the limit. In the context of the chain

rule, we have f(x) =
√
x, g(x) = 625 − x2. We know that f ′(x) = (1/2)x−1/2, so
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f ′(g(x)) = (1/2)(625 − x2)−1/2. Note that this is a two step computation: first compute

f ′(x), then replace x by g(x). Since g′(x) = −2x we have

f ′(g(x))g′(x) =
1

2
√
625− x2

(−2x) =
−x√

625− x2
.

EXAMPLE 3.5.3 Compute the derivative of 1/
√
625− x2. This is a quotient with a

constant numerator, so we could use the quotient rule, but it is simpler to use the chain

rule. The function is (625−x2)−1/2, the composition of f(x) = x−1/2 and g(x) = 625−x2.

We compute f ′(x) = (−1/2)x−3/2 using the power rule, and then

f ′(g(x))g′(x) =
−1

2(625− x2)3/2
(−2x) =

x

(625− x2)3/2
.

In practice, of course, you will need to use more than one of the rules we have developed

to compute the derivative of a complicated function.

EXAMPLE 3.5.4 Compute the derivative of

f(x) =
x2 − 1

x
√
x2 + 1

.

The “last” operation here is division, so to get started we need to use the quotient rule

first. This gives

f ′(x) =
(x2 − 1)′x

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)

=
2x2

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)
.

Now we need to compute the derivative of x
√

x2 + 1. This is a product, so we use the

product rule:
d

dx
x
√
x2 + 1 = x

d

dx

√
x2 + 1 +

√
x2 + 1.

Finally, we use the chain rule:

d

dx

√
x2 + 1 =

d

dx
(x2 + 1)1/2 =

1

2
(x2 + 1)−1/2(2x) =

x√
x2 + 1

.
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And putting it all together:

f ′(x) =
2x2

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)
.

=

2x2
√
x2 + 1− (x2 − 1)

(
x

x√
x2 + 1

+
√
x2 + 1

)
x2(x2 + 1)

.

This can be simplified of course, but we have done all the calculus, so that only algebra is

left.

EXAMPLE 3.5.5 Compute the derivative of

√
1 +

√
1 +

√
x. Here we have a more

complicated chain of compositions, so we use the chain rule twice. At the outermost “layer”

we have the function g(x) = 1 +

√
1 +

√
x plugged into f(x) =

√
x, so applying the chain

rule once gives

d

dx

√
1 +

√
1 +

√
x =

1

2

(
1 +

√
1 +

√
x

)−1/2
d

dx

(
1 +

√
1 +

√
x

)
.

Now we need the derivative of

√
1 +

√
x. Using the chain rule again:

d

dx

√
1 +

√
x =

1

2

(
1 +

√
x
)−1/2 1

2
x−1/2.

So the original derivative is

d

dx

√
1 +

√
1 +

√
x =

1

2

(
1 +

√
1 +

√
x

)−1/2
1

2

(
1 +

√
x
)−1/2 1

2
x−1/2.

=
1

8
√
x
√
1 +

√
x
√
1 +

√
1 +

√
x

Using the chain rule, the power rule, and the product rule, it is possible to avoid using

the quotient rule entirely.



3.5 The Chain Rule 69

EXAMPLE 3.5.6 Compute the derivative of f(x) =
x3

x2 + 1
. Write f(x) = x3(x2+1)−1,

then

f ′(x) = x3 d

dx
(x2 + 1)−1 + 3x2(x2 + 1)−1

= x3(−1)(x2 + 1)−2(2x) + 3x2(x2 + 1)−1

= −2x4(x2 + 1)−2 + 3x2(x2 + 1)−1

=
−2x4

(x2 + 1)2
+

3x2

x2 + 1

=
−2x4

(x2 + 1)2
+

3x2(x2 + 1)

(x2 + 1)2

=
−2x4 + 3x4 + 3x2

(x2 + 1)2
=

x4 + 3x2

(x2 + 1)2

Note that we already had the derivative on the second line; all the rest is simplification. It

is easier to get to this answer by using the quotient rule, so there’s a trade off: more work

for fewer memorized formulas.

Exercises 3.5.

Find the derivatives of the functions. For extra practice, and to check your answers, do some of
these in more than one way if possible.

1. x4 − 3x3 + (1/2)x2 + 7x− π ⇒ 2. x3 − 2x2 + 4
√
x ⇒

3. (x2 + 1)3 ⇒ 4. x
√

169− x2 ⇒

5. (x2 − 4x+ 5)
√

25− x2 ⇒ 6.
√

r2 − x2, r is a constant ⇒

7.
√

1 + x4 ⇒ 8.
1√

5−
√
x
. ⇒

9. (1 + 3x)2 ⇒ 10.
(x2 + x+ 1)

(1− x)
⇒

11.

√
25− x2

x
⇒ 12.

√
169

x
− x ⇒

13.
√

x3 − x2 − (1/x) ⇒ 14. 100/(100− x2)3/2 ⇒

15.
3
√

x+ x3 ⇒ 16.

√
(x2 + 1)2 +

√
1 + (x2 + 1)2 ⇒

17. (x+ 8)5 ⇒ 18. (4− x)3 ⇒
19. (x2 + 5)3 ⇒ 20. (6− 2x2)3 ⇒
21. (1− 4x3)−2 ⇒ 22. 5(x+ 1− 1/x) ⇒

23. 4(2x2 − x+ 3)−2 ⇒ 24.
1

1 + 1/x
⇒

25.
−3

4x2 − 2x+ 1
⇒ 26. (x2 + 1)(5− 2x)/2 ⇒
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27. (3x2 + 1)(2x− 4)3 ⇒ 28.
x+ 1

x− 1
⇒

29.
x2 − 1

x2 + 1
⇒ 30.

(x− 1)(x− 2)

x− 3
⇒

31.
2x−1 − x−2

3x−1 − 4x−2
⇒ 32. 3(x2 + 1)(2x2 − 1)(2x+ 3) ⇒

33.
1

(2x+ 1)(x− 3)
⇒ 34. ((2x+ 1)−1 + 3)−1 ⇒

35. (2x+ 1)3(x2 + 1)2 ⇒

36. Find an equation for the tangent line to f(x) = (x− 2)1/3/(x3 + 4x− 1)2 at x = 1. ⇒
37. Find an equation for the tangent line to y = 9x−2 at (3, 1). ⇒

38. Find an equation for the tangent line to (x2 − 4x+ 5)
√

25− x2 at (3, 8). ⇒

39. Find an equation for the tangent line to
(x2 + x+ 1)

(1− x)
at (2,−7). ⇒

40. Find an equation for the tangent line to

√
(x2 + 1)2 +

√
1 + (x2 + 1)2 at (1,

√
4 +
√
5). ⇒



4
Transcendental Functions

So far we have used only algebraic functions as examples when finding derivatives, that is,

functions that can be built up by the usual algebraic operations of addition, subtraction,

multiplication, division, and raising to constant powers. Both in theory and practice there

are other functions, called transcendental, that are very useful. Most important among

these are the trigonometric functions, the inverse trigonometric functions, exponential

functions, and logarithms.

4.1 Trigonometric Functions

When you first encountered the trigonometric functions it was probably in the context of

“triangle trigonometry,” defining, for example, the sine of an angle as the “side opposite

over the hypotenuse.” While this will still be useful in an informal way, we need to use a

more expansive definition of the trigonometric functions. First an important note: while

degree measure of angles is sometimes convenient because it is so familiar, it turns out to

be ill-suited to mathematical calculation, so (almost) everything we do will be in terms of

radian measure of angles.

71
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To define the radian measurement system, we consider the unit circle in the xy-plane:
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x

(cos x, sin x)

y

A

B

(1, 0)

An angle, x, at the center of the circle is associated with an arc of the circle which is said

to subtend the angle. In the figure, this arc is the portion of the circle from point (1, 0)

to point A. The length of this arc is the radian measure of the angle x; the fact that the

radian measure is an actual geometric length is largely responsible for the usefulness of

radian measure. The circumference of the unit circle is 2πr = 2π(1) = 2π, so the radian

measure of the full circular angle (that is, of the 360 degree angle) is 2π.

While an angle with a particular measure can appear anywhere around the circle, we

need a fixed, conventional location so that we can use the coordinate system to define

properties of the angle. The standard convention is to place the starting radius for the

angle on the positive x-axis, and to measure positive angles counterclockwise around the

circle. In the figure, x is the standard location of the angle π/6, that is, the length of the

arc from (1, 0) to A is π/6. The angle y in the picture is −π/6, because the distance from

(1, 0) to B along the circle is also π/6, but in a clockwise direction.

Now the fundamental trigonometric definitions are: the cosine of x and the sine of x

are the first and second coordinates of the point A, as indicated in the figure. The angle x

shown can be viewed as an angle of a right triangle, meaning the usual triangle definitions

of the sine and cosine also make sense. Since the hypotenuse of the triangle is 1, the “side

opposite over hypotenuse” definition of the sine is the second coordinate of point A over

1, which is just the second coordinate; in other words, both methods give the same value

for the sine.

The simple triangle definitions work only for angles that can “fit” in a right triangle,

namely, angles between 0 and π/2. The coordinate definitions, on the other hand, apply
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to any angles, as indicated in this figure:
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(cos x, sin x)

The angle x is subtended by the heavy arc in the figure, that is, x = 7π/6. Both

coordinates of point A in this figure are negative, so the sine and cosine of 7π/6 are both

negative.

The remaining trigonometric functions can be most easily defined in terms of the sine

and cosine, as usual:

tanx =
sinx

cosx

cotx =
cosx

sinx

secx =
1

cosx

cscx =
1

sinx

and they can also be defined as the corresponding ratios of coordinates.

Although the trigonometric functions are defined in terms of the unit circle, the unit

circle diagram is not what we normally consider the graph of a trigonometric function.

(The unit circle is the graph of, well, the circle.) We can easily get a qualitatively correct

idea of the graphs of the trigonometric functions from the unit circle diagram. Consider

the sine function, y = sinx. As x increases from 0 in the unit circle diagram, the second

coordinate of the point A goes from 0 to a maximum of 1, then back to 0, then to a

minimum of −1, then back to 0, and then it obviously repeats itself. So the graph of

y = sinx must look something like this:
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Similarly, as angle x increases from 0 in the unit circle diagram, the first coordinate of

the point A goes from 1 to 0 then to −1, back to 0 and back to 1, so the graph of y = cosx

must look something like this:
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Exercises 4.1.

Some useful trigonometric identities are in appendix B.

1. Find all values of θ such that sin(θ) = −1; give your answer in radians. ⇒
2. Find all values of θ such that cos(2θ) = 1/2; give your answer in radians. ⇒
3. Use an angle sum identity to compute cos(π/12). ⇒
4. Use an angle sum identity to compute tan(5π/12). ⇒
5. Verify the identity cos2(t)/(1− sin(t)) = 1 + sin(t).

6. Verify the identity 2 csc(2θ) = sec(θ) csc(θ).

7. Verify the identity sin(3θ)− sin(θ) = 2 cos(2θ) sin(θ).

8. Sketch y = 2 sin(x).

9. Sketch y = sin(3x).

10. Sketch y = sin(−x).
11. Find all of the solutions of 2 sin(t)− 1− sin2(t) = 0 in the interval [0, 2π]. ⇒

4.2 The Derivative of sinx

What about the derivative of the sine function? The rules for derivatives that we have are

no help, since sinx is not an algebraic function. We need to return to the definition of the

derivative, set up a limit, and try to compute it. Here’s the definition:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x
.

Using some trigonometric identities, we can make a little progress on the quotient:

sin(x+∆x)− sinx

∆x
=

sinx cos∆x+ sin∆x cosx− sinx

∆x

= sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x
.
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This isolates the difficult bits in the two limits

lim
∆x→0

cos∆x− 1

∆x
and lim

∆x→0

sin∆x

∆x
.

Here we get a little lucky: it turns out that once we know the second limit the first is quite

easy. The second is quite tricky, however. Indeed, it is the hardest limit we will actually

compute, and we devote a section to it.

4.3 A hard limit

We want to compute this limit:

lim
∆x→0

sin∆x

∆x
.

Equivalently, to make the notation a bit simpler, we can compute

lim
x→0

sinx

x
.

In the original context we need to keep x and ∆x separate, but here it doesn’t hurt to

rename ∆x to something more convenient.

To do this we need to be quite clever, and to employ some indirect reasoning. The

indirect reasoning is embodied in a theorem, frequently called the squeeze theorem.

THEOREM 4.3.1 Squeeze Theorem Suppose that g(x) ≤ f(x) ≤ h(x) for all x

close to a but not equal to a. If limx→a g(x) = L = limx→a h(x), then limx→a f(x) = L.

This theorem can be proved using the official definition of limit. We won’t prove it

here, but point out that it is easy to understand and believe graphically. The condition

says that f(x) is trapped between g(x) below and h(x) above, and that at x = a, both g

and h approach the same value. This means the situation looks something like figure 4.3.1.

The wiggly curve is x2 sin(π/x), the upper and lower curves are x2 and −x2. Since the

sine function is always between −1 and 1, −x2 ≤ x2 sin(π/x) ≤ x2, and it is easy to see

that limx→0 −x2 = 0 = limx→0 x
2. It is not so easy to see directly, that is algebraically,

that limx→0 x
2 sin(π/x) = 0, because the π/x prevents us from simply plugging in x = 0.

The squeeze theorem makes this “hard limit” as easy as the trivial limits involving x2.

To do the hard limit that we want, limx→0(sinx)/x, we will find two simpler functions

g and h so that g(x) ≤ (sinx)/x ≤ h(x), and so that limx→0 g(x) = limx→0 h(x). Not too

surprisingly, this will require some trigonometry and geometry. Referring to figure 4.3.2,

x is the measure of the angle in radians. Since the circle has radius 1, the coordinates of
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Figure 4.3.1 The squeeze theorem.

point A are (cosx, sinx), and the area of the small triangle is (cosx sinx)/2. This triangle

is completely contained within the circular wedge-shaped region bordered by two lines and

the circle from (1, 0) to point A. Comparing the areas of the triangle and the wedge we

see (cosx sinx)/2 ≤ x/2, since the area of a circular region with angle θ and radius r is

θr2/2. With a little algebra this turns into (sinx)/x ≤ 1/ cosx, giving us the h we seek.
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Figure 4.3.2 Visualizing sinx/x.

To find g, we note that the circular wedge is completely contained inside the larger

triangle. The height of the triangle, from (1, 0) to point B, is tanx, so comparing areas we

get x/2 ≤ (tanx)/2 = sinx/(2 cosx). With a little algebra this becomes cosx ≤ (sinx)/x.

So now we have

cosx ≤ sinx

x
≤ 1

cosx
.
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Finally, the two limits limx→0 cosx and limx→0 1/ cosx are easy, because cos(0) = 1. By

the squeeze theorem, limx→0(sinx)/x = 1 as well.

Before we can complete the calculation of the derivative of the sine, we need one other

limit:

lim
x→0

cosx− 1

x
.

This limit is just as hard as sinx/x, but closely related to it, so that we don’t have to do

a similar calculation; instead we can do a bit of tricky algebra.

cosx− 1

x
=

cosx− 1

x

cosx+ 1

cosx+ 1
=

cos2 x− 1

x(cosx+ 1)
=

− sin2 x

x(cosx+ 1)
= − sinx

x

sinx

cosx+ 1
.

To compute the desired limit it is sufficient to compute the limits of the two final fractions,

as x goes to 0. The first of these is the hard limit we’ve just done, namely 1. The second

turns out to be simple, because the denominator presents no problem:

lim
x→0

sinx

cosx+ 1
=

sin 0

cos 0 + 1
=

0

2
= 0.

Thus,

lim
x→0

cosx− 1

x
= 0.

Exercises 4.3.

1. Compute lim
x→0

sin(5x)

x
⇒ 2. Compute lim

x→0

sin(7x)

sin(2x)
⇒

3. Compute lim
x→0

cot(4x)

csc(3x)
⇒ 4. Compute lim

x→0

tanx

x
⇒

5. Compute lim
x→π/4

sinx− cosx

cos(2x)
⇒

6. For all x ≥ 0, 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7. Find lim
x→4

f(x). ⇒

7. For all x, 2x ≤ g(x) ≤ x4 − x2 + 2. Find lim
x→1

g(x). ⇒

8. Use the Squeeze Theorem to show that lim
x→0

x4 cos(2/x) = 0.
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4.4 The Derivative of sinx , continued

Now we can complete the calculation of the derivative of the sine:

d

dx
sinx = lim

∆x→0

sin(x+∆x)− sinx

∆x

= lim
∆x→0

sinx
cos∆x− 1

∆x
+ cosx

sin∆x

∆x

= sinx · 0 + cosx · 1 = cosx.

The derivative of a function measures the slope or steepness of the function; if we

examine the graphs of the sine and cosine side by side, it should be that the latter appears

to accurately describe the slope of the former, and indeed this is true:
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cos x

Notice that where the cosine is zero the sine does appear to have a horizontal tangent

line, and that the sine appears to be steepest where the cosine takes on its extreme values

of 1 and −1.

Of course, now that we know the derivative of the sine, we can compute derivatives of

more complicated functions involving the sine.

EXAMPLE 4.4.1 Compute the derivative of sin(x2).

d

dx
sin(x2) = cos(x2) · 2x = 2x cos(x2).

EXAMPLE 4.4.2 Compute the derivative of sin2(x3 − 5x).

d

dx
sin2(x3 − 5x) =

d

dx
(sin(x3 − 5x))2

= 2(sin(x3 − 5x))1 cos(x3 − 5x)(3x2 − 5)

= 2(3x2 − 5) cos(x3 − 5x) sin(x3 − 5x).
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Exercises 4.4.

Find the derivatives of the following functions.

1. sin2(
√
x) ⇒ 2.

√
x sinx ⇒

3.
1

sinx
⇒ 4.

x2 + x

sinx
⇒

5.
√

1− sin2 x ⇒

4.5 Derivatives of the Trigonometric Functions

All of the other trigonometric functions can be expressed in terms of the sine, and so their

derivatives can easily be calculated using the rules we already have. For the cosine we

need to use two identities,

cosx = sin(x+
π

2
),

sinx = − cos(x+
π

2
).

Now:
d

dx
cosx =

d

dx
sin(x+

π

2
) = cos(x+

π

2
) · 1 = − sinx

d

dx
tanx =

d

dx

sinx

cosx
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
= sec2 x

d

dx
secx =

d

dx
(cosx)−1 = −1(cosx)−2(− sinx) =

sinx

cos2 x
= secx tanx

The derivatives of the cotangent and cosecant are similar and left as exercises.

Exercises 4.5.

Find the derivatives of the following functions.

1. sinx cosx ⇒ 2. sin(cosx) ⇒
3.
√
x tanx ⇒ 4. tanx/(1 + sinx) ⇒

5. cotx ⇒ 6. cscx ⇒
7. x3 sin(23x2) ⇒ 8. sin2 x+ cos2 x ⇒
9. sin(cos(6x)) ⇒

10. Compute
d

dθ

sec θ

1 + sec θ
. ⇒

11. Compute
d

dt
t5 cos(6t). ⇒

12. Compute
d

dt

t3 sin(3t)

cos(2t)
. ⇒

13. Find all points on the graph of f(x) = sin2(x) at which the tangent line is horizontal. ⇒
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14. Find all points on the graph of f(x) = 2 sin(x)−sin2(x) at which the tangent line is horizontal.
⇒

15. Find an equation for the tangent line to sin2(x) at x = π/3. ⇒
16. Find an equation for the tangent line to sec2 x at x = π/3. ⇒
17. Find an equation for the tangent line to cos2 x− sin2(4x) at x = π/6. ⇒
18. Find the points on the curve y = x+ 2 cosx that have a horizontal tangent line. ⇒
19. Let C be a circle of radius r. Let A be an arc on C subtending a central angle θ. Let B be

the chord of C whose endpoints are the endpoints of A. (Hence, B also subtends θ.) Let
s be the length of A and let d be the length of B. Sketch a diagram of the situation and
compute lim

θ→0+
s/d.

4.6 Exponential and Logarithmic functions

An exponential function has the form ax, where a is a constant; examples are 2x, 10x, ex.

The logarithmic functions are the inverses of the exponential functions, that is, functions

that “undo” the exponential functions, just as, for example, the cube root function “un-

does” the cube function:
3
√
23 = 2. Note that the original function also undoes the inverse

function: (
3
√
8)3 = 8.

Let f(x) = 2x. The inverse of this function is called the logarithm base 2, denoted

log2(x) or (especially in computer science circles) lg(x). What does this really mean? The

logarithm must undo the action of the exponential function, so for example it must be that

lg(23) = 3—starting with 3, the exponential function produces 23 = 8, and the logarithm

of 8 must get us back to 3. A little thought shows that it is not a coincidence that lg(23)

simply gives the exponent—the exponent is the original value that we must get back to.

In other words, the logarithm is the exponent. Remember this catchphrase, and what it

means, and you won’t go wrong. (You do have to remember what it means. Like any

good mnemonic, “the logarithm is the exponent” leaves out a lot of detail, like “Which

exponent?” and “Exponent of what?”)

EXAMPLE 4.6.1 What is the value of log10(1000)? The “10” tells us the appropriate

number to use for the base of the exponential function. The logarithm is the exponent,

so the question is, what exponent E makes 10E = 1000? If we can find such an E, then

log10(1000) = log10(10
E) = E; finding the appropriate exponent is the same as finding the

logarithm. In this case, of course, it is easy: E = 3 so log10(1000) = 3.

Let’s review some laws of exponents and logarithms; let a be a positive number. Since

a5 = a ·a ·a ·a ·a and a3 = a ·a ·a, it’s clear that a5 ·a3 = a ·a ·a ·a ·a ·a ·a ·a = a8 = a5+3,

and in general that aman = am+n. Since “the logarithm is the exponent,” it’s no surprise

that this translates directly into a fact about the logarithm function. Here are three facts
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from the example: loga(a
5) = 5, loga(a

3) = 3, loga(a
8) = 8. So loga(a

5a3) = loga(a
8) =

8 = 5 + 3 = loga(a
5) + loga(a

3). Now let’s make this a bit more general. Suppose A and

B are two numbers, A = ax, and B = ay. Then loga(AB) = loga(a
xay) = loga(a

x+y) =

x+ y = loga(A) + loga(B).

Now consider (a5)3 = a5 · a5 · a5 = a5+5+5 = a5·3 = a15. Again it’s clear that more

generally (am)n = amn, and again this gives us a fact about logarithms. If A = ax then

Ay = (ax)y = axy, so loga(A
y) = xy = y loga(A)—the exponent can be “pulled out in

front.”

We have cheated a bit in the previous two paragraphs. It is obvious that a5 = a·a·a·a·a
and a3 = a · a · a and that the rest of the example follows; likewise for the second example.

But when we consider an exponential function ax we can’t be limited to substituting

integers for x. What does a2.5 or a−1.3 or aπ mean? And is it really true that a2.5a−1.3 =

a2.5−1.3? The answer to the first question is actually quite difficult, so we will evade it;

the answer to the second question is “yes.”

We’ll evade the full answer to the hard question, but we have to know something about

exponential functions. You need first to understand that since it’s not “obvious” what 2x

should mean, we are really free to make it mean whatever we want, so long as we keep the

behavior that is obvious, namely, when x is a positive integer. What else do we want to

be true about 2x? We want the properties of the previous two paragraphs to be true for

all exponents: 2x2y = 2x+y and (2x)y = 2xy.

After the positive integers, the next easiest number to understand is 0: 20 = 1. You

have presumably learned this fact in the past; why is it true? It is true precisely because

we want 2a2b = 2a+b to be true about the function 2x. We need it to be true that

202x = 20+x = 2x, and this only works if 20 = 1. The same argument implies that a0 = 1

for any a.

The next easiest set of numbers to understand is the negative integers: for example,

2−3 = 1/23. We know that whatever 2−3 means it must be that 2−323 = 2−3+3 = 20 = 1,

which means that 2−3 must be 1/23. In fact, by the same argument, once we know what

2x means for some value of x, 2−x must be 1/2x and more generally a−x = 1/ax.

Next, consider an exponent 1/q, where q is a positive integer. We want it to be true

that (2x)y = 2xy, so (21/q)q = 2. This means that 21/q is a q-th root of 2, 21/q =
q
√
2 . This

is all we need to understand that 2p/q = (21/q)p = ( q
√
2 )p and ap/q = (a1/q)p = ( q

√
a )p.

What’s left is the hard part: what does 2x mean when x cannot be written as a

fraction, like x =
√
2 or x = π? What we know so far is how to assign meaning to 2x
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whenever x = p/q; if we were to graph this we’d see something like this:
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But this is a poor picture, because you can’t see that the “curve” is really a whole lot

of individual points, above the rational numbers on the x-axis. There are really a lot of

“holes” in the curve, above x = π, for example. But (this is the hard part) it is possible

to prove that the holes can be “filled in”, and that the resulting function, called 2x, really

does have the properties we want, namely that 2x2y = 2x+y and (2x)y = 2xy.

Exercises 4.6.

1. Expand log10((x+ 45)7(x− 2)).

2. Expand log2
x3

3x− 5 + (7/x)
.

3. Write log2 3x+ 17 log2(x− 2)− 2 log2(x
2 + 4x+ 1) as a single logarithm.

4. Solve log2(1 +
√
x) = 6 for x.

5. Solve 2x
2

= 8 for x.

6. Solve log2(log3(x)) = 1 for x.

4.7 Derivatives of the exponential and
logarithmic functions

As with the sine, we don’t know anything about derivatives that allows us to compute

the derivatives of the exponential and logarithmic functions without going back to basics.

Let’s do a little work with the definition again:

d

dx
ax = lim

∆x→0

ax+∆x − ax

∆x

= lim
∆x→0

axa∆x − ax

∆x

= lim
∆x→0

ax
a∆x − 1

∆x

= ax lim
∆x→0

a∆x − 1

∆x
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There are two interesting things to note here: As in the case of the sine function we are left

with a limit that involves ∆x but not x, which means that whatever lim
∆x→0

(a∆x − 1)/∆x

is, we know that it is a number, that is, a constant. This means that ax has a remarkable

property: its derivative is a constant times itself.

We earlier remarked that the hardest limit we would compute is lim
x→0

sinx/x = 1; we

now have a limit that is just a bit too hard to include here. In fact the hard part is to

see that lim
∆x→0

(a∆x − 1)/∆x even exists—does this fraction really get closer and closer to

some fixed value? Yes it does, but we will not prove this fact.

We can look at some examples. Consider (2x − 1)/x for some small values of x: 1,

0.828427124, 0.756828460, 0.724061864, 0.70838051, 0.70070877 when x is 1, 1/2, 1/4,

1/8, 1/16, 1/32, respectively. It looks like this is settling in around 0.7, which turns out

to be true (but the limit is not exactly 0.7). Consider next (3x − 1)/x: 2, 1.464101616,

1.264296052, 1.177621520, 1.13720773, 1.11768854, at the same values of x. It turns out

to be true that in the limit this is about 1.1. Two examples don’t establish a pattern, but

if you do more examples you will find that the limit varies directly with the value of a:

bigger a, bigger limit; smaller a, smaller limit. As we can already see, some of these limits

will be less than 1 and some larger than 1. Somewhere between a = 2 and a = 3 the limit

will be exactly 1; the value at which this happens is called e, so that

lim
∆x→0

e∆x − 1

∆x
= 1.

As you might guess from our two examples, e is closer to 3 than to 2, and in fact e ≈ 2.718.

Now we see that the function ex has a truly remarkable property:

d

dx
ex = lim

∆x→0

ex+∆x − ex

∆x

= lim
∆x→0

exe∆x − ex

∆x

= lim
∆x→0

ex
e∆x − 1

∆x

= ex lim
∆x→0

e∆x − 1

∆x

= ex

That is, ex is its own derivative, or in other words the slope of ex is the same as its height,

or the same as its second coordinate: The function f(x) = ex goes through the point

(z, ez) and has slope ez there, no matter what z is. It is sometimes convenient to express

the function ex without an exponent, since complicated exponents can be hard to read. In

such cases we use exp(x), e.g., exp(1 + x2) instead of e1+x2

.



84 Chapter 4 Transcendental Functions

What about the logarithm function? This too is hard, but as the cosine function was

easier to do once the sine was done, so the logarithm is easier to do now that we know

the derivative of the exponential function. Let’s start with loge x, which as you probably

know is often abbreviated lnx and called the “natural logarithm” function.

Consider the relationship between the two functions, namely, that they are inverses,

that one “undoes” the other. Graphically this means that they have the same graph except

that one is “flipped” or “reflected” through the line y = x, as shown in figure 4.7.1.
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Figure 4.7.1 The exponential and logarithm functions.

This means that the slopes of these two functions are closely related as well: For example,

the slope of ex is e at x = 1; at the corresponding point on the ln(x) curve, the slope must

be 1/e, because the “rise” and the “run” have been interchanged. Since the slope of ex is

e at the point (1, e), the slope of ln(x) is 1/e at the point (e, 1).
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Figure 4.7.2 Slope of the exponential and logarithm functions.

More generally, we know that the slope of ex is ez at the point (z, ez), so the slope of

ln(x) is 1/ez at (ez, z), as indicated in figure 4.7.2. In other words, the slope of lnx is the

reciprocal of the first coordinate at any point; this means that the slope of lnx at (x, lnx)

is 1/x. The upshot is:
d

dx
lnx =

1

x
.
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We have discussed this from the point of view of the graphs, which is easy to understand

but is not normally considered a rigorous proof—it is too easy to be led astray by pictures

that seem reasonable but that miss some hard point. It is possible to do this derivation

without resorting to pictures, and indeed we will see an alternate approach soon.

Note that lnx is defined only for x > 0. It is sometimes useful to consider the function

ln |x|, a function defined for x ̸= 0. When x < 0, ln |x| = ln(−x) and

d

dx
ln |x| = d

dx
ln(−x) =

1

−x
(−1) =

1

x
.

Thus whether x is positive or negative, the derivative is the same.

What about the functions ax and loga x? We know that the derivative of ax is some

constant times ax itself, but what constant? Remember that “the logarithm is the expo-

nent” and you will see that a = eln a. Then

ax = (eln a)x = ex ln a,

and we can compute the derivative using the chain rule:

d

dx
ax =

d

dx
(eln a)x =

d

dx
ex ln a = (ln a)ex ln a = (ln a)ax.

The constant is simply ln a. Likewise we can compute the derivative of the logarithm

function loga x. Since

x = eln x

we can take the logarithm base a of both sides to get

loga(x) = loga(e
lnx) = lnx loga e.

Then
d

dx
loga x =

1

x
loga e.

This is a perfectly good answer, but we can improve it slightly. Since

a = eln a

loga(a) = loga(e
ln a) = ln a loga e

1 = ln a loga e

1

ln a
= loga e,
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we can replace loga e to get
d

dx
loga x =

1

x ln a
.

You may if you wish memorize the formulas

d

dx
ax = (ln a)ax and

d

dx
loga x =

1

x ln a
.

Because the “trick” a = eln a is often useful, and sometimes essential, it may be better to

remember the trick, not the formula.

EXAMPLE 4.7.1 Compute the derivative of f(x) = 2x.

d

dx
2x =

d

dx
(eln 2)x

=
d

dx
ex ln 2

=

(
d

dx
x ln 2

)
ex ln 2

= (ln 2)ex ln 2 = 2x ln 2

EXAMPLE 4.7.2 Compute the derivative of f(x) = 2x
2

= 2(x
2).

d

dx
2x

2

=
d

dx
ex

2 ln 2

=

(
d

dx
x2 ln 2

)
ex

2 ln 2

= (2 ln 2)xex
2 ln 2

= (2 ln 2)x2x
2

EXAMPLE 4.7.3 Compute the derivative of f(x) = xx. At first this appears to be

a new kind of function: it is not a constant power of x, and it does not seem to be an

exponential function, since the base is not constant. But in fact it is no harder than the

previous example.
d

dx
xx =

d

dx
ex ln x

=

(
d

dx
x lnx

)
ex ln x

= (x
1

x
+ lnx)xx

= (1 + lnx)xx
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EXAMPLE 4.7.4 Recall that we have not justified the power rule except when the

exponent is a positive or negative integer. We can use the exponential function to take

care of other exponents.
d

dx
xr =

d

dx
er lnx

=

(
d

dx
r lnx

)
er ln x

= (r
1

x
)xr

= rxr−1

Exercises 4.7.

In 1–19, find the derivatives of the functions.

1. 3x
2

⇒ 2.
sinx

ex
⇒

3. (ex)2 ⇒ 4. sin(ex) ⇒
5. esin x ⇒ 6. xsin x ⇒
7. x3ex ⇒ 8. x+ 2x ⇒
9. (1/3)x

2

⇒ 10. e4x/x ⇒
11. ln(x3 + 3x) ⇒ 12. ln(cos(x)) ⇒
13.

√
ln(x2)/x ⇒ 14. ln(sec(x) + tan(x)) ⇒

15. xcos(x) ⇒ 16. x lnx

17. ln(ln(3x)) 18.
1 + ln(3x2)

1 + ln(4x)

19.
x8(x− 23)1/2

27x6(4x− 6)8

20. Find the value of a so that the tangent line to y = ln(x) at x = a is a line through the origin.
Sketch the resulting situation. ⇒

21. If f(x) = ln(x3 + 2) compute f ′(e1/3).

4.8 Implicit Differentiation

As we have seen, there is a close relationship between the derivatives of ex and lnx because

these functions are inverses. Rather than relying on pictures for our understanding, we

would like to be able to exploit this relationship computationally. In fact this technique

can help us find derivatives in many situations, not just when we seek the derivative of an

inverse function.
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We will begin by illustrating the technique to find what we already know, the derivative

of lnx. Let’s write y = lnx and then x = elnx = ey, that is, x = ey. We say that

this equation defines the function y = lnx implicitly because while it is not an explicit

expression y = . . ., it is true that if x = ey then y is in fact the natural logarithm function.

Now, for the time being, pretend that all we know of y is that x = ey; what can we say

about derivatives? We can take the derivative of both sides of the equation:

d

dx
x =

d

dx
ey.

Then using the chain rule on the right hand side:

1 =

(
d

dx
y

)
ey = y′ey.

Then we can solve for y′:

y′ =
1

ey
=

1

x
.

There is one little difficulty here. To use the chain rule to compute d/dx(ey) = y′ey we

need to know that the function y has a derivative. All we have shown is that if it has a

derivative then that derivative must be 1/x. When using this method we will always have

to assume that the desired derivative exists, but fortunately this is a safe assumption for

most such problems.

The example y = lnx involved an inverse function defined implicitly, but other func-

tions can be defined implicitly, and sometimes a single equation can be used to implicitly

define more than one function. Here’s a familiar example. The equation r2 = x2 + y2

describes a circle of radius r. The circle is not a function y = f(x) because for some values

of x there are two corresponding values of y. If we want to work with a function, we can

break the circle into two pieces, the upper and lower semicircles, each of which is a function.

Let’s call these y = U(x) and y = L(x); in fact this is a fairly simple example, and it’s

possible to give explicit expressions for these: U(x) =
√
r2 − x2 and L(x) = −

√
r2 − x2 .

But it’s somewhat easier, and quite useful, to view both functions as given implicitly by

r2 = x2 + y2: both r2 = x2 + U(x)2 and r2 = x2 + L(x)2 are true, and we can think of

r2 = x2 + y2 as defining both U(x) and L(x).

Now we can take the derivative of both sides as before, remembering that y is not

simply a variable but a function—in this case, y is either U(x) or L(x) but we’re not yet

specifying which one. When we take the derivative we just have to remember to apply the
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chain rule where y appears.
d

dx
r2 =

d

dx
(x2 + y2)

0 = 2x+ 2yy′

y′ =
−2x

2y
= −x

y

Now we have an expression for y′, but it contains y as well as x. This means that if we

want to compute y′ for some particular value of x we’ll have to know or compute y at that

value of x as well. It is at this point that we will need to know whether y is U(x) or L(x).

Occasionally it will turn out that we can avoid explicit use of U(x) or L(x) by the nature

of the problem

EXAMPLE 4.8.1 Find the slope of the circle 4 = x2 + y2 at the point (1,−
√
3). Since

we know both the x and y coordinates of the point of interest, we do not need to explicitly

recognize that this point is on L(x), and we do not need to use L(x) to compute y—but

we could. Using the calculation of y′ from above,

y′ = −x

y
= − 1

−
√
3
=

1√
3
.

It is instructive to compare this approach to others.

We might have recognized at the start that (1,−
√
3) is on the function y = L(x) =

−
√
4− x2. We could then take the derivative of L(x), using the power rule and the chain

rule, to get

L′(x) = −1

2
(4− x2)−1/2(−2x) =

x√
4− x2

.

Then we could compute L′(1) = 1/
√
3 by substituting x = 1.

Alternately, we could realize that the point is on L(x), but use the fact that y′ = −x/y.

Since the point is on L(x) we can replace y by L(x) to get

y′ = − x

L(x)
=

x√
4− x2

,

without computing the derivative of L(x) explicitly. Then we substitute x = 1 and get the

same answer as before.

In the case of the circle it is possible to find the functions U(x) and L(x) explicitly, but

there are potential advantages to using implicit differentiation anyway. In some cases it is

more difficult or impossible to find an explicit formula for y and implicit differentiation is

the only way to find the derivative.
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EXAMPLE 4.8.2 Find the derivative of any function defined implicitly by yx2+ey = x.

We treat y as an unspecified function and use the chain rule:

d

dx
(yx2 + ey) =

d

dx
x

(y · 2x+ y′ · x2) + y′ey = 1

y′x2 + y′ey = 1− 2xy

y′(x2 + ey) = 1− 2xy

y′ =
1− 2xy

x2 + ey

You might think that the step in which we solve for y′ could sometimes be difficult—

after all, we’re using implicit differentiation here because we can’t solve the equation

yx2 + ey = x for y, so maybe after taking the derivative we get something that is hard to

solve for y′. In fact, this never happens. All occurrences y′ come from applying the chain

rule, and whenever the chain rule is used it deposits a single y′ multiplied by some other

expression. So it will always be possible to group the terms containing y′ together and

factor out the y′, just as in the previous example. If you ever get anything more difficult

you have made a mistake and should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a

function implicitly.

EXAMPLE 4.8.3 Consider all the points (x, y) that have the property that the distance

from (x, y) to (x1, y1) plus the distance from (x, y) to (x2, y2) is 2a (a is some constant).

These points form an ellipse, which like a circle is not a function but can viewed as two

functions pasted together. Because we know how to write down the distance between two

points, we can write down an implicit equation for the ellipse:√
(x− x1)2 + (y − y1)2 +

√
(x− x2)2 + (y − y2)2 = 2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though

the computation is rather messy.

EXAMPLE 4.8.4 We have already justified the power rule by using the exponential

function, but we could also do it for rational exponents by using implicit differentiation.

Suppose that y = xm/n, where m and n are positive integers. We can write this implicitly

as yn = xm, then because we justified the power rule for integers, we can take the derivative
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of each side:
nyn−1y′ = mxm−1

y′ =
m

n

xm−1

yn−1

y′ =
m

n

xm−1

(xm/n)n−1

y′ =
m

n
xm−1−(m/n)(n−1)

y′ =
m

n
xm−1−m+(m/n)

y′ =
m

n
x(m/n)−1

Exercises 4.8.

In exercises 1–8, find a formula for the derivative y′ at the point (x, y):

1. y2 = 1 + x2 ⇒
2. x2 + xy + y2 = 7 ⇒
3. x3 + xy2 = y3 + yx2 ⇒
4. 4 cosx sin y = 1 ⇒
5.
√
x+
√
y = 9 ⇒

6. tan(x/y) = x+ y ⇒
7. sin(x+ y) = xy ⇒

8.
1

x
+

1

y
= 7 ⇒

9. A hyperbola passing through (8, 6) consists of all points whose distance from the origin is a
constant more than its distance from the point (5,2). Find the slope of the tangent line to
the hyperbola at (8, 6). ⇒

10. Compute y′ for the ellipse of example 4.8.3.

11. If y = loga x then ay = x. Use implicit differentiation to find y′.

12. The graph of the equation x2−xy+ y2 = 9 is an ellipse. Find the lines tangent to this curve
at the two points where it intersects the x-axis. Show that these lines are parallel. ⇒

13. Repeat the previous problem for the points at which the ellipse intersects the y-axis. ⇒
14. Find the points on the ellipse from the previous two problems where the slope is horizontal

and where it is vertical. ⇒
15. Find an equation for the tangent line to x4 = y2+x2 at (2,

√
12). (This curve is the kampyle

of Eudoxus.) ⇒
16. Find an equation for the tangent line to x2/3 + y2/3 = a2/3 at a point (x1, y1) on the curve,

with x1 ̸= 0 and y1 ̸= 0. (This curve is an astroid.) ⇒
17. Find an equation for the tangent line to (x2+y2)2 = x2−y2 at a point (x1, y1) on the curve,

with x1 ̸= 0,−1, 1. (This curve is a lemniscate.) ⇒
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Definition. Two curves are orthogonal if at each point of intersection, the angle between
their tangent lines is π/2. Two families of curves, A and B, are orthogonal trajectories of each
other if given any curve C in A and any curve D in B the curves C and D are orthogonal. For
example, the family of horizontal lines in the plane is orthogonal to the family of vertical lines in
the plane.

18. Show that x2 − y2 = 5 is orthogonal to 4x2 + 9y2 = 72. (Hint: You need to find the
intersection points of the two curves and then show that the product of the derivatives at
each intersection point is −1.)

19. Show that x2+y2 = r2 is orthogonal to y = mx. Conclude that the family of circles centered
at the origin is an orthogonal trajectory of the family of lines that pass through the origin.

Note that there is a technical issue when m = 0. The circles fail to be differentiable
when they cross the x-axis. However, the circles are orthogonal to the x-axis. Explain why.
Likewise, the vertical line through the origin requires a separate argument.

20. For k ̸= 0 and c ̸= 0 show that y2 − x2 = k is orthogonal to yx = c. In the case where k and
c are both zero, the curves intersect at the origin. Are the curves y2 − x2 = 0 and yx = 0
orthogonal to each other?

21. Suppose that m ̸= 0. Show that the family of curves {y = mx+ b | b ∈ R} is orthogonal to
the family of curves {y = −(x/m) + c | c ∈ R}.

4.9 Inverse Trigonometric Functions

The trigonometric functions frequently arise in problems, and often it is necessary to

invert the functions, for example, to find an angle with a specified sine. Of course, there

are many angles with the same sine, so the sine function doesn’t actually have an inverse

that reliably “undoes” the sine function. If you know that sinx = 0.5, you can’t reverse

this to discover x, that is, you can’t solve for x, as there are infinitely many angles with

sine 0.5. Nevertheless, it is useful to have something like an inverse to the sine, however

imperfect. The usual approach is to pick out some collection of angles that produce all

possible values of the sine exactly once. If we “discard” all other angles, the resulting

function does have a proper inverse.

The sine takes on all values between −1 and 1 exactly once on the interval [−π/2, π/2].

If we truncate the sine, keeping only the interval [−π/2, π/2], as shown in figure 4.9.1, then

this truncated sine has an inverse function. We call this the inverse sine or the arcsine,

and write y = arcsin(x).

Recall that a function and its inverse undo each other in either order, for example,

( 3
√
x)3 = x and

3
√
x3 = x. This does not work with the sine and the “inverse sine” because

the inverse sine is the inverse of the truncated sine function, not the real sine function.

It is true that sin(arcsin(x)) = x, that is, the sine undoes the arcsine. It is not true that

the arcsine undoes the sine, for example, sin(5π/6) = 1/2 and arcsin(1/2) = π/6, so doing

first the sine then the arcsine does not get us back where we started. This is because 5π/6
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Figure 4.9.1 The sine, the truncated sine, the inverse sine.

is not in the domain of the truncated sine. If we start with an angle between −π/2 and

π/2 then the arcsine does reverse the sine: sin(π/6) = 1/2 and arcsin(1/2) = π/6.

What is the derivative of the arcsine? Since this is an inverse function, we can discover

the derivative by using implicit differentiation. Suppose y = arcsin(x). Then

sin(y) = sin(arcsin(x)) = x.

Now taking the derivative of both sides, we get

y′ cos y = 1

y′ =
1

cos y

As we expect when using implicit differentiation, y appears on the right hand side here.

We would certainly prefer to have y′ written in terms of x, and as in the case of lnx we

can actually do that here. Since sin2 y + cos2 y = 1, cos2 y = 1 − sin2 y = 1 − x2. So

cos y = ±
√

1− x2 , but which is it—plus or minus? It could in general be either, but this

isn’t “in general”: since y = arcsin(x) we know that −π/2 ≤ y ≤ π/2, and the cosine of

an angle in this interval is always positive. Thus cos y =
√
1− x2 and

d

dx
arcsin(x) =

1√
1− x2

.

Note that this agrees with figure 4.9.1: the graph of the arcsine has positive slope every-

where.

We can do something similar for the cosine. As with the sine, we must first truncate

the cosine so that it can be inverted, as shown in figure 4.9.2. Then we use implicit
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Figure 4.9.2 The truncated cosine, the inverse cosine.

differentiation to find that
d

dx
arccos(x) =

−1√
1− x2

.

Note that the truncated cosine uses a different interval than the truncated sine, so that if

y = arccos(x) we know that 0 ≤ y ≤ π. The computation of the derivative of the arccosine

is left as an exercise.

Finally we look at the tangent; the other trigonometric functions also have “partial

inverses” but the sine, cosine and tangent are enough for most purposes. The tangent,

truncated tangent and inverse tangent are shown in figure 4.9.3; the derivative of the

arctangent is left as an exercise.
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Figure 4.9.3 The tangent, the truncated tangent, the inverse tangent.

Exercises 4.9.

1. Show that the derivative of arccosx is − 1√
1− x2

.

2. Show that the derivative of arctanx is
1

1 + x2
.
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3. The inverse of cot is usually defined so that the range of arccot is (0, π). Sketch the graph
of y = arccotx. In the process you will make it clear what the domain of arccot is. Find the
derivative of the arccotangent. ⇒

4. Show that arccotx+ arctanx = π/2.

5. Find the derivative of arcsin(x2). ⇒
6. Find the derivative of arctan(ex). ⇒
7. Find the derivative of arccos(sinx3) ⇒
8. Find the derivative of ln((arcsinx)2) ⇒
9. Find the derivative of arccos ex ⇒

10. Find the derivative of arcsinx+ arccosx ⇒
11. Find the derivative of log5(arctan(x

x)) ⇒

4.10 Limits revisited

We have defined and used the concept of limit, primarily in our development of the deriva-

tive. Recall that lim
x→a

f(x) = L is true if, in a precise sense, f(x) gets closer and closer to

L as x gets closer and closer to a. While some limits are easy to see, others take some

ingenuity; in particular, the limits that define derivatives are always difficult on their face,

since in

lim
∆x→0

f(x+∆x)− f(x)

∆x

both the numerator and denominator approach zero. Typically this difficulty can be re-

solved when f is a “nice” function and we are trying to compute a derivative. Occasionally

such limits are interesting for other reasons, and the limit of a fraction in which both nu-

merator and denominator approach zero can be difficult to analyze. Now that we have

the derivative available, there is another technique that can sometimes be helpful in such

circumstances.

Before we introduce the technique, we will also expand our concept of limit, in two

ways. When the limit of f(x) as x approaches a does not exist, it may be useful to note in

what way it does not exist. We have already talked about one such case: one-sided limits.

Another case is when “f goes to infinity”. We also will occasionally want to know what

happens to f when x “goes to infinity”.

EXAMPLE 4.10.1 What happens to 1/x as x goes to 0? From the right, 1/x gets

bigger and bigger, or goes to infinity. From the left it goes to negative infinity.

EXAMPLE 4.10.2 What happens to the function cos(1/x) as x goes to infinity? It

seems clear that as x gets larger and larger, 1/x gets closer and closer to zero, so cos(1/x)

should be getting closer and closer to cos(0) = 1.
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As with ordinary limits, these concepts can be made precise. Roughly, we want

lim
x→a

f(x) = ∞ to mean that we can make f(x) arbitrarily large by making x close enough

to a, and lim
x→∞

f(x) = L should mean we can make f(x) as close as we want to L by

making x large enough. Compare this definition to the definition of limit in section 2.3,

definition 2.3.2.

DEFINITION 4.10.3 If f is a function, we say that lim
x→a

f(x) = ∞ if for every N > 0

there is a δ > 0 such that whenever |x − a| < δ, f(x) > N . We can extend this in the

obvious ways to define lim
x→a

f(x) = −∞, lim
x→a−

f(x) = ±∞, and lim
x→a+

f(x) = ±∞.

DEFINITION 4.10.4 Limit at infinity If f is a function, we say that lim
x→∞

f(x) = L

if for every ϵ > 0 there is an N > 0 so that whenever x > N , |f(x) − L| < ϵ. We may

similarly define lim
x→−∞

f(x) = L, and using the idea of the previous definition, we may

define lim
x→±∞

f(x) = ±∞.

We include these definitions for completeness, but we will not explore them in detail.

Suffice it to say that such limits behave in much the same way that ordinary limits do; in

particular there are some analogs of theorem 2.3.6.

Now consider this limit:

lim
x→π

x2 − π2

sinx
.

As x approaches π, both the numerator and denominator approach zero, so it is not

obvious what, if anything, the quotient approaches. We can often compute such limits by

application of the following theorem.

THEOREM 4.10.5 L’Hôpital’s Rule For “sufficiently nice” functions f(x) and

g(x), if lim
x→a

f(x) = 0 = lim
x→a

g(x) or both lim
x→a

f(x) = ±∞ and limx→a g(x) = ±∞, and if

lim
x→a

f ′(x)

g′(x)
exists, then lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
. This remains true if “x → a” is replaced by

“x → ∞” or “x → −∞”.

This theorem is somewhat difficult to prove, in part because it incorporates so many

different possibilities, so we will not prove it here. We also will not need to worry about

the precise definition of “sufficiently nice”, as the functions we encounter will be suitable.

EXAMPLE 4.10.6 Compute lim
x→π

x2 − π2

sinx
in two ways.
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First we use L’Hôpital’s Rule: Since the numerator and denominator both approach

zero,

lim
x→π

x2 − π2

sinx
= lim

x→π

2x

cosx
,

provided the latter exists. But in fact this is an easy limit, since the denominator now

approaches −1, so

lim
x→π

x2 − π2

sinx
=

2π

−1
= −2π.

We don’t really need L’Hôpital’s Rule to do this limit. Rewrite it as

lim
x→π

(x+ π)
x− π

sinx

and note that

lim
x→π

x− π

sinx
= lim

x→π

x− π

− sin(x− π)
= lim

x→0
− x

sinx

since x− π approaches zero as x approaches π. Now

lim
x→π

(x+ π)
x− π

sinx
= lim

x→π
(x+ π) lim

x→0
− x

sinx
= 2π(−1) = −2π

as before.

EXAMPLE 4.10.7 Compute lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
in two ways.

As x goes to infinity both the numerator and denominator go to infinity, so we may

apply L’Hôpital’s Rule:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

4x− 3

2x+ 47
.

In the second quotient, it is still the case that the numerator and denominator both go to

infinity, so we are allowed to use L’Hôpital’s Rule again:

lim
x→∞

4x− 3

2x+ 47
= lim

x→∞

4

2
= 2.

So the original limit is 2 as well.

Again, we don’t really need L’Hôpital’s Rule, and in fact a more elementary approach

is easier—we divide the numerator and denominator by x2:

lim
x→∞

2x2 − 3x+ 7

x2 + 47x+ 1
= lim

x→∞

2x2 − 3x+ 7

x2 + 47x+ 1

1
x2

1
x2

= lim
x→∞

2− 3
x + 7

x2

1 + 47
x + 1

x2

.

Now as x approaches infinity, all the quotients with some power of x in the denominator

approach zero, leaving 2 in the numerator and 1 in the denominator, so the limit again is

2.
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EXAMPLE 4.10.8 Compute lim
x→0

secx− 1

sinx
.

Both the numerator and denominator approach zero, so applying L’Hôpital’s Rule:

lim
x→0

secx− 1

sinx
= lim

x→0

secx tanx

cosx
=

1 · 0
1

= 0.

EXAMPLE 4.10.9 Compute lim
x→0+

x lnx.

This doesn’t appear to be suitable for L’Hôpital’s Rule, but it also is not “obvious”.

As x approaches zero, lnx goes to −∞, so the product looks like (something very small) ·
(something very large and negative). But this could be anything: it depends on how small

and how large. For example, consider (x2)(1/x), (x)(1/x), and (x)(1/x2). As x approaches

zero, each of these is (something very small) · (something very large), yet the limits are

respectively zero, 1, and ∞.

We can in fact turn this into a L’Hôpital’s Rule problem:

x lnx =
lnx

1/x
=

lnx

x−1
.

Now as x approaches zero, both the numerator and denominator approach infinity (one

−∞ and one +∞, but only the size is important). Using L’Hôpital’s Rule:

lim
x→0+

lnx

x−1
= lim

x→0+

1/x

−x−2
= lim

x→0+

1

x
(−x2) = lim

x→0+
−x = 0.

One way to interpret this is that since lim
x→0+

x lnx = 0, the x approaches zero much faster

than the lnx approaches −∞.

Exercises 4.10.

Compute the limits.

1. lim
x→0

cosx− 1

sinx
⇒ 2. lim

x→∞

ex

x3
⇒

3. lim
x→∞

√
x2 + x−

√
x2 − x ⇒ 4. lim

x→∞

lnx

x
⇒

5. lim
x→∞

lnx√
x
⇒ 6. lim

x→∞

ex + e−x

ex − e−x
⇒

7. lim
x→0

√
9 + x− 3

x
⇒ 8. lim

t→1+

(1/t)− 1

t2 − 2t+ 1
⇒

9. lim
x→2

2−
√
x+ 2

4− x2
⇒ 10. lim

t→∞

t+ 5− 2/t− 1/t3

3t+ 12− 1/t2
⇒

11. lim
y→∞

√
y + 1 +

√
y − 1

y
⇒ 12. lim

x→1

√
x− 1

3
√
x− 1

⇒
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13. lim
x→0

(1− x)1/4 − 1

x
⇒ 14. lim

t→0

(
t+

1

t

)
((4− t)3/2 − 8) ⇒

15. lim
t→0+

(
1

t
+

1√
t

)
(
√
t+ 1− 1) ⇒ 16. lim

x→0

x2

√
2x+ 1− 1

⇒

17. lim
u→1

(u− 1)3

(1/u)− u2 + 3u− 3
⇒ 18. lim

x→0

2 + (1/x)

3− (2/x)
⇒

19. lim
x→0+

1 + 5/
√
x

2 + 1/
√
x
⇒ 20. lim

x→0+

3 + x−1/2 + x−1

2 + 4x−1/2
⇒

21. lim
x→∞

x+ x1/2 + x1/3

x2/3 + x1/4
⇒ 22. lim

t→∞

1−
√

t
t+1

2−
√

4t+1
t+2

⇒

23. lim
t→∞

1− t
t−1

1−
√

t
t−1

⇒ 24. lim
x→−∞

x+ x−1

1 +
√
1− x

⇒

25. lim
x→π/2

cosx

(π/2)− x
⇒ 26. lim

x→0

ex − 1

x
⇒

27. lim
x→0

x2

ex − x− 1
⇒ 28. lim

x→1

lnx

x− 1
⇒

29. lim
x→0

ln(x2 + 1)

x
⇒ 30. lim

x→1

x lnx

x2 − 1
⇒

31. lim
x→0

sin(2x)

ln(x+ 1)
⇒ 32. lim

x→1

x1/4 − 1

x
⇒

33. lim
x→1+

√
x

x− 1
⇒ 34. lim

x→1

√
x− 1

x− 1
⇒

35. lim
x→∞

x−1 + x−1/2

x+ x−1/2
⇒ 36. lim

x→∞

x+ x−2

2x+ x−2
⇒

37. lim
x→∞

5 + x−1

1 + 2x−1
⇒ 38. lim

x→∞

4x√
2x2 + 1

⇒

39. lim
x→0

3x2 + x+ 2

x− 4
⇒ 40. lim

x→0

√
x+ 1− 1√
x+ 4− 2

⇒

41. lim
x→0

√
x+ 1− 1√
x+ 2− 2

⇒ 42. lim
x→0+

√
x+ 1 + 1√
x+ 1− 1

⇒

43. lim
x→0

√
x2 + 1− 1√
x+ 1− 1

⇒ 44. lim
x→∞

(x+ 5)

(
1

2x
+

1

x+ 2

)
⇒

45. lim
x→0+

(x+ 5)

(
1

2x
+

1

x+ 2

)
⇒ 46. lim

x→1
(x+ 5)

(
1

2x
+

1

x+ 2

)
⇒

47. lim
x→2

x3 − 6x− 2

x3 + 4
⇒ 48. lim

x→2

x3 − 6x− 2

x3 − 4x
⇒

49. lim
x→1+

x3 + 4x+ 8

2x3 − 2
⇒
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50. The function f(x) =
x√

x2 + 1
has two horizontal asymptotes. Find them and give a rough

sketch of f with its horizontal asymptotes. ⇒

4.11 Hyperbolic Functions

The hyperbolic functions appear with some frequency in applications, and are quite similar

in many respects to the trigonometric functions. This is a bit surprising given our initial

definitions.

DEFINITION 4.11.1 The hyperbolic cosine is the function

coshx =
ex + e−x

2
,

and the hyperbolic sine is the function

sinhx =
ex − e−x

2
.

Notice that cosh is even (that is, cosh(−x) = cosh(x)) while sinh is odd (sinh(−x) =

− sinh(x)), and coshx + sinhx = ex. Also, for all x, coshx > 0, while sinhx = 0 if and

only if ex − e−x = 0, which is true precisely when x = 0.

LEMMA 4.11.2 The range of coshx is [1,∞).

Proof. Let y = coshx. We solve for x:

y =
ex + e−x

2

2y = ex + e−x

2yex = e2x + 1

0 = e2x − 2yex + 1

ex =
2y ±

√
4y2 − 4

2

ex = y ±
√
y2 − 1

From the last equation, we see y2 ≥ 1, and since y ≥ 0, it follows that y ≥ 1.

Now suppose y ≥ 1, so y ±
√
y2 − 1 > 0. Then x = ln(y ±

√
y2 − 1) is a real number,

and y = coshx, so y is in the range of cosh(x).
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DEFINITION 4.11.3 The other hyperbolic functions are

tanhx =
sinhx

coshx

cothx =
coshx

sinhx

sechx =
1

coshx

cschx =
1

sinhx

The domain of coth and csch is x ̸= 0 while the domain of the other hyperbolic functions

is all real numbers. Graphs are shown in figure 4.11.1
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Figure 4.11.1 The hyperbolic functions: cosh, sinh, tanh, sech, csch, coth.

Certainly the hyperbolic functions do not closely resemble the trigonometric functions

graphically. But they do have analogous properties, beginning with the following identity.

THEOREM 4.11.4 For all x in R, cosh2 x− sinh2 x = 1.

Proof. The proof is a straightforward computation:

cosh2 x−sinh2 x =
(ex + e−x)2

4
− (ex − e−x)2

4
=

e2x + 2 + e−2x − e2x + 2− e−2x

4
=

4

4
= 1.

This immediately gives two additional identities:

1− tanh2 x = sech2 x and coth2 x− 1 = csch2 x.

The identity of the theorem also helps to provide a geometric motivation. Recall that

the graph of x2 − y2 = 1 is a hyperbola with asymptotes x = ±y whose x-intercepts are
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±1. If (x, y) is a point on the right half of the hyperbola, and if we let x = cosh t, then

y = ±
√

x2 − 1 = ±
√
cosh2 x− 1 = ± sinh t. So for some suitable t, cosh t and sinh t are

the coordinates of a typical point on the hyperbola. In fact, it turns out that t is twice

the area shown in the first graph of figure 4.11.2. Even this is analogous to trigonometry;

cos t and sin t are the coordinates of a typical point on the unit circle, and t is twice the

area shown in the second graph of figure 4.11.2.
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•

Figure 4.11.2 Geometric definitions of sin, cos, sinh, cosh: t is twice the shaded area in
each figure.

Given the definitions of the hyperbolic functions, finding their derivatives is straight-

forward. Here again we see similarities to the trigonometric functions.

THEOREM 4.11.5
d

dx
coshx = sinhx and

d

dx
sinhx = coshx.

Proof.
d

dx
coshx =

d

dx

ex + e−x

2
=

ex − e−x

2
= sinhx, and

d

dx
sinhx =

d

dx

ex − e−x

2
=

ex + e−x

2
= coshx.

Since coshx > 0, sinhx is increasing and hence injective, so sinhx has an inverse,

arcsinhx. Also, sinhx > 0 when x > 0, so coshx is injective on [0,∞) and has a (partial)

inverse, arccoshx. The other hyperbolic functions have inverses as well, though arcsechx

is only a partial inverse. We may compute the derivatives of these functions as we have

other inverse functions.

THEOREM 4.11.6
d

dx
arcsinhx =

1√
1 + x2

.

Proof. Let y = arcsinhx, so sinh y = x. Then
d

dx
sinh y = cosh(y) · y′ = 1, and so

y′ =
1

cosh y
=

1√
1 + sinh2 y

=
1√

1 + x2
.
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The other derivatives are left to the exercises.

Exercises 4.11.

1. Show that the range of sinhx is all real numbers. (Hint: show that if y = sinhx then

x = ln(y +
√

y2 + 1).)

2. Compute the following limits:

a. lim
x→∞

coshx

b. lim
x→∞

sinhx

c. lim
x→∞

tanhx

d. lim
x→∞

(coshx− sinhx)

3. Show that the range of tanhx is (−1, 1). What are the ranges of coth, sech, and csch? (Use
the fact that they are reciprocal functions.)

4. Prove that for every x, y ∈ R, sinh(x + y) = sinhx cosh y + coshx sinh y. Obtain a similar
identity for sinh(x− y).

5. Prove that for every x, y ∈ R, cosh(x + y) = coshx cosh y + sinhx sinh y. Obtain a similar
identity for cosh(x− y).

6. Use exercises 4 and 5 to show that sinh(2x) = 2 sinhx coshx and cosh(2x) = cosh2 x+sinh2 x
for every x. Conclude also that (cosh(2x)− 1)/2 = sinh2 x.

7. Show that
d

dx
(tanhx) = sech2 x. Compute the derivatives of the remaining hyperbolic

functions as well.

8. What are the domains of the six inverse hyperbolic functions?

9. Sketch the graphs of all six inverse hyperbolic functions.





5
Curve Sketching

Whether we are interested in a function as a purely mathematical object or in connection

with some application to the real world, it is often useful to know what the graph of

the function looks like. We can obtain a good picture of the graph using certain crucial

information provided by derivatives of the function and certain limits.

5.1 Maxima and Minima

A local maximum point on a function is a point (x, y) on the graph of the function

whose y coordinate is larger than all other y coordinates on the graph at points “close

to” (x, y). More precisely, (x, f(x)) is a local maximum if there is an interval (a, b) with

a < x < b and f(x) ≥ f(z) for every z in (a, b). Similarly, (x, y) is a local minimum

point if it has locally the smallest y coordinate. Again being more precise: (x, f(x)) is a

local minimum if there is an interval (a, b) with a < x < b and f(x) ≤ f(z) for every z in

(a, b). A local extremum is either a local minimum or a local maximum.

Local maximum and minimum points are quite distinctive on the graph of a function,

and are therefore useful in understanding the shape of the graph. In many applied problems

we want to find the largest or smallest value that a function achieves (for example, we might

want to find the minimum cost at which some task can be performed) and so identifying

maximum and minimum points will be useful for applied problems as well. Some examples

of local maximum and minimum points are shown in figure 5.1.1.

If (x, f(x)) is a point where f(x) reaches a local maximum or minimum, and if the

derivative of f exists at x, then the graph has a tangent line and the tangent line must be

horizontal. This is important enough to state as a theorem, though we will not prove it.

105
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Figure 5.1.1 Some local maximum points (A) and minimum points (B).

THEOREM 5.1.1 Fermat’s Theorem If f(x) has a local extremum at x = a and

f is differentiable at a, then f ′(a) = 0.

Thus, the only points at which a function can have a local maximum or minimum

are points at which the derivative is zero, as in the left hand graph in figure 5.1.1, or the

derivative is undefined, as in the right hand graph. Any value of x for which f ′(x) is zero or

undefined is called a critical value for f . When looking for local maximum and minimum

points, you are likely to make two sorts of mistakes: You may forget that a maximum or

minimum can occur where the derivative does not exist, and so forget to check whether

the derivative exists everywhere. You might also assume that any place that the derivative

is zero is a local maximum or minimum point, but this is not true. A portion of the graph

of f(x) = x3 is shown in figure 5.1.2. The derivative of f is f ′(x) = 3x2, and f ′(0) = 0,

but there is neither a maximum nor minimum at (0, 0).
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Figure 5.1.2 No maximum or minimum even though the derivative is zero.

Since the derivative is zero or undefined at both local maximum and local minimum

points, we need a way to determine which, if either, actually occurs. The most elementary

approach, but one that is often tedious or difficult, is to test directly whether the y coor-

dinates “near” the potential maximum or minimum are above or below the y coordinate
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at the point of interest. Of course, there are too many points “near” the point to test, but

a little thought shows we need only test two provided we know that f is continuous (recall

that this means that the graph of f has no jumps or gaps).

Suppose, for example, that we have identified three points at which f ′ is zero or

nonexistent: (x1, y1), (x2, y2), (x3, y3), and x1 < x2 < x3 (see figure 5.1.3). Suppose that

we compute the value of f(a) for x1 < a < x2, and that f(a) < f(x2). What can we say

about the graph between a and x2? Could there be a point (b, f(b)), a < b < x2 with

f(b) > f(x2)? No: if there were, the graph would go up from (a, f(a)) to (b, f(b)) then

down to (x2, f(x2)) and somewhere in between would have a local maximum point. (This

is not obvious; it is a result of the Extreme Value Theorem, theorem 6.1.2.) But at that

local maximum point the derivative of f would be zero or nonexistent, yet we already

know that the derivative is zero or nonexistent only at x1, x2, and x3. The upshot is that

one computation tells us that (x2, f(x2)) has the largest y coordinate of any point on the

graph near x2 and to the left of x2. We can perform the same test on the right. If we find

that on both sides of x2 the values are smaller, then there must be a local maximum at

(x2, f(x2)); if we find that on both sides of x2 the values are larger, then there must be a

local minimum at (x2, f(x2)); if we find one of each, then there is neither a local maximum

or minimum at x2.

x1 a b x2 x3

•
•

•

•

Figure 5.1.3 Testing for a maximum or minimum.

It is not always easy to compute the value of a function at a particular point. The

task is made easier by the availability of calculators and computers, but they have their

own drawbacks—they do not always allow us to distinguish between values that are very

close together. Nevertheless, because this method is conceptually simple and sometimes

easy to perform, you should always consider it.

EXAMPLE 5.1.2 Find all local maximum and minimum points for the function f(x) =

x3 − x. The derivative is f ′(x) = 3x2 − 1. This is defined everywhere and is zero at

x = ±
√
3/3. Looking first at x =

√
3/3, we see that f(

√
3/3) = −2

√
3/9. Now we test

two points on either side of x =
√
3/3, making sure that neither is farther away than

the nearest critical value; since
√
3 < 3,

√
3/3 < 1 and we can use x = 0 and x = 1.

Since f(0) = 0 > −2
√
3/9 and f(1) = 0 > −2

√
3/9, there must be a local minimum at
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x =
√
3/3. For x = −

√
3/3, we see that f(−

√
3/3) = 2

√
3/9. This time we can use x = 0

and x = −1, and we find that f(−1) = f(0) = 0 < 2
√
3/9, so there must be a local

maximum at x = −
√
3/3.

Of course this example is made very simple by our choice of points to test, namely

x = −1, 0, 1. We could have used other values, say −5/4, 1/3, and 3/4, but this would

have made the calculations considerably more tedious.

EXAMPLE 5.1.3 Find all local maximum and minimum points for f(x) = sinx+cosx.

The derivative is f ′(x) = cosx − sinx. This is always defined and is zero whenever

cosx = sinx. Recalling that the cosx and sinx are the x and y coordinates of points on a

unit circle, we see that cosx = sinx when x is π/4, π/4±π, π/4±2π, π/4±3π, etc. Since

both sine and cosine have a period of 2π, we need only determine the status of x = π/4

and x = 5π/4. We can use 0 and π/2 to test the critical value x = π/4. We find that

f(π/4) =
√
2, f(0) = 1 <

√
2 and f(π/2) = 1, so there is a local maximum when x = π/4

and also when x = π/4± 2π, π/4± 4π, etc. We can summarize this more neatly by saying

that there are local maxima at π/4± 2kπ for every integer k.

We use π and 2π to test the critical value x = 5π/4. The relevant values are f(5π/4) =

−
√
2, f(π) = −1 > −

√
2, f(2π) = 1 > −

√
2, so there is a local minimum at x = 5π/4,

5π/4±2π, 5π/4±4π, etc. More succinctly, there are local minima at 5π/4±2kπ for every

integer k.

Exercises 5.1.

In problems 1–12, find all local maximum and minimum points (x, y) by the method of this section.

1. y = x2 − x ⇒ 2. y = 2 + 3x− x3 ⇒
3. y = x3 − 9x2 + 24x ⇒ 4. y = x4 − 2x2 + 3 ⇒
5. y = 3x4 − 4x3 ⇒ 6. y = (x2 − 1)/x ⇒
7. y = 3x2 − (1/x2) ⇒ 8. y = cos(2x)− x ⇒

9. f(x) =

{
x− 1 x < 2
x2 x ≥ 2

⇒ 10. f(x) =


x− 3 x < 3
x3 3 ≤ x ≤ 5
1/x x > 5

⇒

11. f(x) = x2 − 98x+ 4 ⇒ 12. f(x) =

{
−2 x = 0
1/x2 x ̸= 0

⇒

13. For any real number x there is a unique integer n such that n ≤ x < n+ 1, and the greatest
integer function is defined as ⌊x⌋ = n. Where are the critical values of the greatest integer
function? Which are local maxima and which are local minima?

14. Explain why the function f(x) = 1/x has no local maxima or minima.

15. How many critical points can a quadratic polynomial function have? ⇒
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16. Show that a cubic polynomial can have at most two critical points. Give examples to show
that a cubic polynomial can have zero, one, or two critical points.

17. Explore the family of functions f(x) = x3 + cx + 1 where c is a constant. How many and
what types of local extremes are there? Your answer should depend on the value of c, that
is, different values of c will give different answers.

18. We generalize the preceding two questions. Let n be a positive integer and let f be a poly-
nomial of degree n. How many critical points can f have? (Hint: Recall the Fundamental
Theorem of Algebra, which says that a polynomial of degree n has at most n roots.)

5.2 The first derivative test

The method of the previous section for deciding whether there is a local maximum or

minimum at a critical value is not always convenient. We can instead use information

about the derivative f ′(x) to decide; since we have already had to compute the derivative

to find the critical values, there is often relatively little extra work involved in this method.

How can the derivative tell us whether there is a maximum, minimum, or neither at

a point? Suppose that f ′(a) = 0. If there is a local maximum when x = a, the function

must be lower near x = a than it is right at x = a. If the derivative exists near x = a, this

means f ′(x) > 0 when x is near a and x < a, because the function must “slope up” just

to the left of a. Similarly, f ′(x) < 0 when x is near a and x > a, because f slopes down

from the local maximum as we move to the right. Using the same reasoning, if there is

a local minimum at x = a, the derivative of f must be negative just to the left of a and

positive just to the right. If the derivative exists near a but does not change from positive

to negative or negative to positive, that is, it is positive on both sides or negative on both

sides, then there is neither a maximum nor minimum when x = a. See the first graph in

figure 5.1.1 and the graph in figure 5.1.2 for examples.

EXAMPLE 5.2.1 Find all local maximum and minimum points for f(x) = sinx+cosx

using the first derivative test. The derivative is f ′(x) = cosx−sinx and from example 5.1.3

the critical values we need to consider are π/4 and 5π/4.

The graphs of sinx and cosx are shown in figure 5.2.1. Just to the left of π/4 the

cosine is larger than the sine, so f ′(x) is positive; just to the right the cosine is smaller

than the sine, so f ′(x) is negative. This means there is a local maximum at π/4. Just to

the left of 5π/4 the cosine is smaller than the sine, and to the right the cosine is larger

than the sine. This means that the derivative f ′(x) is negative to the left and positive to

the right, so f has a local minimum at 5π/4.

Exercises 5.2.

In 1–13, find all critical points and identify them as local maximum points, local minimum points,
or neither.
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Figure 5.2.1 The sine and cosine.

1. y = x2 − x ⇒ 2. y = 2 + 3x− x3 ⇒
3. y = x3 − 9x2 + 24x ⇒ 4. y = x4 − 2x2 + 3 ⇒
5. y = 3x4 − 4x3 ⇒ 6. y = (x2 − 1)/x ⇒
7. y = 3x2 − (1/x2) ⇒ 8. y = cos(2x)− x ⇒
9. f(x) = (5− x)/(x+ 2) ⇒ 10. f(x) = |x2 − 121| ⇒

11. f(x) = x3/(x+ 1) ⇒ 12. f(x) =

{
x2 sin(1/x) x ̸= 0
0 x = 0

13. f(x) = sin2 x ⇒

14. Find the maxima and minima of f(x) = secx. ⇒
15. Let f(θ) = cos2(θ)−2 sin(θ). Find the intervals where f is increasing and the intervals where

f is decreasing in [0, 2π]. Use this information to classify the critical points of f as either
local maximums, local minimums, or neither. ⇒

16. Let r > 0. Find the local maxima and minima of the function f(x) =
√

r2 − x2 on its
domain [−r, r].

17. Let f(x) = ax2 + bx + c with a ̸= 0. Show that f has exactly one critical point. Give
conditions on a and b which guarantee that the critical point will be a maximum. It is
possible to see this without using calculus at all; explain.

5.3 The second derivative test

derivative!secondThe basis of the first derivative test is that if the derivative changes from

positive to negative at a point at which the derivative is zero then there is a local maximum

at the point, and similarly for a local minimum. If f ′ changes from positive to negative

it is decreasing; this means that the derivative of f ′, f ′′, might be negative, and if in fact

f ′′ is negative then f ′ is definitely decreasing, so there is a local maximum at the point

in question. Note well that f ′ might change from positive to negative while f ′′ is zero,

in which case f ′′ gives us no information about the critical value. Similarly, if f ′ changes

from negative to positive there is a local minimum at the point, and f ′ is increasing. If

f ′′ > 0 at the point, this tells us that f ′ is increasing, and so there is a local minimum.
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EXAMPLE 5.3.1 Consider again f(x) = sinx + cosx, with f ′(x) = cosx − sinx and

f ′′(x) = − sinx− cosx. Since f ′′(π/4) = −
√
2/2−

√
2/2 = −

√
2 < 0, we know there is a

local maximum at π/4. Since f ′′(5π/4) = − −
√
2/2 − −

√
2/2 =

√
2 > 0, there is a local

minimum at 5π/4.

When it works, the second derivative test is often the easiest way to identify local max-

imum and minimum points. Sometimes the test fails, and sometimes the second derivative

is quite difficult to evaluate; in such cases we must fall back on one of the previous tests.

EXAMPLE 5.3.2 Let f(x) = x4. The derivatives are f ′(x) = 4x3 and f ′′(x) = 12x2.

Zero is the only critical value, but f ′′(0) = 0, so the second derivative test tells us nothing.

However, f(x) is positive everywhere except at zero, so clearly f(x) has a local minimum

at zero. On the other hand, f(x) = −x4 also has zero as its only critical value, and the

second derivative is again zero, but −x4 has a local maximum at zero.

Exercises 5.3.

Find all local maximum and minimum points by the second derivative test.

1. y = x2 − x ⇒ 2. y = 2 + 3x− x3 ⇒
3. y = x3 − 9x2 + 24x ⇒ 4. y = x4 − 2x2 + 3 ⇒
5. y = 3x4 − 4x3 ⇒ 6. y = (x2 − 1)/x ⇒
7. y = 3x2 − (1/x2) ⇒ 8. y = cos(2x)− x ⇒

9. y = 4x+
√
1− x ⇒ 10. y = (x+ 1)/

√
5x2 + 35 ⇒

11. y = x5 − x ⇒ 12. y = 6x+ sin 3x ⇒
13. y = x+ 1/x ⇒ 14. y = x2 + 1/x ⇒
15. y = (x+ 5)1/4 ⇒ 16. y = tan2 x ⇒
17. y = cos2 x− sin2 x ⇒ 18. y = sin3 x ⇒

5.4 Concavity and inflection points

We know that the sign of the derivative tells us whether a function is increasing or decreas-

ing; for example, when f ′(x) > 0, f(x) is increasing. The sign of the second derivative

f ′′(x) tells us whether f ′ is increasing or decreasing; we have seen that if f ′ is zero and

increasing at a point then there is a local minimum at the point, and if f ′ is zero and

decreasing at a point then there is a local maximum at the point. Thus, we extracted

information about f from information about f ′′.

We can get information from the sign of f ′′ even when f ′ is not zero. Suppose that

f ′′(a) > 0. This means that near x = a, f ′ is increasing. If f ′(a) > 0, this means that f

slopes up and is getting steeper; if f ′(a) < 0, this means that f slopes down and is getting
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Figure 5.4.1 f ′′(a) > 0: f ′(a) positive and increasing, f ′(a) negative and increasing.

less steep. The two situations are shown in figure 5.4.1. A curve that is shaped like this

is called concave up.

Now suppose that f ′′(a) < 0. This means that near x = a, f ′ is decreasing. If

f ′(a) > 0, this means that f slopes up and is getting less steep; if f ′(a) < 0, this means

that f slopes down and is getting steeper. The two situations are shown in figure 5.4.2. A

curve that is shaped like this is called concave down.
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Figure 5.4.2 f ′′(a) < 0: f ′(a) positive and decreasing, f ′(a) negative and decreasing.

If we are trying to understand the shape of the graph of a function, knowing where

it is concave up and concave down helps us to get a more accurate picture. Of particular

interest are points at which the concavity changes from up to down or down to up; such

points are called inflection points. If the concavity changes from up to down at x = a, f ′′

changes from positive to the left of a to negative to the right of a, and usually f ′′(a) = 0.

We can identify such points by first finding where f ′′(x) is zero and then checking to see

whether f ′′(x) does in fact go from positive to negative or negative to positive at these

points. Note that it is possible that f ′′(a) = 0 but the concavity is the same on both sides;

f(x) = x4 at x = 0 is an example.

EXAMPLE 5.4.1 Describe the concavity of f(x) = x3−x. f ′(x) = 3x2−1, f ′′(x) = 6x.

Since f ′′(0) = 0, there is potentially an inflection point at zero. Since f ′′(x) > 0 when

x > 0 and f ′′(x) < 0 when x < 0 the concavity does change from down to up at zero, and

the curve is concave down for all x < 0 and concave up for all x > 0.

Note that we need to compute and analyze the second derivative to understand con-

cavity, so we may as well try to use the second derivative test for maxima and minima. If

for some reason this fails we can then try one of the other tests.
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Exercises 5.4.

Describe the concavity of the functions in 1–18.

1. y = x2 − x ⇒ 2. y = 2 + 3x− x3 ⇒
3. y = x3 − 9x2 + 24x ⇒ 4. y = x4 − 2x2 + 3 ⇒
5. y = 3x4 − 4x3 ⇒ 6. y = (x2 − 1)/x ⇒
7. y = 3x2 − (1/x2) ⇒ 8. y = sinx+ cosx ⇒

9. y = 4x+
√
1− x ⇒ 10. y = (x+ 1)/

√
5x2 + 35 ⇒

11. y = x5 − x ⇒ 12. y = 6x+ sin 3x ⇒
13. y = x+ 1/x ⇒ 14. y = x2 + 1/x ⇒
15. y = (x+ 5)1/4 ⇒ 16. y = tan2 x ⇒
17. y = cos2 x− sin2 x ⇒ 18. y = sin3 x ⇒

19. Identify the intervals on which the graph of the function f(x) = x4 − 4x3 + 10 is of one of
these four shapes: concave up and increasing; concave up and decreasing; concave down and
increasing; concave down and decreasing. ⇒

20. Describe the concavity of y = x3 + bx2 + cx + d. You will need to consider different cases,
depending on the values of the coefficients.

21. Let n be an integer greater than or equal to two, and suppose f is a polynomial of degree
n. How many inflection points can f have? Hint: Use the second derivative test and the
fundamental theorem of algebra.

5.5 Asymptotes and Other Things to Look For

A vertical asymptote is a place where the function becomes infinite, typically because

the formula for the function has a denominator that becomes zero. For example, the

reciprocal function f(x) = 1/x has a vertical asymptote at x = 0, and the function tanx

has a vertical asymptote at x = π/2 (and also at x = −π/2, x = 3π/2, etc.). Whenever the

formula for a function contains a denominator it is worth looking for a vertical asymptote

by checking to see if the denominator can ever be zero, and then checking the limit at such

points. Note that there is not always a vertical asymptote where the denominator is zero:

f(x) = (sinx)/x has a zero denominator at x = 0, but since lim
x→0

(sinx)/x = 1 there is no

asymptote there.

A horizontal asymptote is a horizontal line to which f(x) gets closer and closer as x

approaches ∞ (or as x approaches −∞). For example, the reciprocal function has the

x-axis for a horizontal asymptote. Horizontal asymptotes can be identified by computing

the limits lim
x→∞

f(x) and lim
x→−∞

f(x). Since lim
x→∞

1/x = lim
x→−∞

1/x = 0, the line y = 0 (that

is, the x-axis) is a horizontal asymptote in both directions.
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Some functions have asymptotes that are neither horizontal nor vertical, but some

other line. Such asymptotes are somewhat more difficult to identify and we will ignore

them.

If the domain of the function does not extend out to infinity, we should also ask

what happens as x approaches the boundary of the domain. For example, the function

y = f(x) = 1/
√
r2 − x2 has domain −r < x < r, and y becomes infinite as x approaches

either r or −r. In this case we might also identify this behavior because when x = ±r the

denominator of the function is zero.

If there are any points where the derivative fails to exist (a cusp or corner), then we

should take special note of what the function does at such a point.

Finally, it is worthwhile to notice any symmetry. A function f(x) that has the same

value for −x as for x, i.e., f(−x) = f(x), is called an “even function.” Its graph is

symmetric with respect to the y-axis. Some examples of even functions are: xn when n

is an even number, cosx, and sin2 x. On the other hand, a function that satisfies the

property f(−x) = −f(x) is called an “odd function.” Its graph is symmetric with respect

to the origin. Some examples of odd functions are: xn when n is an odd number, sinx, and

tanx. Of course, most functions are neither even nor odd, and do not have any particular

symmetry.

Exercises 5.5.

Sketch the curves. Identify clearly any interesting features, including local maximum and mini-
mum points, inflection points, asymptotes, and intercepts.

1. y = x5 − 5x4 + 5x3 2. y = x3 − 3x2 − 9x+ 5

3. y = (x− 1)2(x+ 3)2/3 4. x2 + x2y2 = a2y2, a > 0.

5. y = xex 6. y = (ex + e−x)/2

7. y = e−x cosx 8. y = ex − sinx

9. y = ex/x 10. y = 4x+
√
1− x

11. y = (x+ 1)/
√

5x2 + 35 12. y = x5 − x

13. y = 6x+ sin 3x 14. y = x+ 1/x

15. y = x2 + 1/x 16. y = (x+ 5)1/4

17. y = tan2 x 18. y = cos2 x− sin2 x

19. y = sin3 x 20. y = x(x2 + 1)

21. y = x3 + 6x2 + 9x 22. y = x/(x2 − 9)

23. y = x2/(x2 + 9) 24. y = 2
√
x− x

25. y = 3 sin(x)− sin3(x), for x ∈ [0, 2π] 26. y = (x− 1)/(x2)

For each of the following five functions, identify any vertical and horizontal asymptotes, and
identify intervals on which the function is concave up and increasing; concave up and decreasing;
concave down and increasing; concave down and decreasing.
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27. f(θ) = sec(θ)

28. f(x) = 1/(1 + x2)

29. f(x) = (x− 3)/(2x− 2)

30. f(x) = 1/(1− x2)

31. f(x) = 1 + 1/(x2)

32. Let f(x) = 1/(x2 − a2), where a ≥ 0. Find any vertical and horizontal asymptotes and
the intervals upon which the given function is concave up and increasing; concave up and
decreasing; concave down and increasing; concave down and decreasing. Discuss how the
value of a affects these features.





6
Applications of the Derivative

6.1 Optimization

Many important applied problems involve finding the best way to accomplish some task.

Often this involves finding the maximum or minimum value of some function: the minimum

time to make a certain journey, the minimum cost for doing a task, the maximum power

that can be generated by a device, and so on. Many of these problems can be solved by

finding the appropriate function and then using techniques of calculus to find the maximum

or the minimum value required.

Generally such a problem will have the following mathematical form: Find the largest

(or smallest) value of f(x) when a ≤ x ≤ b. Sometimes a or b are infinite, but frequently

the real world imposes some constraint on the values that x may have.

Such a problem differs in two ways from the local maximum and minimum problems

we encountered when graphing functions: We are interested only in the function between

a and b, and we want to know the largest or smallest value that f(x) takes on, not merely

values that are the largest or smallest in a small interval. That is, we seek not a local

maximum or minimum but a global maximum or minimum, sometimes also called an

absolute maximum or minimum.

Any global maximum or minimum must of course be a local maximum or minimum.

If we find all possible local extrema, then the global maximum, if it exists, must be the

largest of the local maxima and the global minimum, if it exists, must be the smallest of

the local minima. We already know where local extrema can occur: only at those points

at which f ′(x) is zero or undefined. Actually, there are two additional points at which a

maximum or minimum can occur if the endpoints a and b are not infinite, namely, at a

117
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Figure 6.1.1 The function f(x) = x2 restricted to [−2, 1]

and b. We have not previously considered such points because we have not been interested

in limiting a function to a small interval. An example should make this clear.

EXAMPLE 6.1.1 Find the maximum and minimum values of f(x) = x2 on the interval

[−2, 1], shown in figure 6.1.1. We compute f ′(x) = 2x, which is zero at x = 0 and is always

defined.

Since f ′(1) = 2 we would not normally flag x = 1 as a point of interest, but it is clear

from the graph that when f(x) is restricted to [−2, 1] there is a local maximum at x = 1.

Likewise we would not normally pay attention to x = −2, but since we have truncated f

at −2 we have introduced a new local maximum there as well. In a technical sense nothing

new is going on here: When we truncate f we actually create a new function, let’s call it

g, that is defined only on the interval [−2, 1]. If we try to compute the derivative of this

new function we actually find that it does not have a derivative at −2 or 1. Why? Because

to compute the derivative at 1 we must compute the limit

lim
∆x→0

g(1 + ∆x)− g(1)

∆x
.

This limit does not exist because when ∆x > 0, g(1 + ∆x) is not defined. It is simpler,

however, simply to remember that we must always check the endpoints.

So the function g, that is, f restricted to [−2, 1], has one critical value and two finite

endpoints, any of which might be the global maximum or minimum. We could first deter-

mine which of these are local maximum or minimum points (or neither); then the largest

local maximum must be the global maximum and the smallest local minimum must be the

global minimum. It is usually easier, however, to compute the value of f at every point

at which the global maximum or minimum might occur; the largest of these is the global

maximum, the smallest is the global minimum.

So we compute f(−2) = 4, f(0) = 0, f(1) = 1. The global maximum is 4 at x = −2

and the global minimum is 0 at x = 0.
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It is possible that there is no global maximum or minimum. It is difficult, and not

particularly useful, to express a complete procedure for determining whether this is the

case. Generally, the best approach is to gain enough understanding of the shape of the

graph to decide. Fortunately, only a rough idea of the shape is usually needed.

There are some particularly nice cases that are easy. A continuous function on a closed

interval [a, b] always has both a global maximum and a global minimum, so examining the

critical values and the endpoints is enough:

THEOREM 6.1.2 Extreme value theorem If f is continuous on a closed interval

[a, b], then it has both a minimum and a maximum point. That is, there are real numbers

c and d in [a, b] so that for every x in [a, b], f(x) ≤ f(c) and f(x) ≥ f(d).

Another easy case: If a function is continuous and has a single critical value, then if

there is a local maximum at the critical value it is a global maximum, and if it is a local

minimum it is a global minimum. There may also be a global minimum in the first case,

or a global maximum in the second case, but that will generally require more effort to

determine.

EXAMPLE 6.1.3 Let f(x) = −x2 + 4x− 3. Find the maximum value of f(x) on the

interval [0, 4]. First note that f ′(x) = −2x+4 = 0 when x = 2, and f(2) = 1. Next observe

that f ′(x) is defined for all x, so there are no other critical values. Finally, f(0) = −3 and

f(4) = −3. The largest value of f(x) on the interval [0, 4] is f(2) = 1.

EXAMPLE 6.1.4 Let f(x) = −x2 + 4x− 3. Find the maximum value of f(x) on the

interval [−1, 1].

First note that f ′(x) = −2x+ 4 = 0 when x = 2. But x = 2 is not in the interval, so

we don’t use it. Thus the only two points to be checked are the endpoints; f(−1) = −8

and f(1) = 0. So the largest value of f(x) on [−1, 1] is f(1) = 0.

EXAMPLE 6.1.5 Find the maximum and minimum values of the function f(x) =

7+ |x− 2| for x between 1 and 4 inclusive. The derivative f ′(x) is never zero, but f ′(x) is

undefined at x = 2, so we compute f(2) = 7. Checking the end points we get f(1) = 8 and

f(4) = 9. The smallest of these numbers is f(2) = 7, which is, therefore, the minimum

value of f(x) on the interval 1 ≤ x ≤ 4, and the maximum is f(4) = 9.

EXAMPLE 6.1.6 Find all local maxima and minima for f(x) = x3 − x, and deter-

mine whether there is a global maximum or minimum on the open interval (−2, 2). In

example 5.1.2 we found a local maximum at (−
√
3/3, 2

√
3/9) and a local minimum at

(
√
3/3,−2

√
3/9). Since the endpoints are not in the interval (−2, 2) they cannot be con-
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Figure 6.1.2 f(x) = x3 − x

sidered. Is the lone local maximum a global maximum? Here we must look more closely at

the graph. We know that on the closed interval [−
√
3/3,

√
3/3] there is a global maximum

at x = −
√
3/3 and a global minimum at x =

√
3/3. So the question becomes: what hap-

pens between −2 and −
√
3/3, and between

√
3/3 and 2? Since there is a local minimum

at x =
√
3/3, the graph must continue up to the right, since there are no more critical

values. This means no value of f will be less than −2
√
3/9 between

√
3/3 and 2, but it

says nothing about whether we might find a value larger than the local maximum 2
√
3/9.

How can we tell? Since the function increases to the right of
√
3/3, we need to know what

the function values do “close to” 2. Here the easiest test is to pick a number and do a

computation to get some idea of what’s going on. Since f(1.9) = 4.959 > 2
√
3/9, there

is no global maximum at −
√
3/3, and hence no global maximum at all. (How can we tell

that 4.959 > 2
√
3/9? We can use a calculator to approximate the right hand side; if it is

not even close to 4.959 we can take this as decisive. Since 2
√
3/9 ≈ 0.3849, there’s really

no question. Funny things can happen in the rounding done by computers and calculators,

however, so we might be a little more careful, especially if the values come out quite close.

In this case we can convert the relation 4.959 > 2
√
3/9 into (9/2)4.959 >

√
3 and ask

whether this is true. Since the left side is clearly larger than 4 · 4 which is clearly larger

than
√
3, this settles the question.)

A similar analysis shows that there is also no global minimum. The graph of f(x) on

(−2, 2) is shown in figure 6.1.2.

EXAMPLE 6.1.7 Of all rectangles of area 100, which has the smallest perimeter?

First we must translate this into a purely mathematical problem in which we want to

find the minimum value of a function. If x denotes one of the sides of the rectangle, then

the adjacent side must be 100/x (in order that the area be 100). So the function we want
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to minimize is

f(x) = 2x+ 2
100

x

since the perimeter is twice the length plus twice the width of the rectangle. Not all values

of x make sense in this problem: lengths of sides of rectangles must be positive, so x > 0.

If x > 0 then so is 100/x, so we need no second condition on x.

We next find f ′(x) and set it equal to zero: 0 = f ′(x) = 2− 200/x2. Solving f ′(x) = 0

for x gives us x = ±10. We are interested only in x > 0, so only the value x = 10 is of

interest. Since f ′(x) is defined everywhere on the interval (0,∞), there are no more critical

values, and there are no endpoints. Is there a local maximum, minimum, or neither at

x = 10? The second derivative is f ′′(x) = 400/x3, and f ′′(10) > 0, so there is a local

minimum. Since there is only one critical value, this is also the global minimum, so the

rectangle with smallest perimeter is the 10× 10 square.

EXAMPLE 6.1.8 You want to sell a certain number n of items in order to maximize

your profit. Market research tells you that if you set the price at $1.50, you will be able

to sell 5000 items, and for every 10 cents you lower the price below $1.50 you will be able

to sell another 1000 items. Suppose that your fixed costs (“start-up costs”) total $2000,

and the per item cost of production (“marginal cost”) is $0.50. Find the price to set per

item and the number of items sold in order to maximize profit, and also determine the

maximum profit you can get.

The first step is to convert the problem into a function maximization problem. Since

we want to maximize profit by setting the price per item, we should look for a function

P (x) representing the profit when the price per item is x. Profit is revenue minus costs, and

revenue is number of items sold times the price per item, so we get P = nx−2000−0.50n.

The number of items sold is itself a function of x, n = 5000 + 1000(1.5− x)/0.10, because

(1.5 − x)/0.10 is the number of multiples of 10 cents that the price is below $1.50. Now

we substitute for n in the profit function:

P (x) = (5000 + 1000(1.5− x)/0.10)x− 2000− 0.5(5000 + 1000(1.5− x)/0.10)

= −10000x2 + 25000x− 12000

We want to know the maximum value of this function when x is between 0 and 1.5. The

derivative is P ′(x) = −20000x + 25000, which is zero when x = 1.25. Since P ′′(x) =

−20000 < 0, there must be a local maximum at x = 1.25, and since this is the only critical

value it must be a global maximum as well. (Alternately, we could compute P (0) =

−12000, P (1.25) = 3625, and P (1.5) = 3000 and note that P (1.25) is the maximum of

these.) Thus the maximum profit is $3625, attained when we set the price at $1.25 and

sell 7500 items.
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Figure 6.1.3 Rectangle in a parabola.

EXAMPLE 6.1.9 Find the largest rectangle (that is, the rectangle with largest area)

that fits inside the graph of the parabola y = x2 below the line y = a (a is an unspecified

constant value), with the top side of the rectangle on the horizontal line y = a; see

figure 6.1.3.)

We want to find the maximum value of some function A(x) representing area. Perhaps

the hardest part of this problem is deciding what x should represent. The lower right

corner of the rectangle is at (x, x2), and once this is chosen the rectangle is completely

determined. So we can let the x in A(x) be the x of the parabola f(x) = x2. Then the

area is A(x) = (2x)(a−x2) = −2x3+2ax. We want the maximum value of A(x) when x is

in [0,
√
a]. (You might object to allowing x = 0 or x =

√
a, since then the “rectangle” has

either no width or no height, so is not “really” a rectangle. But the problem is somewhat

easier if we simply allow such rectangles, which have zero area.)

Setting 0 = A′(x) = −6x2 + 2a we get x =
√

a/3 as the only critical value. Testing

this and the two endpoints, we have A(0) = A(
√
a) = 0 and A(

√
a/3) = (4/9)

√
3a3/2.

The maximum area thus occurs when the rectangle has dimensions 2
√
a/3× (2/3)a.

EXAMPLE 6.1.10 If you fit the largest possible cone inside a sphere, what fraction

of the volume of the sphere is occupied by the cone? (Here by “cone” we mean a right

circular cone, i.e., a cone for which the base is perpendicular to the axis of symmetry, and

for which the cross-section cut perpendicular to the axis of symmetry at any point is a

circle.)

Let R be the radius of the sphere, and let r and h be the base radius and height of

the cone inside the sphere. What we want to maximize is the volume of the cone: πr2h/3.

Here R is a fixed value, but r and h can vary. Namely, we could choose r to be as large as

possible—equal to R—by taking the height equal to R; or we could make the cone’s height

h larger at the expense of making r a little less than R. See the cross-section depicted in
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Figure 6.1.4 Cone in a sphere.

figure 6.1.4. We have situated the picture in a convenient way relative to the x and y axes,

namely, with the center of the sphere at the origin and the vertex of the cone at the far

left on the x-axis.

Notice that the function we want to maximize, πr2h/3, depends on two variables. This

is frequently the case, but often the two variables are related in some way so that “really”

there is only one variable. So our next step is to find the relationship and use it to solve

for one of the variables in terms of the other, so as to have a function of only one variable

to maximize. In this problem, the condition is apparent in the figure: the upper corner of

the triangle, whose coordinates are (h−R, r), must be on the circle of radius R. That is,

(h−R)2 + r2 = R2.

We can solve for h in terms of r or for r in terms of h. Either involves taking a square

root, but we notice that the volume function contains r2, not r by itself, so it is easiest to

solve for r2 directly: r2 = R2 − (h−R)2. Then we substitute the result into πr2h/3:

V (h) = π(R2 − (h−R)2)h/3

= −π

3
h3 +

2

3
πh2R

We want to maximize V (h) when h is between 0 and 2R. Now we solve 0 = f ′(h) =

−πh2 + (4/3)πhR, getting h = 0 or h = 4R/3. We compute V (0) = V (2R) = 0 and

V (4R/3) = (32/81)πR3. The maximum is the latter; since the volume of the sphere is

(4/3)πR3, the fraction of the sphere occupied by the cone is

(32/81)πR3

(4/3)πR3
=

8

27
≈ 30%.
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EXAMPLE 6.1.11 You are making cylindrical containers to contain a given volume.

Suppose that the top and bottom are made of a material that is N times as expensive

(cost per unit area) as the material used for the lateral side of the cylinder. Find (in terms

of N) the ratio of height to base radius of the cylinder that minimizes the cost of making

the containers.

Let us first choose letters to represent various things: h for the height, r for the base

radius, V for the volume of the cylinder, and c for the cost per unit area of the lateral side

of the cylinder; V and c are constants, h and r are variables. Now we can write the cost

of materials:

c(2πrh) +Nc(2πr2).

Again we have two variables; the relationship is provided by the fixed volume of the

cylinder: V = πr2h. We use this relationship to eliminate h (we could eliminate r, but it’s

a little easier if we eliminate h, which appears in only one place in the above formula for

cost). The result is

f(r) = 2cπr
V

πr2
+ 2Ncπr2 =

2cV

r
+ 2Ncπr2.

We want to know the minimum value of this function when r is in (0,∞). We now set

0 = f ′(r) = −2cV/r2 + 4Ncπr, giving r = 3
√
V/(2Nπ). Since f ′′(r) = 4cV/r3 + 4Ncπ

is positive when r is positive, there is a local minimum at the critical value, and hence a

global minimum since there is only one critical value.

Finally, since h = V/(πr2),

h

r
=

V

πr3
=

V

π(V/(2Nπ))
= 2N,

so the minimum cost occurs when the height h is 2N times the radius. If, for example,

there is no difference in the cost of materials, the height is twice the radius (or the height

is equal to the diameter).

.........................................................................................................................
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Figure 6.1.5 Minimizing travel time.
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EXAMPLE 6.1.12 Suppose you want to reach a point A that is located across the

sand from a nearby road (see figure 6.1.5). Suppose that the road is straight, and b is the

distance from A to the closest point C on the road. Let v be your speed on the road, and

let w, which is less than v, be your speed on the sand. Right now you are at the point

D, which is a distance a from C. At what point B should you turn off the road and head

across the sand in order to minimize your travel time to A?

Let x be the distance short of C where you turn off, i.e., the distance from B to C. We

want to minimize the total travel time. Recall that when traveling at constant velocity,

time is distance divided by velocity.

You travel the distance DB at speed v, and then the distance BA at speed w. Since

DB = a − x and, by the Pythagorean theorem, BA =
√
x2 + b2, the total time for the

trip is

f(x) =
a− x

v
+

√
x2 + b2

w
.

We want to find the minimum value of f when x is between 0 and a. As usual we set

f ′(x) = 0 and solve for x:

0 = f ′(x) = −1

v
+

x

w
√
x2 + b2

w
√

x2 + b2 = vx

w2(x2 + b2) = v2x2

w2b2 = (v2 − w2)x2

x =
wb√

v2 − w2

Notice that a does not appear in the last expression, but a is not irrelevant, since we

are interested only in critical values that are in [0, a], and wb/
√
v2 − w2 is either in this

interval or not. If it is, we can use the second derivative to test it:

f ′′(x) =
b2

(x2 + b2)3/2w
.

Since this is always positive there is a local minimum at the critical point, and so it is a

global minimum as well.

If the critical value is not in [0, a] it is larger than a. In this case the minimum must

occur at one of the endpoints. We can compute

f(0) =
a

v
+

b

w

f(a) =

√
a2 + b2

w
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but it is difficult to determine which of these is smaller by direct comparison. If, as is

likely in practice, we know the values of v, w, a, and b, then it is easy to determine this.

With a little cleverness, however, we can determine the minimum in general. We have seen

that f ′′(x) is always positive, so the derivative f ′(x) is always increasing. We know that

at wb/
√
v2 − w2 the derivative is zero, so for values of x less than that critical value, the

derivative is negative. This means that f(0) > f(a), so the minimum occurs when x = a.

So the upshot is this: If you start farther away from C than wb/
√
v2 − w2 then you

always want to cut across the sand when you are a distance wb/
√

v2 − w2 from point C.

If you start closer than this to C, you should cut directly across the sand.

Summary—Steps to solve an optimization problem.

1. Decide what the variables are and what the constants are, draw a diagram if

appropriate, understand clearly what it is that is to be maximized or minimized.

2. Write a formula for the function for which you wish to find the maximum or

minimum.

3. Express that formula in terms of only one variable, that is, in the form f(x).

4. Set f ′(x) = 0 and solve. Check all critical values and endpoints to determine the

extreme value.

Exercises 6.1.

1. Let f(x) =

{
1 + 4x− x2 for x ≤ 3
(x+ 5)/2 for x > 3

Find the maximum value and minimum values of f(x) for x in [0, 4]. Graph f(x) to check
your answers. ⇒

2. Find the dimensions of the rectangle of largest area having fixed perimeter 100. ⇒
3. Find the dimensions of the rectangle of largest area having fixed perimeter P . ⇒
4. A box with square base and no top is to hold a volume 100. Find the dimensions of the box

that requires the least material for the five sides. Also find the ratio of height to side of the
base. ⇒

5. A box with square base is to hold a volume 200. The bottom and top are formed by folding
in flaps from all four sides, so that the bottom and top consist of two layers of cardboard.
Find the dimensions of the box that requires the least material. Also find the ratio of height
to side of the base. ⇒

6. A box with square base and no top is to hold a volume V . Find (in terms of V ) the dimensions
of the box that requires the least material for the five sides. Also find the ratio of height to
side of the base. (This ratio will not involve V .) ⇒

7. You have 100 feet of fence to make a rectangular play area alongside the wall of your house.
The wall of the house bounds one side. What is the largest size possible (in square feet) for
the play area? ⇒
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8. You have l feet of fence to make a rectangular play area alongside the wall of your house.
The wall of the house bounds one side. What is the largest size possible (in square feet) for
the play area? ⇒

9. Marketing tells you that if you set the price of an item at $10 then you will be unable to sell
it, but that you can sell 500 items for each dollar below $10 that you set the price. Suppose
your fixed costs total $3000, and your marginal cost is $2 per item. What is the most profit
you can make? ⇒

10. Find the area of the largest rectangle that fits inside a semicircle of radius 10 (one side of
the rectangle is along the diameter of the semicircle). ⇒

11. Find the area of the largest rectangle that fits inside a semicircle of radius r (one side of the
rectangle is along the diameter of the semicircle). ⇒

12. For a cylinder with surface area 50, including the top and the bottom, find the ratio of height
to base radius that maximizes the volume. ⇒

13. For a cylinder with given surface area S, including the top and the bottom, find the ratio of
height to base radius that maximizes the volume. ⇒

14. You want to make cylindrical containers to hold 1 liter (1000 cubic centimeters) using the
least amount of construction material. The side is made from a rectangular piece of material,
and this can be done with no material wasted. However, the top and bottom are cut from
squares of side 2r, so that 2(2r)2 = 8r2 of material is needed (rather than 2πr2, which is
the total area of the top and bottom). Find the dimensions of the container using the least
amount of material, and also find the ratio of height to radius for this container. ⇒

15. You want to make cylindrical containers of a given volume V using the least amount of
construction material. The side is made from a rectangular piece of material, and this can
be done with no material wasted. However, the top and bottom are cut from squares of side
2r, so that 2(2r)2 = 8r2 of material is needed (rather than 2πr2, which is the total area of
the top and bottom). Find the optimal ratio of height to radius. ⇒

16. Given a right circular cone, you put an upside-down cone inside it so that its vertex is at the
center of the base of the larger cone and its base is parallel to the base of the larger cone. If
you choose the upside-down cone to have the largest possible volume, what fraction of the
volume of the larger cone does it occupy? (Let H and R be the height and base radius of
the larger cone, and let h and r be the height and base radius of the smaller cone. Hint: Use
similar triangles to get an equation relating h and r.) ⇒

17. In example 6.1.12, what happens if w ≥ v (i.e., your speed on sand is at least your speed on
the road)? ⇒

18. A container holding a fixed volume is being made in the shape of a cylinder with a hemi-
spherical top. (The hemispherical top has the same radius as the cylinder.) Find the ratio of
height to radius of the cylinder which minimizes the cost of the container if (a) the cost per
unit area of the top is twice as great as the cost per unit area of the side, and the container
is made with no bottom; (b) the same as in (a), except that the container is made with a
circular bottom, for which the cost per unit area is 1.5 times the cost per unit area of the
side. ⇒

19. A piece of cardboard is 1 meter by 1/2 meter. A square is to be cut from each corner and
the sides folded up to make an open-top box. What are the dimensions of the box with
maximum possible volume? ⇒
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20. (a) A square piece of cardboard of side a is used to make an open-top box by cutting out
a small square from each corner and bending up the sides. How large a square should be
cut from each corner in order that the box have maximum volume? (b) What if the piece of
cardboard used to make the box is a rectangle of sides a and b? ⇒

21. A window consists of a rectangular piece of clear glass with a semicircular piece of colored
glass on top; the colored glass transmits only 1/2 as much light per unit area as the the clear
glass. If the distance from top to bottom (across both the rectangle and the semicircle) is
2 meters and the window may be no more than 1.5 meters wide, find the dimensions of the
rectangular portion of the window that lets through the most light. ⇒

22. A window consists of a rectangular piece of clear glass with a semicircular piece of colored
glass on top. Suppose that the colored glass transmits only k times as much light per unit
area as the clear glass (k is between 0 and 1). If the distance from top to bottom (across
both the rectangle and the semicircle) is a fixed distance H, find (in terms of k) the ratio of
vertical side to horizontal side of the rectangle for which the window lets through the most
light. ⇒

23. You are designing a poster to contain a fixed amount A of printing (measured in square
centimeters) and have margins of a centimeters at the top and bottom and b centimeters at
the sides. Find the ratio of vertical dimension to horizontal dimension of the printed area on
the poster if you want to minimize the amount of posterboard needed. ⇒

24. The strength of a rectangular beam is proportional to the product of its width w times the
square of its depth d. Find the dimensions of the strongest beam that can be cut from a
cylindrical log of radius r. ⇒
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Figure 6.1.6 Cutting a beam.

25. What fraction of the volume of a sphere is taken up by the largest cylinder that can be fit
inside the sphere? ⇒

26. The U.S. post office will accept a box for shipment only if the sum of the length and girth
(distance around) is at most 108 in. Find the dimensions of the largest acceptable box with
square front and back. ⇒

27. Find the dimensions of the lightest cylindrical can containing 0.25 liter (=250 cm3) if the
top and bottom are made of a material that is twice as heavy (per unit area) as the material
used for the side. ⇒

28. A conical paper cup is to hold 1/4 of a liter. Find the height and radius of the cone which

minimizes the amount of paper needed to make the cup. Use the formula πr
√

r2 + h2 for
the area of the side of a cone. ⇒

29. A conical paper cup is to hold a fixed volume of water. Find the ratio of height to base radius
of the cone which minimizes the amount of paper needed to make the cup. Use the formula

πr
√

r2 + h2 for the area of the side of a cone, called the lateral area of the cone. ⇒
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30. If you fit the cone with the largest possible surface area (lateral area plus area of base) into
a sphere, what percent of the volume of the sphere is occupied by the cone? ⇒

31. Two electrical charges, one a positive charge A of magnitude a and the other a negative
charge B of magnitude b, are located a distance c apart. A positively charged particle P is
situated on the line between A and B. Find where P should be put so that the pull away
from A towards B is minimal. Here assume that the force from each charge is proportional
to the strength of the source and inversely proportional to the square of the distance from
the source. ⇒

32. Find the fraction of the area of a triangle that is occupied by the largest rectangle that can
be drawn in the triangle (with one of its sides along a side of the triangle). Show that this
fraction does not depend on the dimensions of the given triangle. ⇒

33. How are your answers to Problem 9 affected if the cost per item for the x items, instead
of being simply $2, decreases below $2 in proportion to x (because of economy of scale and
volume discounts) by 1 cent for each 25 items produced? ⇒

34. You are standing near the side of a large wading pool of uniform depth when you see a child
in trouble. You can run at a speed v1 on land and at a slower speed v2 in the water. Your
perpendicular distance from the side of the pool is a, the child’s perpendicular distance is b,
and the distance along the side of the pool between the closest point to you and the closest
point to the child is c (see the figure below). Without stopping to do any calculus, you
instinctively choose the quickest route (shown in the figure) and save the child. Our purpose
is to derive a relation between the angle θ1 your path makes with the perpendicular to the side
of the pool when you’re on land, and the angle θ2 your path makes with the perpendicular
when you’re in the water. To do this, let x be the distance between the closest point to you
at the side of the pool and the point where you enter the water. Write the total time you
run (on land and in the water) in terms of x (and also the constants a, b, c, v1, v2). Then set
the derivative equal to zero. The result, called “Snell’s law” or the “law of refraction,” also
governs the bending of light when it goes into water. ⇒
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Figure 6.1.7 Wading pool rescue.

6.2 Related Rates

Suppose we have two variables x and y (in most problems the letters will be different,

but for now let’s use x and y) which are both changing with time. A “related rates”

problem is a problem in which we know one of the rates of change at a given instant—say,
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ẋ = dx/dt—and we want to find the other rate ẏ = dy/dt at that instant. (The use of

ẋ to mean dx/dt goes back to Newton and is still used for this purpose, especially by

physicists.)

If y is written in terms of x, i.e., y = f(x), then this is easy to do using the chain rule:

ẏ =
dy

dt
=

dy

dx
· dx
dt

=
dy

dx
ẋ.

That is, find the derivative of f(x), plug in the value of x at the instant in question, and

multiply by the given value of ẋ = dx/dt to get ẏ = dy/dt.

EXAMPLE 6.2.1 Suppose an object is moving along a path described by y = x2, that

is, it is moving on a parabolic path. At a particular time, say t = 5, the x coordinate is

6 and we measure the speed at which the x coordinate of the object is changing and find

that dx/dt = 3. At the same time, how fast is the y coordinate changing?

Using the chain rule, dy/dt = 2x · dx/dt. At t = 5 we know that x = 6 and dx/dt = 3,

so dy/dt = 2 · 6 · 3 = 36.

In many cases, particularly interesting ones, x and y will be related in some other way,

for example x = f(y), or F (x, y) = k, or perhaps F (x, y) = G(x, y), where F (x, y) and

G(x, y) are expressions involving both variables. In all cases, you can solve the related

rates problem by taking the derivative of both sides, plugging in all the known values

(namely, x, y, and ẋ), and then solving for ẏ.

To summarize, here are the steps in doing a related rates problem:

1. Decide what the two variables are.

2. Find an equation relating them.

3. Take d/dt of both sides.

4. Plug in all known values at the instant in question.

5. Solve for the unknown rate.

EXAMPLE 6.2.2 A plane is flying directly away from you at 500 mph at an altitude

of 3 miles. How fast is the plane’s distance from you increasing at the moment when the

plane is flying over a point on the ground 4 miles from you?

To see what’s going on, we first draw a schematic representation of the situation, as

in figure 6.2.1.

Because the plane is in level flight directly away from you, the rate at which x changes

is the speed of the plane, dx/dt = 500. The distance between you and the plane is y; it

is dy/dt that we wish to know. By the Pythagorean Theorem we know that x2 + 9 = y2.
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Figure 6.2.1 Receding airplane.

Taking the derivative:

2xẋ = 2yẏ.

We are interested in the time at which x = 4; at this time we know that 42 + 9 = y2, so

y = 5. Putting together all the information we get

2(4)(500) = 2(5)ẏ.

Thus, ẏ = 400 mph.

EXAMPLE 6.2.3 You are inflating a spherical balloon at the rate of 7 cm3/sec. How

fast is its radius increasing when the radius is 4 cm?

Here the variables are the radius r and the volume V . We know dV/dt, and we want

dr/dt. The two variables are related by means of the equation V = 4πr3/3. Taking the

derivative of both sides gives dV/dt = 4πr2ṙ. We now substitute the values we know at

the instant in question: 7 = 4π42ṙ, so ṙ = 7/(64π) cm/sec.

EXAMPLE 6.2.4 Water is poured into a conical container at the rate of 10 cm3/sec.

The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm; see

figure 6.2.2. How fast is the water level rising when the water is 4 cm deep (at its deepest

point)?

The water forms a conical shape within the big cone; its height and base radius and

volume are all increasing as water is poured into the container. This means that we actually

have three things varying with time: the water level h (the height of the cone of water),

the radius r of the circular top surface of water (the base radius of the cone of water), and

the volume of water V . The volume of a cone is given by V = πr2h/3. We know dV/dt,

and we want dh/dt. At first something seems to be wrong: we have a third variable r

whose rate we don’t know.

But the dimensions of the cone of water must have the same proportions as those of

the container. That is, because of similar triangles, r/h = 10/30 so r = h/3. Now we can

eliminate r from the problem entirely: V = π(h/3)2h/3 = πh3/27. We take the derivative

of both sides and plug in h = 4 and dV/dt = 10, obtaining 10 = (3π ·42/27)(dh/dt). Thus,
dh/dt = 90/(16π) cm/sec.
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Figure 6.2.2 Conical water tank.

EXAMPLE 6.2.5 A swing consists of a board at the end of a 10 ft long rope. Think

of the board as a point P at the end of the rope, and let Q be the point of attachment

at the other end. Suppose that the swing is directly below Q at time t = 0, and is being

pushed by someone who walks at 6 ft/sec from left to right. Find (a) how fast the swing

is rising after 1 sec; (b) the angular speed of the rope in deg/sec after 1 sec.

We start out by asking: What is the geometric quantity whose rate of change we know,

and what is the geometric quantity whose rate of change we’re being asked about? Note

that the person pushing the swing is moving horizontally at a rate we know. In other

words, the horizontal coordinate of P is increasing at 6 ft/sec. In the xy-plane let us

make the convenient choice of putting the origin at the location of P at time t = 0, i.e., a

distance 10 directly below the point of attachment. Then the rate we know is dx/dt, and

in part (a) the rate we want is dy/dt (the rate at which P is rising). In part (b) the rate

we want is θ̇ = dθ/dt, where θ stands for the angle in radians through which the swing has

swung from the vertical. (Actually, since we want our answer in deg/sec, at the end we

must convert dθ/dt from rad/sec by multiplying by 180/π.)

(a) From the diagram we see that we have a right triangle whose legs are x and 10 − y,

and whose hypotenuse is 10. Hence x2 + (10 − y)2 = 100. Taking the derivative of both

sides we obtain: 2xẋ+2(10− y)(0− ẏ) = 0. We now look at what we know after 1 second,

namely x = 6 (because x started at 0 and has been increasing at the rate of 6 ft/sec

for 1 sec), y = 2 (because we get 10 − y = 8 from the Pythagorean theorem applied to

the triangle with hypotenuse 10 and leg 6), and ẋ = 6. Putting in these values gives us

2 · 6 · 6− 2 · 8ẏ = 0, from which we can easily solve for ẏ: ẏ = 4.5 ft/sec.

(b) Here our two variables are x and θ, so we want to use the same right triangle as

in part (a), but this time relate θ to x. Since the hypotenuse is constant (equal to 10),

the best way to do this is to use the sine: sin θ = x/10. Taking derivatives we obtain
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Figure 6.2.3 Swing.

(cos θ)θ̇ = 0.1ẋ. At the instant in question (t = 1 sec), when we have a right triangle with

sides 6–8–10, cos θ = 8/10 and ẋ = 6. Thus (8/10)θ̇ = 6/10, i.e., θ̇ = 6/8 = 3/4 rad/sec,

or approximately 43 deg/sec.

We have seen that sometimes there are apparently more than two variables that change

with time, but in reality there are just two, as the others can be expressed in terms of

just two. But sometimes there really are several variables that change with time; as long

as you know the rates of change of all but one of them you can find the rate of change of

the remaining one. As in the case when there are just two variables, take the derivative

of both sides of the equation relating all of the variables, and then substitute all of the

known values and solve for the unknown rate.

EXAMPLE 6.2.6 A road running north to south crosses a road going east to west at

the point P . Car A is driving north along the first road, and car B is driving east along the

second road. At a particular time car A is 10 kilometers to the north of P and traveling at

80 km/hr, while car B is 15 kilometers to the east of P and traveling at 100 km/hr. How

fast is the distance between the two cars changing?
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Figure 6.2.4 Cars moving apart.
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Let a(t) be the distance of car A north of P at time t, and b(t) the distance of car B east

of P at time t, and let c(t) be the distance from car A to car B at time t. By the Pythagorean

Theorem, c(t)2 = a(t)2+b(t)2. Taking derivatives we get 2c(t)c′(t) = 2a(t)a′(t)+2b(t)b′(t),

so

ċ =
aȧ+ bḃ

c
=

aȧ+ bḃ√
a2 + b2

.

Substituting known values we get:

ċ =
10 · 80 + 15 · 100√

102 + 152
=

460√
13

≈ 127.6km/hr

at the time of interest.

Notice how this problem differs from example 6.2.2. In both cases we started with the

Pythagorean Theorem and took derivatives on both sides. However, in example 6.2.2 one

of the sides was a constant (the altitude of the plane), and so the derivative of the square

of that side of the triangle was simply zero. In this example, on the other hand, all three

sides of the right triangle are variables, even though we are interested in a specific value

of each side of the triangle (namely, when the sides have lengths 10 and 15). Make sure

that you understand at the start of the problem what are the variables and what are the

constants.

Exercises 6.2.

1. A cylindrical tank standing upright (with one circular base on the ground) has radius 20
cm. How fast does the water level in the tank drop when the water is being drained at 25
cm3/sec? ⇒

2. A cylindrical tank standing upright (with one circular base on the ground) has radius 1
meter. How fast does the water level in the tank drop when the water is being drained at 3
liters per second? ⇒

3. A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The
foot of the ladder is pulled away from the wall at the rate of 0.6 m/sec. How fast is the top
sliding down the wall when the foot of the ladder is 5 m from the wall? ⇒

4. A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The
top of the ladder is being pulled up the wall at 0.1 meters per second. How fast is the foot
of the ladder approaching the wall when the foot of the ladder is 5 m from the wall? ⇒

5. A rotating beacon is located 2 miles out in the water. Let A be the point on the shore that
is closest to the beacon. As the beacon rotates at 10 rev/min, the beam of light sweeps down
the shore once each time it revolves. Assume that the shore is straight. How fast is the point
where the beam hits the shore moving at an instant when the beam is lighting up a point 2
miles along the shore from the point A? ⇒

6. A baseball diamond is a square 90 ft on a side. A player runs from first base to second base
at 15 ft/sec. At what rate is the player’s distance from third base decreasing when she is
half way from first to second base? ⇒



6.2 Related Rates 135

7. Sand is poured onto a surface at 15 cm3/sec, forming a conical pile whose base diameter is
always equal to its altitude. How fast is the altitude of the pile increasing when the pile is 3
cm high? ⇒

8. A boat is pulled in to a dock by a rope with one end attached to the front of the boat and
the other end passing through a ring attached to the dock at a point 5 ft higher than the
front of the boat. The rope is being pulled through the ring at the rate of 0.6 ft/sec. How
fast is the boat approaching the dock when 13 ft of rope are out? ⇒

9. A balloon is at a height of 50 meters, and is rising at the constant rate of 5 m/sec. A bicyclist
passes beneath it, traveling in a straight line at the constant speed of 10 m/sec. How fast is
the distance between the bicyclist and the balloon increasing 2 seconds later? ⇒

10. A pyramid-shaped vat has square cross-section and stands on its tip. The dimensions at the
top are 2 m × 2 m, and the depth is 5 m. If water is flowing into the vat at 3 m3/min, how
fast is the water level rising when the depth of water (at the deepest point) is 4 m? Note:
the volume of any “conical” shape (including pyramids) is (1/3)(height)(area of base). ⇒

11. The sun is rising at the rate of 1/4 deg/min, and appears to be climbing into the sky
perpendicular to the horizon, as depicted in figure 6.2.5. How fast is the shadow of a 200
meter building shrinking at the moment when the shadow is 500 meters long? ⇒

12. The sun is setting at the rate of 1/4 deg/min, and appears to be dropping perpendicular to
the horizon, as depicted in figure 6.2.5. How fast is the shadow of a 25 meter wall lengthening
at the moment when the shadow is 50 meters long? ⇒
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Figure 6.2.5 Sunrise or sunset.

13. The trough shown in figure 6.2.6 is constructed by fastening together three slabs of wood of
dimensions 10 ft × 1 ft, and then attaching the construction to a wooden wall at each end.
The angle θ was originally 30◦, but because of poor construction the sides are collapsing.
The trough is full of water. At what rate (in ft3/sec) is the water spilling out over the top
of the trough if the sides have each fallen to an angle of 45◦, and are collapsing at the rate
of 1◦ per second? ⇒
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Figure 6.2.6 Trough.



136 Chapter 6 Applications of the Derivative

14. A woman 5 ft tall walks at the rate of 3.5 ft/sec away from a streetlight that is 12 ft above
the ground. At what rate is the tip of her shadow moving? At what rate is her shadow
lengthening? ⇒

15. A man 1.8 meters tall walks at the rate of 1 meter per second toward a streetlight that is 4
meters above the ground. At what rate is the tip of his shadow moving? At what rate is his
shadow shortening? ⇒

16. A police helicopter is flying at 150 mph at a constant altitude of 0.5 mile above a straight
road. The pilot uses radar to determine that an oncoming car is at a distance of exactly 1
mile from the helicopter, and that this distance is decreasing at 190 mph. Find the speed of
the car. ⇒

17. A police helicopter is flying at 200 kilometers per hour at a constant altitude of 1 km above
a straight road. The pilot uses radar to determine that an oncoming car is at a distance
of exactly 2 kilometers from the helicopter, and that this distance is decreasing at 250 kph.
Find the speed of the car. ⇒

18. A light shines from the top of a pole 20 m high. A ball is falling 10 meters from the pole,
casting a shadow on a building 30 meters away, as shown in figure 6.2.7. When the ball is 25
meters from the ground it is falling at 6 meters per second. How fast is its shadow moving?
⇒
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Figure 6.2.7 Falling ball.

19. Do example 6.2.6 assuming that the angle between the two roads is 120◦ instead of 90◦ (that
is, the “north–south” road actually goes in a somewhat northwesterly direction from P ).
Recall the law of cosines: c2 = a2 + b2 − 2ab cos θ. ⇒

20. Do example 6.2.6 assuming that car A is 300 meters north of P , car B is 400 meters east
of P , both cars are going at constant speed toward P , and the two cars will collide in 10
seconds. ⇒

21. Do example 6.2.6 assuming that 8 seconds ago car A started from rest at P and has been
picking up speed at the steady rate of 5 m/sec2, and 6 seconds after car A started car B
passed P moving east at constant speed 60 m/sec. ⇒

22. Referring again to example 6.2.6, suppose that instead of car B an airplane is flying at speed
200 km/hr to the east of P at an altitude of 2 km, as depicted in figure 6.2.8. How fast is
the distance between car and airplane changing? ⇒

23. Referring again to example 6.2.6, suppose that instead of car B an airplane is flying at speed
200 km/hr to the east of P at an altitude of 2 km, and that it is gaining altitude at 10 km/hr.
How fast is the distance between car and airplane changing? ⇒

24. A light shines from the top of a pole 20 m high. An object is dropped from the same height
from a point 10 m away, so that its height at time t seconds is h(t) = 20− 9.8t2/2. How fast
is the object’s shadow moving on the ground one second later? ⇒
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Figure 6.2.8 Car and airplane.

25. The two blades of a pair of scissors are fastened at the point A as shown in figure 6.2.9. Let
a denote the distance from A to the tip of the blade (the point B). Let β denote the angle
at the tip of the blade that is formed by the line AB and the bottom edge of the blade, line
BC, and let θ denote the angle between AB and the horizontal. Suppose that a piece of
paper is cut in such a way that the center of the scissors at A is fixed, and the paper is also
fixed. As the blades are closed (i.e., the angle θ in the diagram is decreased), the distance x
between A and C increases, cutting the paper.

a. Express x in terms of a, θ, and β.

b. Express dx/dt in terms of a, θ, β, and dθ/dt.

c. Suppose that the distance a is 20 cm, and the angle β is 5◦. Further suppose that θ
is decreasing at 50 deg/sec. At the instant when θ = 30◦, find the rate (in cm/sec)
at which the paper is being cut. ⇒
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Figure 6.2.9 Scissors.

6.3 Newton's Method

Suppose you have a function f(x), and you want to find as accurately as possible where

it crosses the x-axis; in other words, you want to solve f(x) = 0. Suppose you know of

no way to find an exact solution by any algebraic procedure, but you are able to use an

approximation, provided it can be made quite close to the true value. Newton’s method is

a way to find a solution to the equation to as many decimal places as you want. It is what
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is called an “iterative procedure,” meaning that it can be repeated again and again to

get an answer of greater and greater accuracy. Iterative procedures like Newton’s method

are well suited to programming for a computer. Newton’s method uses the fact that the

tangent line to a curve is a good approximation to the curve near the point of tangency.

EXAMPLE 6.3.1 Approximate
√
3. Since

√
3 is a solution to x2 = 3 or x2− 3 = 0, we

use f(x) = x2− 3. We start by guessing something reasonably close to the true value; this

is usually easy to do; let’s use
√
3 ≈ 2. Now use the tangent line to the curve when x = 2

as an approximation to the curve, as shown in figure 6.3.1. Since f ′(x) = 2x, the slope of

this tangent line is 4 and its equation is y = 4x−7. The tangent line is quite close to f(x),

so it crosses the x-axis near the point at which f(x) crosses, that is, near
√
3. It is easy

to find where the tangent line crosses the x-axis: solve 0 = 4x− 7 to get x = 7/4 = 1.75.

This is certainly a better approximation than 2, but let us say not close enough. We can

improve it by doing the same thing again: find the tangent line at x = 1.75, find where

this new tangent line crosses the x-axis, and use that value as a better approximation. We

can continue this indefinitely, though it gets a bit tedious. Lets see if we can shortcut the

process. Suppose the best approximation to the intercept we have so far is xi. To find

a better approximation we will always do the same thing: find the slope of the tangent

line at xi, find the equation of the tangent line, find the x-intercept. The slope is 2xi.

The tangent line is y = (2xi)(x − xi) + (x2
i − 3), using the point-slope formula for a line.

Finally, the intercept is found by solving 0 = (2xi)(x−xi)+(x2
i −3). With a little algebra

this turns into x = (x2
i + 3)/(2xi); this is the next approximation, which we naturally call

xi+1. Instead of doing the whole tangent line computation every time we can simply use

this formula to get as many approximations as we want. Starting with x0 = 2, we get

x1 = (x2
0+3)/(2x0) = (22+3)/4 = 7/4 (the same approximation we got above, of course),

x2 = (x2
1 + 3)/(2x1) = ((7/4)2 + 3)/(7/2) = 97/56 ≈ 1.73214, x3 ≈ 1.73205, and so on.

This is still a bit tedious by hand, but with a calculator or, even better, a good computer

program, it is quite easy to get many, many approximations. We might guess already that

1.73205 is accurate to two decimal places, and in fact it turns out that it is accurate to 5

places.

Let’s think about this process in more general terms. We want to approximate a

solution to f(x) = 0. We start with a rough guess, which we call x0. We use the tangent

line to f(x) to get a new approximation that we hope will be closer to the true value.

What is the equation of the tangent line when x = x0? The slope is f ′(x0) and the line

goes through (x0, f(x0)), so the equation of the line is

y = f ′(x0)(x− x0) + f(x0).
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Figure 6.3.1 Newton’s method. (AP)

Now we find where this crosses the x-axis by substituting y = 0 and solving for x:

x =
x0f

′(x0)− f(x0)

f ′(x0)
= x0 −

f(x0)

f ′(x0)
.

We will typically want to compute more than one of these improved approximations, so

we number them consecutively; from x0 we have computed x1:

x1 =
x0f

′(x0)− f(x0)

f ′(x0)
= x0 −

f(x0)

f ′(x0)
,

and in general from xi we compute xi+1:

xi+1 =
xif
′(xi)− f(xi)

f ′(xi)
= xi −

f(xi)

f ′(xi)
.

EXAMPLE 6.3.2 Returning to the previous example, f(x) = x2 − 3, f ′(x) = 2x, and

the formula becomes xi+1 = xi − (x2
i − 3)/(2xi) = (x2

i + 3)/(2xi), as before.

In practice, which is to say, if you need to approximate a value in the course of

designing a bridge or a building or an airframe, you will need to have some confidence that

the approximation you settle on is accurate enough. As a rule of thumb, once a certain

number of decimal places stop changing from one approximation to the next it is likely

that those decimal places are correct. Still, this may not be enough assurance, in which

case we can test the result for accuracy.

EXAMPLE 6.3.3 Find the x coordinate of the intersection of the curves y = 2x and

y = tanx, accurate to three decimal places. To put this in the context of Newton’s method,

http://www.whitman.edu/mathematics/calculus_applets/jsxgraph/newtons_method.html
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we note that we want to know where 2x = tanx or f(x) = tanx − 2x = 0. We compute

f ′(x) = sec2 x− 2 and set up the formula:

xi+1 = xi −
tanxi − 2xi

sec2 xi − 2
.

From the graph in figure 6.3.2 we guess x0 = 1 as a starting point, then using the formula

we compute x1 = 1.310478030, x2 = 1.223929096, x3 = 1.176050900, x4 = 1.165926508,

x5 = 1.165561636. So we guess that the first three places are correct, but that is not

the same as saying 1.165 is correct to three decimal places—1.166 might be the correct,

rounded approximation. How can we tell? We can substitute 1.165, 1.1655 and 1.166 into

tanx − 2x; this gives −0.002483652, −0.000271247, 0.001948654. Since the first two are

negative and the third is positive, tanx− 2x crosses the x axis between 1.1655 and 1.166,

so the correct value to three places is 1.166.
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Figure 6.3.2 y = tanx and y = 2x on the left, y = tanx− 2x on the right.

Exercises 6.3.

1. Approximate the fifth root of 7, using x0 = 1.5 as a first guess. Use Newton’s method to find
x3 as your approximation. ⇒

2. Use Newton’s Method to approximate the cube root of 10 to two decimal places. ⇒
3. The function f(x) = x3 − 3x2 − 3x+ 6 has a root between 3 and 4, because f(3) = −3 and

f(4) = 10. Approximate the root to two decimal places. ⇒
4. A rectangular piece of cardboard of dimensions 8 × 17 is used to make an open-top box

by cutting out a small square of side x from each corner and bending up the sides. (See
exercise 20 in 6.1.) If x = 2, then the volume of the box is 2 · 4 · 13 = 104. Use Newton’s
method to find a value of x for which the box has volume 100, accurate to 3 significant
figures. ⇒
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6.4 Linear Approximations

Newton’s method is one example of the usefulness of the tangent line as an approximation

to a curve. Here we explore another such application.

Recall that the tangent line to f(x) at a point x = a is given by L(x) = f ′(a)(x−a)+

f(a). The tangent line in this context is also called the linear approximation to f at a.

If f is differentiable at a then L is a good approximation of f so long as x is “not too

far” from a. Put another way, if f is differentiable at a then under a microscope f will

look very much like a straight line. Figure 6.4.1 shows a tangent line to y = x2 at three

different magnifications.

If we want to approximate f(b), because computing it exactly is difficult, we can

approximate the value using a linear approximation, provided that we can compute the

tangent line at some a close to b.

Figure 6.4.1 The linear approximation to y = x2.

EXAMPLE 6.4.1 Let f(x) =
√
x+ 4. Then f ′(x) = 1/(2

√
x+ 4). The linear ap-

proximation to f at x = 5 is L(x) = 1/(2
√
5 + 4)(x − 5) +

√
5 + 4 = (x − 5)/6 + 3. As

an immediate application we can approximate square roots of numbers near 9 by hand.

To estimate
√
10, we substitute 6 into the linear approximation instead of into f(x), so√

6 + 4 ≈ (6− 5)/6 + 3 = 19/6 ≈ 3.16. This rounds to 3.17 while the square root of 10 is

actually 3.16 to two decimal places, so this estimate is only accurate to one decimal place.

This is not too surprising, as 10 is really not very close to 9; on the other hand, for many

calculations, 3.2 would be accurate enough.

With modern calculators and computing software it may not appear necessary to use

linear approximations. But in fact they are quite useful. In cases requiring an explicit

numerical approximation, they allow us to get a quick rough estimate which can be used

as a “reality check” on a more complex calculation. In some complex calculations involving
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functions, the linear approximation makes an otherwise intractable calculation possible,

without serious loss of accuracy.

EXAMPLE 6.4.2 Consider the trigonometric function sinx. Its linear approximation

at x = 0 is simply L(x) = x. When x is small this is quite a good approximation and is

used frequently by engineers and scientists to simplify some calculations.

DEFINITION 6.4.3 Let y = f(x) be a differentiable function. We define a new

independent variable dx, and a new dependent variable dy = f ′(x) dx. Notice that dy is a

function both of x (since f ′(x) is a function of x) and of dx. We say that dx and dy are

differentials.

Let ∆x = x − a and ∆y = f(x) − f(a). If x is near a then ∆x is small. If we set

dx = ∆x then

dy = f ′(a) dx ≈ ∆y

∆x
∆x = ∆y.

Thus, dy can be used to approximate ∆y, the actual change in the function f between a

and x. This is exactly the approximation given by the tangent line:

dy = f ′(a)(x− a) = f ′(a)(x− a) + f(a)− f(a) = L(x)− f(a).

While L(x) approximates f(x), dy approximates how f(x) has changed from f(a). Fig-

ure 6.4.2 illustrates the relationships.
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Figure 6.4.2 Differentials.
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Exercises 6.4.

1. Let f(x) = x4. If a = 1 and dx = ∆x = 1/2, what are ∆y and dy? ⇒
2. Let f(x) =

√
x. If a = 1 and dx = ∆x = 1/10, what are ∆y and dy? ⇒

3. Let f(x) = sin(2x). If a = π and dx = ∆x = π/100, what are ∆y and dy? ⇒
4. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.02 cm

thick to a sphere with diameter 40 meters. (Recall that the volume of a sphere of radius r is
V = (4/3)πr3. Notice that you are given that dr = 0.02.) ⇒

5. Show in detail that the linear approximation of sinx at x = 0 is L(x) = x and the linear
approximation of cosx at x = 0 is L(x) = 1.

6.5 The Mean Value Theorem

Here are two interesting questions involving derivatives:

1. Suppose two different functions have the same derivative; what can you say about

the relationship between the two functions?

2. Suppose you drive a car from toll booth on a toll road to another toll booth at

an average speed of 70 miles per hour. What can be concluded about your actual

speed during the trip? In particular, did you exceed the 65 mile per hour speed

limit?

While these sound very different, it turns out that the two problems are very closely

related. We know that “speed” is really the derivative by a different name; let’s start by

translating the second question into something that may be easier to visualize. Suppose

that the function f(t) gives the position of your car on the toll road at time t. Your change

in position between one toll booth and the next is given by f(t1) − f(t0), assuming that

at time t0 you were at the first booth and at time t1 you arrived at the second booth.

Your average speed for the trip is (f(t1) − f(t0))/(t1 − t0). If we think about the graph

of f(t), the average speed is the slope of the line that connects the two points (t0, f(t0))

and (t1, f(t1)). Your speed at any particular time t between t0 and t1 is f ′(t), the slope

of the curve. Now question (2) becomes a question about slope. In particular, if the slope

between endpoints is 70, what can be said of the slopes at points between the endpoints?

As a general rule, when faced with a new problem it is often a good idea to examine

one or more simplified versions of the problem, in the hope that this will lead to an

understanding of the original problem. In this case, the problem in its “slope” form is

somewhat easier to simplify than the original, but equivalent, problem.

Here is a special instance of the problem. Suppose that f(t0) = f(t1). Then the

two endpoints have the same height and the slope of the line connecting the endpoints

is zero. What can we say about the slope between the endpoints? It shouldn’t take

much experimentation before you are convinced of the truth of this statement: Somewhere
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between t0 and t1 the slope is exactly zero, that is, somewhere between t0 and t1 the slope

is equal to the slope of the line between the endpoints. This suggests that perhaps the same

is true even if the endpoints are at different heights, and again a bit of experimentation will

probably convince you that this is so. But we can do better than “experimentation”—we

can prove that this is so.

We start with the simplified version:

THEOREM 6.5.1 Rolle’s Theorem Suppose that f(x) has a derivative on the

interval (a, b), is continuous on the interval [a, b], and f(a) = f(b). Then at some value

c ∈ (a, b), f ′(c) = 0.

Proof. We know that f(x) has a maximum and minimum value on [a, b] (because it

is continuous), and we also know that the maximum and minimum must occur at an

endpoint, at a point at which the derivative is zero, or at a point where the derivative is

undefined. Since the derivative is never undefined, that possibility is removed.

If the maximum or minimum occurs at a point c, other than an endpoint, where

f ′(c) = 0, then we have found the point we seek. Otherwise, the maximum and minimum

both occur at an endpoint, and since the endpoints have the same height, the maximum

and minimum are the same. This means that f(x) = f(a) = f(b) at every x ∈ [a, b], so

the function is a horizontal line, and it has derivative zero everywhere in (a, b). Then we

may choose any c at all to get f ′(c) = 0.

Perhaps remarkably, this special case is all we need to prove the more general one as

well.

THEOREM 6.5.2 Mean Value Theorem Suppose that f(x) has a derivative on

the interval (a, b) and is continuous on the interval [a, b]. Then at some value c ∈ (a, b),

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Let m =
f(b)− f(a)

b− a
, and consider a new function g(x) = f(x)−m(x−a)−f(a).

We know that g(x) has a derivative everywhere, since g′(x) = f ′(x)−m. We can compute

g(a) = f(a)−m(a− a)− f(a) = 0 and

g(b) = f(b)−m(b− a)− f(a) = f(b)− f(b)− f(a)

b− a
(b− a)− f(a)

= f(b)− (f(b)− f(a))− f(a) = 0.
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So the height of g(x) is the same at both endpoints. This means, by Rolle’s Theorem, that

at some c, g′(c) = 0. But we know that g′(c) = f ′(c)−m, so

0 = f ′(c)−m = f ′(c)− f(b)− f(a)

b− a
,

which turns into

f ′(c) =
f(b)− f(a)

b− a
,

exactly what we want.

Returning to the original formulation of question (2), we see that if f(t) gives the

position of your car at time t, then the Mean Value Theorem says that at some time c,

f ′(c) = 70, that is, at some time you must have been traveling at exactly your average

speed for the trip, and that indeed you exceeded the speed limit.

Now let’s return to question (1). Suppose, for example, that two functions are known to

have derivative equal to 5 everywhere, f ′(x) = g′(x) = 5. It is easy to find such functions:

5x, 5x + 47, 5x − 132, etc. Are there other, more complicated, examples? No—the only

functions that work are the “obvious” ones, namely, 5x plus some constant. How can we

see that this is true?

Although “5” is a very simple derivative, let’s look at an even simpler one. Suppose

that f ′(x) = g′(x) = 0. Again we can find examples: f(x) = 0, f(x) = 47, f(x) = −511

all have f ′(x) = 0. Are there non-constant functions f with derivative 0? No, and here’s

why: Suppose that f(x) is not a constant function. This means that there are two points

on the function with different heights, say f(a) ̸= f(b). The Mean Value Theorem tells

us that at some point c, f ′(c) = (f(b)− f(a))/(b− a) ̸= 0. So any non-constant function

does not have a derivative that is zero everywhere; this is the same as saying that the only

functions with zero derivative are the constant functions.

Let’s go back to the slightly less easy example: suppose that f ′(x) = g′(x) = 5. Then

(f(x) − g(x))′ = f ′(x) − g′(x) = 5 − 5 = 0. So using what we discovered in the previous

paragraph, we know that f(x)− g(x) = k, for some constant k. So any two functions with

derivative 5 must differ by a constant; since 5x is known to work, the only other examples

must look like 5x+ k.

Now we can extend this to more complicated functions, without any extra work.

Suppose that f ′(x) = g′(x). Then as before (f(x) − g(x))′ = f ′(x) − g′(x) = 0, so

f(x)−g(x) = k. Again this means that if we find just a single function g(x) with a certain

derivative, then every other function with the same derivative must be of the form g(x)+k.

EXAMPLE 6.5.3 Describe all functions that have derivative 5x− 3. It’s easy to find

one: g(x) = (5/2)x2 − 3x has g′(x) = 5x − 3. The only other functions with the same

derivative are therefore of the form f(x) = (5/2)x2 − 3x+ k.
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Alternately, though not obviously, you might have first noticed that g(x) = (5/2)x2 −
3x + 47 has g′(x) = 5x − 3. Then every other function with the same derivative must

have the form f(x) = (5/2)x2 − 3x + 47 + k. This looks different, but it really isn’t.

The functions of the form f(x) = (5/2)x2 − 3x + k are exactly the same as the ones of

the form f(x) = (5/2)x2 − 3x + 47 + k. For example, (5/2)x2 − 3x + 10 is the same as

(5/2)x2−3x+47+(−37), and the first is of the first form while the second has the second

form.

This is worth calling a theorem:

THEOREM 6.5.4 If f ′(x) = g′(x) for every x ∈ (a, b), then for some constant k,

f(x) = g(x) + k on the interval (a, b).

EXAMPLE 6.5.5 Describe all functions with derivative sinx+ ex. One such function

is − cosx+ ex, so all such functions have the form − cosx+ ex + k.

Exercises 6.5.

1. Let f(x) = x2. Find a value c ∈ (−1, 2) so that f ′(c) equals the slope between the endpoints
of f(x) on [−1, 2]. ⇒

2. Verify that f(x) = x/(x + 2) satisfies the hypotheses of the Mean Value Theorem on the
interval [1, 4] and then find all of the values, c, that satisfy the conclusion of the theorem.
⇒

3. Verify that f(x) = 3x/(x + 7) satisfies the hypotheses of the Mean Value Theorem on the
interval [−2, 6] and then find all of the values, c, that satisfy the conclusion of the theorem.

4. Let f(x) = tanx. Show that f(π) = f(2π) = 0 but there is no number c ∈ (π, 2π) such that
f ′(c) = 0. Why does this not contradict Rolle’s theorem?

5. Let f(x) = (x − 3)−2. Show that there is no value c ∈ (1, 4) such that f ′(c) = (f(4) −
f(1))/(4− 1). Why is this not a contradiction of the Mean Value Theorem?

6. Describe all functions with derivative x2 + 47x− 5. ⇒

7. Describe all functions with derivative
1

1 + x2
. ⇒

8. Describe all functions with derivative x3 − 1

x
. ⇒

9. Describe all functions with derivative sin(2x). ⇒
10. Show that the equation 6x4 − 7x+ 1 = 0 does not have more than two distinct real roots.

11. Let f be differentiable on R. Suppose that f ′(x) ̸= 0 for every x. Prove that f has at most
one real root.

12. Prove that for all real x and y | cosx− cos y| ≤ |x− y|. State and prove an analogous result
involving sine.

13. Show that
√
1 + x ≤ 1 + (x/2) if −1 < x < 1.
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Integration

7.1 Two examples

Up to now we have been concerned with extracting information about how a function

changes from the function itself. Given knowledge about an object’s position, for example,

we want to know the object’s speed. Given information about the height of a curve we

want to know its slope. We now consider problems that are, whether obviously or not, the

reverse of such problems.

EXAMPLE 7.1.1 An object moves in a straight line so that its speed at time t is given

by v(t) = 3t in, say, cm/sec. If the object is at position 10 on the straight line when t = 0,

where is the object at any time t?

There are two reasonable ways to approach this problem. If s(t) is the position of the

object at time t, we know that s′(t) = v(t). Because of our knowledge of derivatives, we

know therefore that s(t) = 3t2/2+k, and because s(0) = 10 we easily discover that k = 10,

so s(t) = 3t2/2+ 10. For example, at t = 1 the object is at position 3/2+ 10 = 11.5. This

is certainly the easiest way to deal with this problem. Not all similar problems are so easy,

as we will see; the second approach to the problem is more difficult but also more general.

We start by considering how we might approximate a solution. We know that at t = 0

the object is at position 10. How might we approximate its position at, say, t = 1? We

know that the speed of the object at time t = 0 is 0; if its speed were constant then in the

first second the object would not move and its position would still be 10 when t = 1. In

fact, the object will not be too far from 10 at t = 1, but certainly we can do better. Let’s

look at the times 0.1, 0.2, 0.3, . . . , 1.0, and try approximating the location of the object

147
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at each, by supposing that during each tenth of a second the object is going at a constant

speed. Since the object initially has speed 0, we again suppose it maintains this speed, but

only for a tenth of second; during that time the object would not move. During the tenth

of a second from t = 0.1 to t = 0.2, we suppose that the object is traveling at 0.3 cm/sec,

namely, its actual speed at t = 0.1. In this case the object would travel (0.3)(0.1) = 0.03

centimeters: 0.3 cm/sec times 0.1 seconds. Similarly, between t = 0.2 and t = 0.3 the

object would travel (0.6)(0.1) = 0.06 centimeters. Continuing, we get as an approximation

that the object travels

(0.0)(0.1) + (0.3)(0.1) + (0.6)(0.1) + · · ·+ (2.7)(0.1) = 1.35

centimeters, ending up at position 11.35. This is a better approximation than 10, certainly,

but is still just an approximation. (We know in fact that the object ends up at position

11.5, because we’ve already done the problem using the first approach.) Presumably,

we will get a better approximation if we divide the time into one hundred intervals of a

hundredth of a second each, and repeat the process:

(0.0)(0.01) + (0.03)(0.01) + (0.06)(0.01) + · · ·+ (2.97)(0.01) = 1.485.

We thus approximate the position as 11.485. Since we know the exact answer, we can see

that this is much closer, but if we did not already know the answer, we wouldn’t really

know how close.

We can keep this up, but we’ll never really know the exact answer if we simply compute

more and more examples. Let’s instead look at a “typical” approximation. Suppose we

divide the time into n equal intervals, and imagine that on each of these the object travels

at a constant speed. Over the first time interval we approximate the distance traveled

as (0.0)(1/n) = 0, as before. During the second time interval, from t = 1/n to t = 2/n,

the object travels approximately 3(1/n)(1/n) = 3/n2 centimeters. During time interval

number i, the object travels approximately (3(i − 1)/n)(1/n) = 3(i − 1)/n2 centimeters,

that is, its speed at time (i− 1)/n, 3(i− 1)/n, times the length of time interval number i,

1/n. Adding these up as before, we approximate the distance traveled as

(0)
1

n
+ 3

1

n2
+ 3(2)

1

n2
+ 3(3)

1

n2
+ · · ·+ 3(n− 1)

1

n2

centimeters. What can we say about this? At first it looks rather less useful than the

concrete calculations we’ve already done. But in fact a bit of algebra reveals it to be much
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more useful. We can factor out a 3 and 1/n2 to get

3

n2
(0 + 1 + 2 + 3 + · · ·+ (n− 1)),

that is, 3/n2 times the sum of the first n− 1 positive integers. Now we make use of a fact

you may have run across before:

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
.

In our case we’re interested in k = n− 1, so

1 + 2 + 3 + · · ·+ (n− 1) =
(n− 1)(n)

2
=

n2 − n

2
.

This simplifies the approximate distance traveled to

3

n2

n2 − n

2
=

3

2

n2 − n

n2
=

3

2

(
n2

n2
− n

n2

)
=

3

2

(
1− 1

n

)
.

Now this is quite easy to understand: as n gets larger and larger this approximation gets

closer and closer to (3/2)(1 − 0) = 3/2, so that 3/2 is the exact distance traveled during

one second, and the final position is 11.5.

So for t = 1, at least, this rather cumbersome approach gives the same answer as

the first approach. But really there’s nothing special about t = 1; let’s just call it t

instead. In this case the approximate distance traveled during time interval number i is

3(i − 1)(t/n)(t/n) = 3(i − 1)t2/n2, that is, speed 3(i − 1)(t/n) times time t/n, and the

total distance traveled is approximately

(0)
t

n
+ 3(1)

t2

n2
+ 3(2)

t2

n2
+ 3(3)

t2

n2
+ · · ·+ 3(n− 1)

t2

n2
.

As before we can simplify this to

3t2

n2
(0 + 1 + 2 + · · ·+ (n− 1)) =

3t2

n2

n2 − n

2
=

3

2
t2
(
1− 1

n

)
.

In the limit, as n gets larger, this gets closer and closer to (3/2)t2 and the approximated

position of the object gets closer and closer to (3/2)t2 + 10, so the actual position is

(3/2)t2 + 10, exactly the answer given by the first approach to the problem.

EXAMPLE 7.1.2 Find the area under the curve y = 3x between x = 0 and any positive

value x. There is here no obvious analogue to the first approach in the previous example,
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but the second approach works fine. (Because the function y = 3x is so simple, there

is another approach that works here, but it is even more limited in potential application

than is approach number one.) How might we approximate the desired area? We know

how to compute areas of rectangles, so we approximate the area by rectangles. Jumping

straight to the general case, suppose we divide the interval between 0 and x into n equal

subintervals, and use a rectangle above each subinterval to approximate the area under

the curve. There are many ways we might do this, but let’s use the height of the curve

at the left endpoint of the subinterval as the height of the rectangle, as in figure 7.1.1.

The height of rectangle number i is then 3(i− 1)(x/n), the width is x/n, and the area is

3(i− 1)(x2/n2). The total area of the rectangles is

(0)
x

n
+ 3(1)

x2

n2
+ 3(2)

x2

n2
+ 3(3)

x2

n2
+ · · ·+ 3(n− 1)

x2

n2
.

By factoring out 3x2/n2 this simplifies to

3x2

n2
(0 + 1 + 2 + · · ·+ (n− 1)) =

3x2

n2

n2 − n

2
=

3

2
x2

(
1− 1

n

)
.

As n gets larger this gets closer and closer to 3x2/2, which must therefore be the true area

under the curve.
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Figure 7.1.1 Approximating the area under y = 3x with rectangles. Drag the slider to
change the number of rectangles.

What you will have noticed, of course, is that while the problem in the second example

appears to be much different than the problem in the first example, and while the easy

approach to problem one does not appear to apply to problem two, the “approximation”

approach works in both, and moreover the calculations are identical. As we will see, there
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are many, many problems that appear much different on the surface but that turn out to

be the same as these problems, in the sense that when we try to approximate solutions we

end up with mathematics that looks like the two examples, though of course the function

involved will not always be so simple.

Even better, we now see that while the second problem did not appear to be amenable

to approach one, it can in fact be solved in the same way. The reasoning is this: we know

that problem one can be solved easily by finding a function whose derivative is 3t. We

also know that mathematically the two problems are the same, because both can be solved

by taking a limit of a sum, and the sums are identical. Therefore, we don’t really need

to compute the limit of either sum because we know that we will get the same answer by

computing a function with the derivative 3t or, which is the same thing, 3x.

It’s true that the first problem had the added complication of the “10”, and we certainly

need to be able to deal with such minor variations, but that turns out to be quite simple.

The lesson then is this: whenever we can solve a problem by taking the limit of a sum of

a certain form, we can instead of computing the (often nasty) limit find a new function

with a certain derivative.

Exercises 7.1.

1. Suppose an object moves in a straight line so that its speed at time t is given by v(t) = 2t+2,
and that at t = 1 the object is at position 5. Find the position of the object at t = 2. ⇒

2. Suppose an object moves in a straight line so that its speed at time t is given by v(t) = t2+2,
and that at t = 0 the object is at position 5. Find the position of the object at t = 2. ⇒

3. By a method similar to that in example 7.1.2, find the area under y = 2x between x = 0 and
any positive value for x. ⇒

4. By a method similar to that in example 7.1.2, find the area under y = 4x between x = 0 and
any positive value for x. ⇒

5. By a method similar to that in example 7.1.2, find the area under y = 4x between x = 2 and
any positive value for x bigger than 2. ⇒

6. By a method similar to that in example 7.1.2, find the area under y = 4x between any two
positive values for x, say a < b. ⇒

7. Let f(x) = x2 + 3x + 2. Approximate the area under the curve between x = 0 and x = 2
using 4 rectangles and also using 8 rectangles. ⇒

8. Let f(x) = x2 − 2x + 3. Approximate the area under the curve between x = 1 and x = 3
using 4 rectangles. ⇒

7.2 The Fundamental Theorem of Calculus

Let’s recast the first example from the previous section. Suppose that the speed of the

object is 3t at time t. How far does the object travel between time t = a and time t = b?

We are no longer assuming that we know where the object is at time t = 0 or at any other
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time. It is certainly true that it is somewhere, so let’s suppose that at t = 0 the position is k.

Then just as in the example, we know that the position of the object at any time is 3t2/2+k.

This means that at time t = a the position is 3a2/2 + k and at time t = b the position is

3b2/2 + k. Therefore the change in position is 3b2/2 + k − (3a2/2 + k) = 3b2/2 − 3a2/2.

Notice that the k drops out; this means that it doesn’t matter that we don’t know k, it

doesn’t even matter if we use the wrong k, we get the correct answer. In other words, to

find the change in position between time a and time b we can use any antiderivative of the

speed function 3t—it need not be the one antiderivative that actually gives the location of

the object.

What about the second approach to this problem, in the new form? We now want to

approximate the change in position between time a and time b. We take the interval of

time between a and b, divide it into n subintervals, and approximate the distance traveled

during each. The starting time of subinterval number i is now a+ (i− 1)(b− a)/n, which

we abbreviate as ti−1, so that t0 = a, t1 = a + (b − a)/n, and so on. The speed of the

object is f(t) = 3t, and each subinterval is (b − a)/n = ∆t seconds long. The distance

traveled during subinterval number i is approximately f(ti−1)∆t, and the total change in

distance is approximately

f(t0)∆t+ f(t1)∆t+ · · ·+ f(tn−1)∆t.

The exact change in position is the limit of this sum as n goes to infinity. We abbreviate

this sum using sigma notation:

n−1∑
i=0

f(ti)∆t = f(t0)∆t+ f(t1)∆t+ · · ·+ f(tn−1)∆t.

The notation on the left side of the equal sign uses a large capital sigma, a Greek letter,

and the left side is an abbreviation for the right side. The answer we seek is

lim
n→∞

n−1∑
i=0

f(ti)∆t.

Since this must be the same as the answer we have already obtained, we know that

lim
n→∞

n−1∑
i=0

f(ti)∆t =
3b2

2
− 3a2

2
.

The significance of 3t2/2, into which we substitute t = b and t = a, is of course that it is

a function whose derivative is f(t). As we have discussed, by the time we know that we
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want to compute

lim
n→∞

n−1∑
i=0

f(ti)∆t,

it no longer matters what f(t) stands for—it could be a speed, or the height of a curve,

or something else entirely. We know that the limit can be computed by finding any

function with derivative f(t), substituting a and b, and subtracting. We summarize this

in a theorem. First, we introduce some new notation and terms.

We write ∫ b

a

f(t) dt = lim
n→∞

n−1∑
i=0

f(ti)∆t

if the limit exists. That is, the left hand side means, or is an abbreviation for, the right

hand side. The symbol
∫

is called an integral sign, and the whole expression is read

as “the integral of f(t) from a to b.” What we have learned is that this integral can be

computed by finding a function, say F (t), with the property that F ′(t) = f(t), and then

computing F (b)− F (a). The function F (t) is called an antiderivative of f(t). Now the

theorem:

THEOREM 7.2.1 Fundamental Theorem of Calculus Suppose that f(x) is

continuous on the interval [a, b]. If F (x) is any antiderivative of f(x), then∫ b

a

f(x) dx = F (b)− F (a).

Let’s rewrite this slightly: ∫ x

a

f(t) dt = F (x)− F (a).

We’ve replaced the variable x by t and b by x. These are just different names for quantities,

so the substitution doesn’t change the meaning. It does make it easier to think of the two

sides of the equation as functions. The expression∫ x

a

f(t) dt

is a function: plug in a value for x, get out some other value. The expression F (x)−F (a)

is of course also a function, and it has a nice property:

d

dx
(F (x)− F (a)) = F ′(x) = f(x),
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since F (a) is a constant and has derivative zero. In other words, by shifting our point of

view slightly, we see that the odd looking function

G(x) =

∫ x

a

f(t) dt

has a derivative, and that in fact G′(x) = f(x). This is really just a restatement of the

Fundamental Theorem of Calculus, and indeed is often called the Fundamental Theorem

of Calculus. To avoid confusion, some people call the two versions of the theorem “The

Fundamental Theorem of Calculus, part I” and “The Fundamental Theorem of Calculus,

part II”, although unfortunately there is no universal agreement as to which is part I and

which part II. Since it really is the same theorem, differently stated, some people simply

call them both “The Fundamental Theorem of Calculus.”

THEOREM 7.2.2 Fundamental Theorem of Calculus Suppose that f(x) is

continuous on the interval [a, b] and let

G(x) =

∫ x

a

f(t) dt.

Then G′(x) = f(x).

We have not really proved the Fundamental Theorem. In a nutshell, we gave the

following argument to justify it: Suppose we want to know the value of∫ b

a

f(t) dt = lim
n→∞

n−1∑
i=0

f(ti)∆t.

We can interpret the right hand side as the distance traveled by an object whose speed

is given by f(t). We know another way to compute the answer to such a problem: find

the position of the object by finding an antiderivative of f(t), then substitute t = a and

t = b and subtract to find the distance traveled. This must be the answer to the original

problem as well, even if f(t) does not represent a speed.

What’s wrong with this? In some sense, nothing. As a practical matter it is a very

convincing argument, because our understanding of the relationship between speed and

distance seems to be quite solid. From the point of view of mathematics, however, it

is unsatisfactory to justify a purely mathematical relationship by appealing to our un-

derstanding of the physical universe, which could, however unlikely it is in this case, be

wrong.

A complete proof is a bit too involved to include here, but we will indicate how it goes.

First, if we can prove the second version of the Fundamental Theorem, theorem 7.2.2, then

we can prove the first version from that:
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Proof of Theorem 7.2.1. We know from theorem 7.2.2 that

G(x) =

∫ x

a

f(t) dt

is an antiderivative of f(x), and therefore any antiderivative F (x) of f(x) is of the form

F (x) = G(x) + k. Then

F (b)− F (a) = G(b) + k − (G(a) + k) = G(b)−G(a)

=

∫ b

a

f(t) dt−
∫ a

a

f(t) dt.

It is not hard to see that

∫ a

a

f(t) dt = 0, so this means that

F (b)− F (a) =

∫ b

a

f(t) dt,

which is exactly what theorem 7.2.1 says.

So the real job is to prove theorem 7.2.2. We will sketch the proof, using some facts

that we do not prove. First, the following identity is true of integrals:

∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt.

This can be proved directly from the definition of the integral, that is, using the limits

of sums. It is quite easy to see that it must be true by thinking of either of the two

applications of integrals that we have seen. It turns out that the identity is true no matter

what c is, but it is easiest to think about the meaning when a ≤ c ≤ b.

First, if f(t) represents a speed, then we know that the three integrals represent the

distance traveled between time a and time b; the distance traveled between time a and

time c; and the distance traveled between time c and time b. Clearly the sum of the latter

two is equal to the first of these.

Second, if f(t) represents the height of a curve, the three integrals represent the area

under the curve between a and b; the area under the curve between a and c; and the area

under the curve between c and b. Again it is clear from the geometry that the first is equal

to the sum of the second and third.
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Proof sketch for Theorem 7.2.2. We want to compute G′(x), so we start with the

definition of the derivative in terms of a limit:

G′(x) = lim
∆x→0

G(x+∆x)−G(x)

∆x

= lim
∆x→0

1

∆x

(∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

(∫ x

a

f(t) dt+

∫ x+∆x

x

f(t) dt−
∫ x

a

f(t) dt

)

= lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt.

Now we need to know something about

∫ x+∆x

x

f(t) dt

when ∆x is small; in fact, it is very close to ∆xf(x), but we will not prove this. Once

again, it is easy to believe this is true by thinking of our two applications: The integral

∫ x+∆x

x

f(t) dt

can be interpreted as the distance traveled by an object over a very short interval of time.

Over a sufficiently short period of time, the speed of the object will not change very much,

so the distance traveled will be approximately the length of time multiplied by the speed at

the beginning of the interval, namely, ∆xf(x). Alternately, the integral may be interpreted

as the area under the curve between x and x +∆x. When ∆x is very small, this will be

very close to the area of the rectangle with base ∆x and height f(x); again this is ∆xf(x).

If we accept this, we may proceed:

lim
∆x→0

1

∆x

∫ x+∆x

x

f(t) dt = lim
∆x→0

∆xf(x)

∆x
= f(x),

which is what we wanted to show.

It is still true that we are depending on an interpretation of the integral to justify the

argument, but we have isolated this part of the argument into two facts that are not too

hard to prove. Once the last reference to interpretation has been removed from the proofs

of these facts, we will have a real proof of the Fundamental Theorem.
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Now we know that to solve certain kinds of problems, those that lead to a sum of a

certain form, we “merely” find an antiderivative and substitute two values and subtract.

Unfortunately, finding antiderivatives can be quite difficult. While there are a small number

of rules that allow us to compute the derivative of any common function, there are no such

rules for antiderivatives. There are some techniques that frequently prove useful, but we

will never be able to reduce the problem to a completely mechanical process.

Because of the close relationship between an integral and an antiderivative, the integral

sign is also used to mean “antiderivative”. You can tell which is intended by whether the

limits of integration are included: ∫ 2

1

x2 dx

is an ordinary integral, also called a definite integral, because it has a definite value,

namely ∫ 2

1

x2 dx =
23

3
− 13

3
=

7

3
.

We use ∫
x2 dx

to denote the antiderivative of x2, also called an indefinite integral. So this is evaluated

as ∫
x2 dx =

x3

3
+ C.

It is customary to include the constant C to indicate that there are really an infinite

number of antiderivatives. We do not need this C to compute definite integrals, but in

other circumstances we will need to remember that the C is there, so it is best to get

into the habit of writing the C. When we compute a definite integral, we first find an

antiderivative and then substitute. It is convenient to first display the antiderivative and

then do the substitution; we need a notation indicating that the substitution is yet to be

done. A typical solution would look like this:

∫ 2

1

x2 dx =
x3

3

∣∣∣∣2
1

=
23

3
− 13

3
=

7

3
.

The vertical line with subscript and superscript is used to indicate the operation “substitute

and subtract” that is needed to finish the evaluation.
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Exercises 7.2.

Find the antiderivatives of the functions:

1. 8
√
x ⇒ 2. 3t2 + 1 ⇒

3. 4/
√
x ⇒ 4. 2/z2 ⇒

5. 7s−1 ⇒ 6. (5x+ 1)2 ⇒
7. (x− 6)2 ⇒ 8. x3/2 ⇒

9.
2

x
√
x
⇒ 10. |2t− 4| ⇒

Compute the values of the integrals:

11.

∫ 4

1

t2 + 3t dt ⇒ 12.

∫ π

0

sin t dt ⇒

13.

∫ 10

1

1

x
dx ⇒ 14.

∫ 5

0

ex dx ⇒

15.

∫ 3

0

x3 dx ⇒ 16.

∫ 2

1

x5 dx ⇒

17. Find the derivative of G(x) =

∫ x

1

t2 − 3t dt ⇒

18. Find the derivative of G(x) =

∫ x2

1

t2 − 3t dt ⇒

19. Find the derivative of G(x) =

∫ x

1

et
2

dt ⇒

20. Find the derivative of G(x) =

∫ x2

1

et
2

dt ⇒

21. Find the derivative of G(x) =

∫ x

1

tan(t2) dt ⇒

22. Find the derivative of G(x) =

∫ x2

1

tan(t2) dt ⇒

7.3 Some Properties of Integrals

Suppose an object moves so that its speed, or more properly velocity, is given by v(t) =

−t2 + 5t, as shown in figure 7.3.1. Let’s examine the motion of this object carefully.

We know that the velocity is the derivative of position, so position is given by s(t) =

−t3/3 + 5t2/2 + C. Let’s suppose that at time t = 0 the object is at position 0, so

s(t) = −t3/3 + 5t2/2; this function is also pictured in figure 7.3.1.

Between t = 0 and t = 5 the velocity is positive, so the object moves away from the

starting point, until it is a bit past position 20. Then the velocity becomes negative and

the object moves back toward its starting point. The position of the object at t = 5 is
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Figure 7.3.1 The velocity of an object and its position.

exactly s(5) = 125/6, and at t = 6 it is s(6) = 18. The total distance traveled by the

object is therefore 125/6 + (125/6− 18) = 71/3 ≈ 23.7.

As we have seen, we can also compute distance traveled with an integral; let’s try it.∫ 6

0

v(t) dt =

∫ 6

0

−t2 + 5t dt =
−t3

3
+

5

2
t2
∣∣∣∣6
0

= 18.

What went wrong? Well, nothing really, except that it’s not really true after all that “we

can also compute distance traveled with an integral”. Instead, as you might guess from this

example, the integral actually computes the net distance traveled, that is, the difference

between the starting and ending point.

As we have already seen,∫ 6

0

v(t) dt =

∫ 5

0

v(t) dt+

∫ 6

5

v(t) dt.

Computing the two integrals on the right (do it!) gives 125/6 and −17/6, and the sum of

these is indeed 18. But what does that negative sign mean? It means precisely what you

might think: it means that the object moves backwards. To get the total distance traveled

we can add 125/6 + 17/6 = 71/3, the same answer we got before.

Remember that we can also interpret an integral as measuring an area, but now we

see that this too is a little more complicated that we have suspected. The area under the

curve v(t) from 0 to 5 is given by ∫ 5

0

v(t) dt =
125

6
,

and the “area” from 5 to 6 is ∫ 6

5

v(t) dt = −17

6
.
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In other words, the area between the x-axis and the curve, but under the x-axis, “counts

as negative area”. So the integral

∫ 6

0

v(t) dt = 18

measures “net area”, the area above the axis minus the (positive) area below the axis.

If we recall that the integral is the limit of a certain kind of sum, this behavior is not

surprising. Recall the sort of sum involved:

n−1∑
i=0

v(ti)∆t.

In each term v(t)∆t the ∆t is positive, but if v(ti) is negative then the term is negative. If

over an entire interval, like 5 to 6, the function is always negative, then the entire sum is

negative. In terms of area, v(t)∆t is then a negative height times a positive width, giving

a negative rectangle “area”.

So now we see that when evaluating

∫ 6

5

v(t) dt = −17

6

by finding an antiderivative, substituting, and subtracting, we get a surprising answer, but

one that turns out to make sense.

Let’s now try something a bit different:

∫ 5

6

v(t) dt =
−t3

3
+

5

2
t2
∣∣∣∣5
6

=
−53

3
+

5

2
52 − −63

3
− 5

2
62 =

17

6
.

Here we simply interchanged the limits 5 and 6, so of course when we substitute and

subtract we’re subtracting in the opposite order and we end up multiplying the answer

by −1. This too makes sense in terms of the underlying sum, though it takes a bit more

thought. Recall that in the sum
n−1∑
i=0

v(ti)∆t,

the ∆t is the “length” of each little subinterval, but more precisely we could say that

∆t = ti+1 − ti, the difference between two endpoints of a subinterval. We have until now

assumed that we were working left to right, but could as well number the subintervals from
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right to left, so that t0 = b and tn = a. Then ∆t = ti+1 − ti is negative and in

∫ 5

6

v(t) dt =

n−1∑
i=0

v(ti)∆t,

the values v(ti) are negative but also ∆t is negative, so all terms are positive again. On

the other hand, in ∫ 0

5

v(t) dt =
n−1∑
i=0

v(ti)∆t,

the values v(ti) are positive but ∆t is negative,and we get a negative result:

∫ 0

5

v(t) dt =
−t3

3
+

5

2
t2
∣∣∣∣0
5

= 0− −53

3
− 5

2
52 = −125

6
.

Finally we note one simple property of integrals:

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

This is easy to understand once you recall that (F (x) +G(x))′ = F ′(x) +G′(x). Hence, if

F ′(x) = f(x) and G′(x) = g(x), then

∫ b

a

f(x) + g(x) dx = (F (x) +G(x))|ba

= F (b) +G(b)− F (a)−G(a)

= F (b)− F (a) +G(b)−G(a)

= F (x)|ba + G(x)|ba

=

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

In summary, we will frequently use these properties of integrals:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx∫ b

a

f(x) dx = −
∫ a

b

f(x) dx
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and if a < b and f(x) ≤ 0 on [a, b] then

∫ b

a

f(x) dx ≤ 0

and in fact ∫ b

a

f(x) dx = −
∫ b

a

|f(x)| dx.

Exercises 7.3.

1. An object moves so that its velocity at time t is v(t) = −9.8t+20 m/s. Describe the motion
of the object between t = 0 and t = 5, find the total distance traveled by the object during
that time, and find the net distance traveled. ⇒

2. An object moves so that its velocity at time t is v(t) = sin t. Set up and evaluate a single
definite integral to compute the net distance traveled between t = 0 and t = 2π. ⇒

3. An object moves so that its velocity at time t is v(t) = 1+2 sin t m/s. Find the net distance
traveled by the object between t = 0 and t = 2π, and find the total distance traveled during
the same period. ⇒

4. Consider the function f(x) = (x + 2)(x + 1)(x − 1)(x − 2) on [−2, 2]. Find the total area
between the curve and the x-axis (measuring all area as positive). ⇒

5. Consider the function f(x) = x2 − 3x + 2 on [0, 4]. Find the total area between the curve
and the x-axis (measuring all area as positive). ⇒

6. Evaluate the three integrals:

A =

∫ 3

0

(−x2 + 9) dx B =

∫ 4

0

(−x2 + 9) dx C =

∫ 3

4

(−x2 + 9) dx,

and verify that A = B + C. ⇒
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Over the next few sections we examine some techniques that are frequently successful when

seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be

apparent that the function you wish to integrate is a derivative in some straightforward

way. For example, faced with ∫
x10 dx

we realize immediately that the derivative of x11 will supply an x10: (x11)′ = 11x10. We

don’t want the “11”, but constants are easy to alter, because differentiation “ignores” them

in certain circumstances, so

d

dx

1

11
x11 =

1

11
11x10 = x10.

From our knowledge of derivatives, we can immediately write down a number of an-

tiderivatives. Here is a list of those most often used:

∫
xn dx =

xn+1

n+ 1
+ C, if n ̸= −1∫

x−1 dx = ln |x|+ C∫
ex dx = ex + C∫

sinx dx = − cosx+ C

163
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cosx dx = sinx+ C∫
sec2 x dx = tanx+ C∫

secx tanx dx = secx+ C∫
1

1 + x2
dx = arctanx+ C∫

1√
1− x2

dx = arcsinx+ C

8.1 Substitution

Needless to say, most problems we encounter will not be so simple. Here’s a slightly more

complicated example: find ∫
2x cos(x2) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from

an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative

of the “inside” function x2. Checking:

d

dx
sin(x2) = cos(x2)

d

dx
x2 = 2x cos(x2),

so ∫
2x cos(x2) dx = sin(x2) + C.

Even when the chain rule has “produced” a certain derivative, it is not always easy to

see. Consider this problem: ∫
x3
√
1− x2 dx.

There are two factors in this expression, x3 and
√

1− x2, but it is not apparent that the

chain rule is involved. Some clever rearrangement reveals that it is:∫
x3
√

1− x2 dx =

∫
(−2x)

(
−1

2

)
(1− (1− x2))

√
1− x2 dx.

This looks messy, but we do now have something that looks like the result of the chain

rule: the function 1 − x2 has been substituted into −(1/2)(1 − x)
√
x, and the derivative



8.1 Substitution 165

of 1− x2, −2x, multiplied on the outside. If we can find a function F (x) whose derivative

is −(1/2)(1− x)
√
x we’ll be done, since then

d

dx
F (1− x2) = −2xF ′(1− x2) = (−2x)

(
−1

2

)
(1− (1− x2))

√
1− x2

= x3
√
1− x2

But this isn’t hard: ∫
−1

2
(1− x)

√
x dx =

∫
−1

2
(x1/2 − x3/2) dx (8.1.1)

= −1

2

(
2

3
x3/2 − 2

5
x5/2

)
+ C

=

(
1

5
x− 1

3

)
x3/2 + C.

So finally we have∫
x3
√
1− x2 dx =

(
1

5
(1− x2)− 1

3

)
(1− x2)3/2 + C.

So we succeeded, but it required a clever first step, rewriting the original function so

that it looked like the result of using the chain rule. Fortunately, there is a technique that

makes such problems simpler, without requiring cleverness to rewrite a function in just the

right way. It does sometimes not work, or may require more than one attempt, but the

idea is simple: guess at the most likely candidate for the “inside function”, then do some

algebra to see what this requires the rest of the function to look like.

One frequently good guess is any complicated expression inside a square root, so we

start by trying u = 1 − x2, using a new variable, u, for convenience in the manipulations

that follow. Now we know that the chain rule will multiply by the derivative of this inner

function:
du

dx
= −2x,

so we need to rewrite the original function to include this:∫
x3
√
1− x2 =

∫
x3

√
u
−2x

−2x
dx =

∫
x2

−2

√
u
du

dx
dx.

Recall that one benefit of the Leibniz notation is that it often turns out that what looks

like ordinary arithmetic gives the correct answer, even if something more complicated is
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going on. For example, in Leibniz notation the chain rule is

dy

dx
=

dy

dt

dt

dx
.

The same is true of our current expression:∫
x2

−2

√
u
du

dx
dx =

∫
x2

−2

√
u du.

Now we’re almost there: since u = 1− x2, x2 = 1− u and the integral is∫
−1

2
(1− u)

√
u du.

It’s no coincidence that this is exactly the integral we computed in (8.1.1), we have simply

renamed the variable u to make the calculations less confusing. Just as before:∫
−1

2
(1− u)

√
u du =

(
1

5
u− 1

3

)
u3/2 + C.

Then since u = 1− x2:∫
x3
√

1− x2 dx =

(
1

5
(1− x2)− 1

3

)
(1− x2)3/2 + C.

To summarize: if we suspect that a given function is the derivative of another via the

chain rule, we let u denote a likely candidate for the inner function, then translate the

given function so that it is written entirely in terms of u, with no x remaining in the

expression. If we can integrate this new function of u, then the antiderivative of the

original function is obtained by replacing u by the equivalent expression in x.

Even in simple cases you may prefer to use this mechanical procedure, since it often

helps to avoid silly mistakes. For example, consider again this simple problem:∫
2x cos(x2) dx.

Let u = x2, then du/dx = 2x or du = 2x dx. Since we have exactly 2x dx in the original

integral, we can replace it by du:∫
2x cos(x2) dx =

∫
cosu du = sinu+ C = sin(x2) + C.

This is not the only way to do the algebra, and typically there are many paths to the

correct answer. Another possibility, for example, is: Since du/dx = 2x, dx = du/2x, and
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then the integral becomes∫
2x cos(x2) dx =

∫
2x cosu

du

2x
=

∫
cosu du.

The important thing to remember is that you must eliminate all instances of the original

variable x.

EXAMPLE 8.1.1 Evaluate

∫
(ax+b)n dx, assuming that a and b are constants, a ̸= 0,

and n is a positive integer. We let u = ax+ b so du = a dx or dx = du/a. Then∫
(ax+ b)n dx =

∫
1

a
un du =

1

a(n+ 1)
un+1 + C =

1

a(n+ 1)
(ax+ b)n+1 + C.

EXAMPLE 8.1.2 Evaluate

∫
sin(ax+ b) dx, assuming that a and b are constants and

a ̸= 0. Again we let u = ax+ b so du = a dx or dx = du/a. Then∫
sin(ax+ b) dx =

∫
1

a
sinu du =

1

a
(− cosu) + C = −1

a
cos(ax+ b) + C.

EXAMPLE 8.1.3 Evaluate

∫ 4

2

x sin(x2) dx. First we compute the antiderivative, then

evaluate the definite integral. Let u = x2 so du = 2x dx or x dx = du/2. Then∫
x sin(x2) dx =

∫
1

2
sinu du =

1

2
(− cosu) + C = −1

2
cos(x2) + C.

Now ∫ 4

2

x sin(x2) dx = −1

2
cos(x2)

∣∣∣∣4
2

= −1

2
cos(16) +

1

2
cos(4).

A somewhat neater alternative to this method is to change the original limits to match

the variable u. Since u = x2, when x = 2, u = 4, and when x = 4, u = 16. So we can do

this: ∫ 4

2

x sin(x2) dx =

∫ 16

4

1

2
sinu du = −1

2
(cosu)

∣∣∣∣16
4

= −1

2
cos(16) +

1

2
cos(4).

An incorrect, and dangerous, alternative is something like this:∫ 4

2

x sin(x2) dx =

∫ 4

2

1

2
sinu du = −1

2
cos(u)

∣∣∣∣4
2

= −1

2
cos(x2)

∣∣∣∣4
2

= −1

2
cos(16) +

1

2
cos(4).

This is incorrect because

∫ 4

2

1

2
sinu dumeans that u takes on values between 2 and 4, which

is wrong. It is dangerous, because it is very easy to get to the point −1

2
cos(u)

∣∣∣∣4
2

and forget
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to substitute x2 back in for u, thus getting the incorrect answer −1

2
cos(4) +

1

2
cos(2). A

somewhat clumsy, but acceptable, alternative is something like this:

∫ 4

2

x sin(x2) dx =

∫ x=4

x=2

1

2
sinu du = −1

2
cos(u)

∣∣∣∣x=4

x=2

= −1

2
cos(x2)

∣∣∣∣4
2

= −cos(16)

2
+

cos(4)

2
.

EXAMPLE 8.1.4 Evaluate

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt. Let u = sin(πt) so du = π cos(πt) dt or

du/π = cos(πt) dt. We change the limits to sin(π/4) =
√
2/2 and sin(π/2) = 1. Then

∫ 1/2

1/4

cos(πt)

sin2(πt)
dt =

∫ 1

√
2/2

1

π

1

u2
du =

∫ 1

√
2/2

1

π
u−2 du =

1

π

u−1

−1

∣∣∣∣1√
2/2

= − 1

π
+

√
2

π
.

Exercises 8.1.

Find the antiderivatives or evaluate the definite integral in each problem.

1.

∫
(1− t)9 dt ⇒ 2.

∫
(x2 + 1)2 dx ⇒

3.

∫
x(x2 + 1)100 dx ⇒ 4.

∫
1

3
√
1− 5t

dt ⇒

5.

∫
sin3 x cosx dx ⇒ 6.

∫
x
√

100− x2 dx ⇒

7.

∫
x2

√
1− x3

dx ⇒ 8.

∫
cos(πt) cos

(
sin(πt)

)
dt ⇒

9.

∫
sinx

cos3 x
dx ⇒ 10.

∫
tanx dx ⇒

11.

∫ π

0

sin5(3x) cos(3x) dx ⇒ 12.

∫
sec2 x tanx dx ⇒

13.

∫ √
π/2

0

x sec2(x2) tan(x2) dx ⇒ 14.

∫
sin(tanx)

cos2 x
dx ⇒

15.

∫ 4

3

1

(3x− 7)2
dx ⇒ 16.

∫ π/6

0

(cos2 x− sin2 x) dx ⇒

17.

∫
6x

(x2 − 7)1/9
dx ⇒ 18.

∫ 1

−1

(2x3 − 1)(x4 − 2x)6 dx ⇒

19.

∫ 1

−1

sin7 x dx ⇒ 20.

∫
f(x)f ′(x) dx ⇒
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8.2 Powers of sine and cosine

Functions consisting of products of the sine and cosine can be integrated by using substi-

tution and trigonometric identities. These can sometimes be tedious, but the technique is

straightforward. Some examples will suffice to explain the approach.

EXAMPLE 8.2.1 Evaluate

∫
sin5 x dx. Rewrite the function:

∫
sin5 x dx =

∫
sinx sin4 x dx =

∫
sinx(sin2 x)2 dx =

∫
sinx(1− cos2 x)2 dx.

Now use u = cosx, du = − sinx dx:∫
sinx(1− cos2 x)2 dx =

∫
−(1− u2)2 du

=

∫
−(1− 2u2 + u4) du

= −u+
2

3
u3 − 1

5
u5 + C

= − cosx+
2

3
cos3 x− 1

5
cos5 x+ C.

EXAMPLE 8.2.2 Evaluate

∫
sin6 x dx. Use sin2 x = (1 − cos(2x))/2 to rewrite the

function:∫
sin6 x dx =

∫
(sin2 x)3 dx =

∫
(1− cos 2x)3

8
dx

=
1

8

∫
1− 3 cos 2x+ 3 cos2 2x− cos3 2x dx.

Now we have four integrals to evaluate:∫
1 dx = x

and ∫
−3 cos 2x dx = −3

2
sin 2x
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are easy. The cos3 2x integral is like the previous example:∫
− cos3 2x dx =

∫
− cos 2x cos2 2x dx

=

∫
− cos 2x(1− sin2 2x) dx

=

∫
−1

2
(1− u2) du

= −1

2

(
u− u3

3

)
= −1

2

(
sin 2x− sin3 2x

3

)
.

And finally we use another trigonometric identity, cos2 x = (1 + cos(2x))/2:∫
3 cos2 2x dx = 3

∫
1 + cos 4x

2
dx =

3

2

(
x+

sin 4x

4

)
.

So at long last we get∫
sin6 x dx =

x

8
− 3

16
sin 2x− 1

16

(
sin 2x− sin3 2x

3

)
+

3

16

(
x+

sin 4x

4

)
+ C.

EXAMPLE 8.2.3 Evaluate

∫
sin2 x cos2 x dx. Use the formulas sin2 x = (1−cos(2x))/2

and cos2 x = (1 + cos(2x))/2 to get:∫
sin2 x cos2 x dx =

∫
1− cos(2x)

2
· 1 + cos(2x)

2
dx.

The remainder is left as an exercise.

Exercises 8.2.

Find the antiderivatives.

1.

∫
sin2 x dx ⇒ 2.

∫
sin3 x dx ⇒

3.

∫
sin4 x dx ⇒ 4.

∫
cos2 x sin3 x dx ⇒

5.

∫
cos3 x dx ⇒ 6.

∫
sin2 x cos2 x dx ⇒

7.

∫
cos3 x sin2 x dx ⇒ 8.

∫
sinx(cosx)3/2 dx ⇒

9.

∫
sec2 x csc2 x dx ⇒ 10.

∫
tan3 x secx dx ⇒
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8.3 Trigonometric Substitutions

So far we have seen that it sometimes helps to replace a subexpression of a function by

a single variable. Occasionally it can help to replace the original variable by something

more complicated. This seems like a “reverse” substitution, but it is really no different in

principle than ordinary substitution.

EXAMPLE 8.3.1 Evaluate

∫ √
1− x2 dx. Let x = sinu so dx = cosu du. Then

∫ √
1− x2 dx =

∫ √
1− sin2 u cosu du =

∫ √
cos2 u cosu du.

We would like to replace
√
cos2 u by cosu, but this is valid only if cosu is positive, since√

cos2 u is positive. Consider again the substitution x = sinu. We could just as well think

of this as u = arcsinx. If we do, then by the definition of the arcsine, −π/2 ≤ u ≤ π/2, so

cosu ≥ 0. Then we continue:∫ √
cos2 u cosu du =

∫
cos2 u du =

∫
1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C

=
arcsinx

2
+

sin(2 arcsinx)

4
+ C.

This is a perfectly good answer, though the term sin(2 arcsinx) is a bit unpleasant. It is

possible to simplify this. Using the identity sin 2x = 2 sinx cosx, we can write sin 2u =

2 sinu cosu = 2 sin(arcsinx)
√

1− sin2 u = 2x

√
1− sin2(arcsinx) = 2x

√
1− x2. Then the

full antiderivative is

arcsinx

2
+

2x
√
1− x2

4
=

arcsinx

2
+

x
√
1− x2

2
+ C.

This type of substitution is usually indicated when the function you wish to integrate

contains a polynomial expression that might allow you to use the fundamental identity

sin2 x+ cos2 x = 1 in one of three forms:

cos2 x = 1− sin2 x sec2 x = 1 + tan2 x tan2 x = sec2 x− 1.

If your function contains 1−x2, as in the example above, try x = sinu; if it contains 1+x2

try x = tanu; and if it contains x2 − 1, try x = secu. Sometimes you will need to try

something a bit different to handle constants other than one.
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EXAMPLE 8.3.2 Evaluate

∫ √
4− 9x2 dx. We start by rewriting this so that it looks

more like the previous example:∫ √
4− 9x2 dx =

∫ √
4(1− (3x/2)2) dx =

∫
2
√

1− (3x/2)2 dx.

Now let 3x/2 = sinu so (3/2) dx = cosu du or dx = (2/3) cosu du. Then∫
2
√
1− (3x/2)2 dx =

∫
2
√
1− sin2 u (2/3) cosu du =

4

3

∫
cos2 u du

=
4u

6
+

4 sin 2u

12
+ C

=
2arcsin(3x/2)

3
+

2 sinu cosu

3
+ C

=
2arcsin(3x/2)

3
+

2 sin(arcsin(3x/2)) cos(arcsin(3x/2))

3
+ C

=
2arcsin(3x/2)

3
+

2(3x/2)
√
1− (3x/2)2

3
+ C

=
2arcsin(3x/2)

3
+

x
√
4− 9x2

2
+ C,

using some of the work from example 8.3.1.

EXAMPLE 8.3.3 Evaluate

∫ √
1 + x2 dx. Let x = tanu, dx = sec2 u du, so

∫ √
1 + x2 dx =

∫ √
1 + tan2 u sec2 u du =

∫ √
sec2 u sec2 u du.

Since u = arctan(x), −π/2 ≤ u ≤ π/2 and secu ≥ 0, so
√
sec2 u = secu. Then∫ √

sec2 u sec2 u du =

∫
sec3 u du.

In problems of this type, two integrals come up frequently:

∫
sec3 u du and

∫
secu du.

Both have relatively nice expressions but they are a bit tricky to discover.
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First we do
∫
secu du, which we will need to compute

∫
sec3 u du:

∫
secu du =

∫
secu

secu+ tanu

secu+ tanu
du

=

∫
sec2 u+ secu tanu

secu+ tanu
du.

Now let w = secu + tanu, dw = secu tanu + sec2 u du, exactly the numerator of the

function we are integrating. Thus∫
secu du =

∫
sec2 u+ secu tanu

secu+ tanu
du =

∫
1

w
dw = ln |w|+ C

= ln | secu+ tanu|+ C.

Now for

∫
sec3 u du:

sec3 u =
sec3 u

2
+

sec3 u

2
=

sec3 u

2
+

(tan2 u+ 1) secu

2

=
sec3 u

2
+

secu tan2 u

2
+

secu

2
=

sec3 u+ secu tan2 u

2
+

secu

2
.

We already know how to integrate secu, so we just need the first quotient. This is “simply”

a matter of recognizing the product rule in action:∫
sec3 u+ secu tan2 u du = secu tanu.

So putting these together we get∫
sec3 u du =

secu tanu

2
+

ln | secu+ tanu|
2

+ C,

and reverting to the original variable x:∫ √
1 + x2 dx =

secu tanu

2
+

ln | secu+ tanu|
2

+ C

=
sec(arctanx) tan(arctanx)

2
+

ln | sec(arctanx) + tan(arctanx)|
2

+ C

=
x
√
1 + x2

2
+

ln |
√
1 + x2 + x|

2
+ C,

using tan(arctanx) = x and sec(arctanx) =
√
1 + tan2(arctanx) =

√
1 + x2.
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Exercises 8.3.

Find the antiderivatives.

1.

∫
cscx dx ⇒ 2.

∫
csc3 x dx ⇒

3.

∫ √
x2 − 1 dx ⇒ 4.

∫ √
9 + 4x2 dx ⇒

5.

∫
x
√

1− x2 dx ⇒ 6.

∫
x2

√
1− x2 dx ⇒

7.

∫
1√

1 + x2
dx ⇒ 8.

∫ √
x2 + 2x dx ⇒

9.

∫
1

x2(1 + x2)
dx ⇒ 10.

∫
x2

√
4− x2

dx ⇒

11.

∫ √
x√

1− x
dx ⇒ 12.

∫
x3

√
4x2 − 1

dx ⇒

8.4 Integration by Parts

We have already seen that recognizing the product rule can be useful, when we noticed

that ∫
sec3 u+ secu tan2 u du = secu tanu.

As with substitution, we do not have to rely on insight or cleverness to discover such

antiderivatives; there is a technique that will often help to uncover the product rule.

Start with the product rule:

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x).

We can rewrite this as

f(x)g(x) =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx,

and then ∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

This may not seem particularly useful at first glance, but it turns out that in many cases

we have an integral of the form ∫
f(x)g′(x) dx

but that ∫
f ′(x)g(x) dx

is easier. This technique for turning one integral into another is called integration by

parts, and is usually written in more compact form. If we let u = f(x) and v = g(x) then
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du = f ′(x) dx and dv = g′(x) dx and∫
u dv = uv −

∫
v du.

To use this technique we need to identify likely candidates for u = f(x) and dv = g′(x) dx.

EXAMPLE 8.4.1 Evaluate

∫
x lnx dx. Let u = lnx so du = 1/x dx. Then we must

let dv = x dx so v = x2/2 and

∫
x lnx dx =

x2 lnx

2
−
∫

x2

2

1

x
dx =

x2 lnx

2
−
∫

x

2
dx =

x2 lnx

2
− x2

4
+ C.

EXAMPLE 8.4.2 Evaluate

∫
x sinx dx. Let u = x so du = dx. Then we must let

dv = sinx dx so v = − cosx and∫
x sinx dx = −x cosx−

∫
− cosx dx = −x cosx+

∫
cosx dx = −x cosx+ sinx+ C.

EXAMPLE 8.4.3 Evaluate

∫
sec3 x dx. Of course we already know the answer to this,

but we needed to be clever to discover it. Here we’ll use the new technique to discover the

antiderivative. Let u = secx and dv = sec2 x dx. Then du = secx tanx dx and v = tanx

and ∫
sec3 x dx = secx tanx−

∫
tan2 x secx dx

= secx tanx−
∫
(sec2 x− 1) secx dx

= secx tanx−
∫

sec3 x dx+

∫
secx dx.
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At first this looks useless—we’re right back to

∫
sec3 x dx. But looking more closely:

∫
sec3 x dx = secx tanx−

∫
sec3 x dx+

∫
secx dx∫

sec3 x dx+

∫
sec3 x dx = secx tanx+

∫
secx dx

2

∫
sec3 x dx = secx tanx+

∫
secx dx∫

sec3 x dx =
secx tanx

2
+

1

2

∫
secx dx

=
secx tanx

2
+

ln | secx+ tanx|
2

+ C.

EXAMPLE 8.4.4 Evaluate

∫
x2 sinx dx. Let u = x2, dv = sinx dx; then du = 2x dx

and v = − cosx. Now

∫
x2 sinx dx = −x2 cosx +

∫
2x cosx dx. This is better than the

original integral, but we need to do integration by parts again. Let u = 2x, dv = cosx dx;

then du = 2 and v = sinx, and∫
x2 sinx dx = −x2 cosx+

∫
2x cosx dx

= −x2 cosx+ 2x sinx−
∫

2 sinx dx

= −x2 cosx+ 2x sinx+ 2 cosx+ C.

Such repeated use of integration by parts is fairly common, but it can be a bit tedious to

accomplish, and it is easy to make errors, especially sign errors involving the subtraction in

the formula. There is a nice tabular method to accomplish the calculation that minimizes

the chance for error and speeds up the whole process. We illustrate with the previous

example. Here is the table:

sign u dv

x2 sinx

− 2x − cosx

2 − sinx

− 0 cosx

or

u dv

x2 sinx

−2x − cosx

2 − sinx

0 cosx
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To form the first table, we start with u at the top of the second column and repeatedly

compute the derivative; starting with dv at the top of the third column, we repeatedly

compute the antiderivative. In the first column, we place a “−” in every second row. To

form the second table we combine the first and second columns by ignoring the boundary;

if you do this by hand, you may simply start with two columns and add a “−” to every

second row.

To compute with this second table we begin at the top. Multiply the first entry in

column u by the second entry in column dv to get −x2 cosx, and add this to the integral

of the product of the second entry in column u and second entry in column dv. This gives:

−x2 cosx+

∫
2x cosx dx,

or exactly the result of the first application of integration by parts. Since this integral is

not yet easy, we return to the table. Now we multiply twice on the diagonal, (x2)(− cosx)

and (−2x)(− sinx) and then once straight across, (2)(− sinx), and combine these as

−x2 cosx+ 2x sinx−
∫

2 sinx dx,

giving the same result as the second application of integration by parts. While this integral

is easy, we may return yet once more to the table. Now multiply three times on the diagonal

to get (x2)(− cosx), (−2x)(− sinx), and (2)(cosx), and once straight across, (0)(cosx).

We combine these as before to get

−x2 cosx+ 2x sinx+ 2 cosx+

∫
0 dx = −x2 cosx+ 2x sinx+ 2 cosx+ C.

Typically we would fill in the table one line at a time, until the “straight across” multipli-

cation gives an easy integral. If we can see that the u column will eventually become zero,

we can instead fill in the whole table; computing the products as indicated will then give

the entire integral, including the “+C ”, as above.

Exercises 8.4.

Find the antiderivatives.

1.

∫
x cosx dx ⇒ 2.

∫
x2 cosx dx ⇒

3.

∫
xex dx ⇒ 4.

∫
xex

2

dx ⇒

5.

∫
sin2 x dx ⇒ 6.

∫
lnx dx ⇒
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7.

∫
x arctanx dx ⇒ 8.

∫
x3 sinx dx ⇒

9.

∫
x3 cosx dx ⇒ 10.

∫
x sin2 x dx ⇒

11.

∫
x sinx cosx dx ⇒ 12.

∫
arctan(

√
x) dx ⇒

13.

∫
sin(
√
x) dx ⇒ 14.

∫
sec2 x csc2 x dx ⇒

8.5 Rational Functions

A rational function is a fraction with polynomials in the numerator and denominator.

For example,

x3

x2 + x− 6
,

1

(x− 3)2
,

x2 + 1

x2 − 1
,

are all rational functions of x. There is a general technique called “partial fractions”

that, in principle, allows us to integrate any rational function. The algebraic steps in the

technique are rather cumbersome if the polynomial in the denominator has degree more

than 2, and the technique requires that we factor the denominator, something that is not

always possible. However, in practice one does not often run across rational functions with

high degree polynomials in the denominator for which one has to find the antiderivative

function. So we shall explain how to find the antiderivative of a rational function only

when the denominator is a quadratic polynomial ax2 + bx+ c.

We should mention a special type of rational function that we already know how to

integrate: If the denominator has the form (ax + b)n, the substitution u = ax + b will

always work. The denominator becomes un, and each x in the numerator is replaced by

(u − b)/a, and dx = du/a. While it may be tedious to complete the integration if the

numerator has high degree, it is merely a matter of algebra.
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EXAMPLE 8.5.1 Find

∫
x3

(3− 2x)5
dx. Using the substitution u = 3− 2x we get

∫
x3

(3− 2x)5
dx =

1

−2

∫ (
u−3
−2

)3
u5

du =
1

16

∫
u3 − 9u2 + 27u− 27

u5
du

=
1

16

∫
u−2 − 9u−3 + 27u−4 − 27u−5 du

=
1

16

(
u−1

−1
− 9u−2

−2
+

27u−3

−3
− 27u−4

−4

)
+ C

=
1

16

(
(3− 2x)−1

−1
− 9(3− 2x)−2

−2
+

27(3− 2x)−3

−3
− 27(3− 2x)−4

−4

)
+ C

= − 1

16(3− 2x)
+

9

32(3− 2x)2
− 9

16(3− 2x)3
+

27

64(3− 2x)4
+ C

We now proceed to the case in which the denominator is a quadratic polynomial. We

can always factor out the coefficient of x2 and put it outside the integral, so we can assume

that the denominator has the form x2 + bx+ c. There are three possible cases, depending

on how the quadratic factors: either x2 + bx+ c = (x− r)(x− s), x2 + bx+ c = (x− r)2,

or it doesn’t factor. We can use the quadratic formula to decide which of these we have,

and to factor the quadratic if it is possible.

EXAMPLE 8.5.2 Determine whether x2 + x+1 factors, and factor it if possible. The

quadratic formula tells us that x2 + x+ 1 = 0 when

x =
−1±

√
1− 4

2
.

Since there is no square root of −3, this quadratic does not factor.

EXAMPLE 8.5.3 Determine whether x2 − x− 1 factors, and factor it if possible. The

quadratic formula tells us that x2 − x− 1 = 0 when

x =
1±

√
1 + 4

2
=

1±
√
5

2
.

Therefore

x2 − x− 1 =

(
x− 1 +

√
5

2

)(
x− 1−

√
5

2

)
.
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If x2 + bx+ c = (x− r)2 then we have the special case we have already seen, that can

be handled with a substitution. The other two cases require different approaches.

If x2 + bx+ c = (x− r)(x− s), we have an integral of the form∫
p(x)

(x− r)(x− s)
dx

where p(x) is a polynomial. The first step is to make sure that p(x) has degree less than

2.

EXAMPLE 8.5.4 Rewrite

∫
x3

(x− 2)(x+ 3)
dx in terms of an integral with a numerator

that has degree less than 2. To do this we use long division of polynomials to discover that

x3

(x− 2)(x+ 3)
=

x3

x2 + x− 6
= x− 1 +

7x− 6

x2 + x− 6
= x− 1 +

7x− 6

(x− 2)(x+ 3)
,

so ∫
x3

(x− 2)(x+ 3)
dx =

∫
x− 1 dx+

∫
7x− 6

(x− 2)(x+ 3)
dx.

The first integral is easy, so only the second requires some work.

Now consider the following simple algebra of fractions:

A

x− r
+

B

x− s
=

A(x− s) +B(x− r)

(x− r)(x− s)
=

(A+B)x−As−Br

(x− r)(x− s)
.

That is, adding two fractions with constant numerator and denominators (x−r) and (x−s)

produces a fraction with denominator (x− r)(x− s) and a polynomial of degree less than

2 for the numerator. We want to reverse this process: starting with a single fraction, we

want to write it as a sum of two simpler fractions. An example should make it clear how

to proceed.

EXAMPLE 8.5.5 Evaluate

∫
x3

(x− 2)(x+ 3)
dx. We start by writing

7x− 6

(x− 2)(x+ 3)
as the sum of two fractions. We want to end up with

7x− 6

(x− 2)(x+ 3)
=

A

x− 2
+

B

x+ 3
.

If we go ahead and add the fractions on the right hand side we get

7x− 6

(x− 2)(x+ 3)
=

(A+B)x+ 3A− 2B

(x− 2)(x+ 3)
.

So all we need to do is find A and B so that 7x − 6 = (A + B)x + 3A − 2B, which is to

say, we need 7 = A+B and −6 = 3A− 2B. This is a problem you’ve seen before: solve a

http://en.wikipedia.org/wiki/Polynomial_long_division
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system of two equations in two unknowns. There are many ways to proceed; here’s one: If

7 = A+B then B = 7−A and so −6 = 3A−2B = 3A−2(7−A) = 3A−14+2A = 5A−14.

This is easy to solve for A: A = 8/5, and then B = 7−A = 7− 8/5 = 27/5. Thus∫
7x− 6

(x− 2)(x+ 3)
dx =

∫
8

5

1

x− 2
+

27

5

1

x+ 3
dx =

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

The answer to the original problem is now∫
x3

(x− 2)(x+ 3)
dx =

∫
x− 1 dx+

∫
7x− 6

(x− 2)(x+ 3)
dx

=
x2

2
− x+

8

5
ln |x− 2|+ 27

5
ln |x+ 3|+ C.

Now suppose that x2+ bx+ c doesn’t factor. Again we can use long division to ensure

that the numerator has degree less than 2, then we complete the square.

EXAMPLE 8.5.6 Evaluate

∫
x+ 1

x2 + 4x+ 8
dx. The quadratic denominator does not

factor. We could complete the square and use a trigonometric substitution, but it is simpler

to rearrange the integrand:∫
x+ 1

x2 + 4x+ 8
dx =

∫
x+ 2

x2 + 4x+ 8
dx−

∫
1

x2 + 4x+ 8
dx.

The first integral is an easy substitution problem, using u = x2 + 4x+ 8:∫
x+ 2

x2 + 4x+ 8
dx =

1

2

∫
du

u
=

1

2
ln |x2 + 4x+ 8|.

For the second integral we complete the square:

x2 + 4x+ 8 = (x+ 2)2 + 4 = 4

((
x+ 2

2

)2

+ 1

)
,

making the integral
1

4

∫
1(

x+2
2

)2
+ 1

dx.

Using u =
x+ 2

2
we get

1

4

∫
1(

x+2
2

)2
+ 1

dx =
1

4

∫
2

u2 + 1
du =

1

2
arctan

(
x+ 2

2

)
.

The final answer is now∫
x+ 1

x2 + 4x+ 8
dx =

1

2
ln |x2 + 4x+ 8| − 1

2
arctan

(
x+ 2

2

)
+ C.
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Exercises 8.5.

Find the antiderivatives.

1.

∫
1

4− x2
dx ⇒ 2.

∫
x4

4− x2
dx ⇒

3.

∫
1

x2 + 10x+ 25
dx ⇒ 4.

∫
x2

4− x2
dx ⇒

5.

∫
x4

4 + x2
dx ⇒ 6.

∫
1

x2 + 10x+ 29
dx ⇒

7.

∫
x3

4 + x2
dx ⇒ 8.

∫
1

x2 + 10x+ 21
dx ⇒

9.

∫
1

2x2 − x− 3
dx ⇒ 10.

∫
1

x2 + 3x
dx ⇒

8.6 Numerical Integration

We have now seen some of the most generally useful methods for discovering antiderivatives,

and there are others. Unfortunately, some functions have no simple antiderivatives; in such

cases if the value of a definite integral is needed it will have to be approximated. We will

see two methods that work reasonably well and yet are fairly simple; in some cases more

sophisticated techniques will be needed.

Of course, we already know one way to approximate an integral: if we think of the

integral as computing an area, we can add up the areas of some rectangles. While this

is quite simple, it is usually the case that a large number of rectangles is needed to get

acceptable accuracy. A similar approach is much better: we approximate the area under a

curve over a small interval as the area of a trapezoid. In figure 8.6.1 we see an area under

a curve approximated by rectangles and by trapezoids; it is apparent that the trapezoids

give a substantially better approximation on each subinterval.
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Figure 8.6.1 Approximating an area with rectangles and with trapezoids.

As with rectangles, we divide the interval into n equal subintervals of length ∆x. A

typical trapezoid is pictured in figure 8.6.2; it has area
f(xi) + f(xi+1)

2
∆x. If we add up
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the areas of all trapezoids we get

f(x0) + f(x1)

2
∆x+

f(x1) + f(x2)

2
∆x+ · · ·+ f(xn−1) + f(xn)

2
∆x =(

f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

)
∆x.

This is usually known as the Trapezoid Rule. For a modest number of subintervals this

is not too difficult to do with a calculator; a computer can easily do many subintervals.

xi xi+1

(xi, f(xi))

(xi+1, f(xi+1))

......................................................................................................................

........................................................................

Figure 8.6.2 A single trapezoid.

In practice, an approximation is useful only if we know how accurate it is; for example,

we might need a particular value accurate to three decimal places. When we compute a

particular approximation to an integral, the error is the difference between the approxi-

mation and the true value of the integral. For any approximation technique, we need an

error estimate, a value that is guaranteed to be larger than the actual error. If A is an

approximation and E is the associated error estimate, then we know that the true value

of the integral is between A − E and A + E. In the case of our approximation of the

integral, we want E = E(∆x) to be a function of ∆x that gets small rapidly as ∆x gets

small. Fortunately, for many functions, there is such an error estimate associated with the

trapezoid approximation.

THEOREM 8.6.1 Suppose f has a second derivative f ′′ everywhere on the interval

[a, b], and |f ′′(x)| ≤ M for all x in the interval. With ∆x = (b − a)/n, an error estimate

for the trapezoid approximation is

E(∆x) =
b− a

12
M(∆x)2 =

(b− a)3

12n2
M.

Let’s see how we can use this.
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EXAMPLE 8.6.2 Approximate

∫ 1

0

e−x
2

dx to two decimal places. The second deriva-

tive of f = e−x
2

is (4x2−2)e−x
2

, and it is not hard to see that on [0, 1], |(4x2−2)e−x
2

| ≤ 2.

We begin by estimating the number of subintervals we are likely to need. To get two dec-

imal places of accuracy, we will certainly need E(∆x) < 0.005 or

1

12
(2)

1

n2
< 0.005

1

6
(200) < n2

5.77 ≈
√

100

3
< n

With n = 6, the error estimate is thus 1/63 < 0.0047. We compute the trapezoid approxi-

mation for six intervals:(
f(0)

2
+ f(1/6) + f(2/6) + · · ·+ f(5/6) +

f(1)

2

)
1

6
≈ 0.74512.

So the true value of the integral is between 0.74512 − 0.0047 = 0.74042 and 0.74512 +

0.0047 = 0.74982. Unfortunately, the first rounds to 0.74 and the second rounds to 0.75,

so we can’t be sure of the correct value in the second decimal place; we need to pick a larger

n. As it turns out, we need to go to n = 12 to get two bounds that both round to the same

value, which turns out to be 0.75. For comparison, using 12 rectangles to approximate

the area gives 0.7727, which is considerably less accurate than the approximation using six

trapezoids.

In practice it generally pays to start by requiring better than the maximum possible

error; for example, we might have initially required E(∆x) < 0.001, or

1

12
(2)

1

n2
< 0.001

1

6
(1000) < n2

12.91 ≈
√

500

3
< n

Had we immediately tried n = 13 this would have given us the desired answer.

The trapezoid approximation works well, especially compared to rectangles, because

the tops of the trapezoids form a reasonably good approximation to the curve when ∆x is

fairly small. We can extend this idea: what if we try to approximate the curve more closely,
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by using something other than a straight line? The obvious candidate is a parabola: if we

can approximate a short piece of the curve with a parabola with equation y = ax2+bx+c,

we can easily compute the area under the parabola.

There are an infinite number of parabolas through any two given points, but only

one through three given points. If we find a parabola through three consecutive points

(xi, f(xi)), (xi+1, f(xi+1)), (xi+2, f(xi+2)) on the curve, it should be quite close to the

curve over the whole interval [xi, xi+2], as in figure 8.6.3. If we divide the interval [a, b]

into an even number of subintervals, we can then approximate the curve by a sequence of

parabolas, each covering two of the subintervals. For this to be practical, we would like a

simple formula for the area under one parabola, namely, the parabola through (xi, f(xi)),

(xi+1, f(xi+1)), and (xi+2, f(xi+2)). That is, we should attempt to write down the parabola

y = ax2 + bx + c through these points and then integrate it, and hope that the result is

fairly simple. Although the algebra involved is messy, this turns out to be possible. The

algebra is well within the capability of a good computer algebra system like Sage, so we

will present the result without all of the algebra; you can see how to do it in this Sage

worksheet.

To find the parabola, we solve these three equations for a, b, and c:

f(xi) = a(xi+1 −∆x)2 + b(xi+1 −∆x) + c

f(xi+1) = a(xi+1)
2 + b(xi+1) + c

f(xi+2) = a(xi+1 +∆x)2 + b(xi+1 +∆x) + c

Not surprisingly, the solutions turn out to be quite messy. Nevertheless, Sage can easily

compute and simplify the integral to get

∫ xi+1+∆x

xi+1−∆x

ax2 + bx+ c dx =
∆x

3
(f(xi) + 4f(xi+1) + f(xi+2)).

Now the sum of the areas under all parabolas is

∆x

3
(f(x0)+4f(x1)+f(x2)+f(x2)+4f(x3)+f(x4)+ · · ·+f(xn−2)+4f(xn−1)+f(xn)) =

∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)).

This is just slightly more complicated than the formula for trapezoids; we need to remember

the alternating 2 and 4 coefficients; note that n must be even for this to make sense. This

approximation technique is referred to as Simpson’s Rule.

As with the trapezoid method, this is useful only with an error estimate:

http://www.whitman.edu/mathematics/calculus_applets/sage/simpsons_rule_derivation
http://www.whitman.edu/mathematics/calculus_applets/sage/simpsons_rule_derivation
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xi xi+1 xi+2
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Figure 8.6.3 A parabola (dashed) approximating a curve (solid).

THEOREM 8.6.3 Suppose f has a fourth derivative f (4) everywhere on the interval

[a, b], and |f (4)(x)| ≤ M for all x in the interval. With ∆x = (b− a)/n, an error estimate

for Simpson’s approximation is

E(∆x) =
b− a

180
M(∆x)4 =

(b− a)5

180n4
M.

EXAMPLE 8.6.4 Let us again approximate

∫ 1

0

e−x
2

dx to two decimal places. The

fourth derivative of f = e−x
2

is (16x2 − 48x2 + 12)e−x
2

; on [0, 1] this is at most 12 in

absolute value. We begin by estimating the number of subintervals we are likely to need.

To get two decimal places of accuracy, we will certainly need E(∆x) < 0.005, but taking

a cue from our earlier example, let’s require E(∆x) < 0.001:

1

180
(12)

1

n4
< 0.001

200

3
< n4

2.86 ≈ [4]

√
200

3
< n

So we try n = 4, since we need an even number of subintervals. Then the error estimate

is 12/180/44 < 0.0003 and the approximation is

(f(0) + 4f(1/4) + 2f(1/2) + 4f(3/4) + f(1))
1

3 · 4
≈ 0.746855.

So the true value of the integral is between 0.746855− 0.0003 = 0.746555 and 0.746855 +

0.0003 = 0.7471555, both of which round to 0.75.
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Exercises 8.6.

In the following problems, compute the trapezoid and Simpson approximations using 4 subin-
tervals, and compute the error estimate for each. (Finding the maximum values of the second
and fourth derivatives can be challenging for some of these; you may use a graphing calculator
or computer software to estimate the maximum values.) If you have access to Sage or similar
software, approximate each integral to two decimal places. You can use this Sage worksheet to
get started.

1.

∫ 3

1

x dx ⇒ 2.

∫ 3

0

x2 dx ⇒

3.

∫ 4

2

x3 dx ⇒ 4.

∫ 3

1

1

x
dx ⇒

5.

∫ 2

1

1

1 + x2
dx ⇒ 6.

∫ 1

0

x
√
1 + x dx ⇒

7.

∫ 5

1

x

1 + x
dx ⇒ 8.

∫ 1

0

√
x3 + 1 dx ⇒

9.

∫ 1

0

√
x4 + 1 dx ⇒ 10.

∫ 4

1

√
1 + 1/x dx ⇒

11. Using Simpson’s rule on a parabola f(x), even with just two subintervals, gives the exact value
of the integral, because the parabolas used to approximate f will be f itself. Remarkably,
Simpson’s rule also computes the integral of a cubic function f(x) = ax3 + bx2 + cx + d
exactly. Show this is true by showing that∫ x2

x0

f(x) dx =
x2 − x0

3 · 2 (f(x0) + 4f((x0 + x2)/2) + f(x2)).

This does require a bit of messy algebra, so you may prefer to use Sage.

8.7 Additional exercises

These problems require the techniques of this chapter, and are in no particular order. Some

problems may be done in more than one way.

1.

∫
(t+ 4)3 dt ⇒ 2.

∫
t(t2 − 9)3/2 dt ⇒

3.

∫
(et

2

+ 16)tet
2

dt ⇒ 4.

∫
sin t cos 2t dt ⇒

5.

∫
tan t sec2 t dt ⇒ 6.

∫
2t+ 1

t2 + t+ 3
dt ⇒

7.

∫
1

t(t2 − 4)
dt ⇒ 8.

∫
1

(25− t2)3/2
dt ⇒

9.

∫
cos 3t√
sin 3t

dt ⇒ 10.

∫
t sec2 t dt ⇒

11.

∫
et√
et + 1

dt ⇒ 12.

∫
cos4 t dt ⇒

http://www.whitman.edu/mathematics/calculus_applets/sage/simpson_and_trapezoid
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13.

∫
1

t2 + 3t
dt ⇒ 14.

∫
1

t2
√
1 + t2

dt ⇒

15.

∫
sec2 t

(1 + tan t)3
dt ⇒ 16.

∫
t3
√

t2 + 1 dt ⇒

17.

∫
et sin t dt ⇒ 18.

∫
(t3/2 + 47)3

√
t dt ⇒

19.

∫
t3

(2− t2)5/2
dt ⇒ 20.

∫
1

t(9 + 4t2)
dt ⇒

21.

∫
arctan 2t

1 + 4t2
dt ⇒ 22.

∫
t

t2 + 2t− 3
dt ⇒

23.

∫
sin3 t cos4 t dt ⇒ 24.

∫
1

t2 − 6t+ 9
dt ⇒

25.

∫
1

t(ln t)2
dt ⇒ 26.

∫
t(ln t)2 dt ⇒

27.

∫
t3et dt ⇒ 28.

∫
t+ 1

t2 + t− 1
dt ⇒



9
Applications of Integration

9.1 Area between curves

We have seen how integration can be used to find an area between a curve and the x-axis.

With very little change we can find some areas between curves; indeed, the area between

a curve and the x-axis may be interpreted as the area between the curve and a second

“curve” with equation y = 0. In the simplest of cases, the idea is quite easy to understand.

EXAMPLE 9.1.1 Find the area below f(x) = −x2 + 4x+ 3 and above g(x) = −x3 +

7x2 − 10x+5 over the interval 1 ≤ x ≤ 2. In figure 9.1.1 we show the two curves together,

with the desired area shaded, then f alone with the area under f shaded, and then g alone

with the area under g shaded.
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Figure 9.1.1 Area between curves as a difference of areas.
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It is clear from the figure that the area we want is the area under f minus the area

under g, which is to say

∫ 2

1

f(x) dx−
∫ 2

1

g(x) dx =

∫ 2

1

f(x)− g(x) dx.

It doesn’t matter whether we compute the two integrals on the left and then subtract or

compute the single integral on the right. In this case, the latter is perhaps a bit easier:

∫ 2

1

f(x)− g(x) dx =

∫ 2

1

−x2 + 4x+ 3− (−x3 + 7x2 − 10x+ 5) dx

=

∫ 2

1

x3 − 8x2 + 14x− 2 dx

=
x4

4
− 8x3

3
+ 7x2 − 2x

∣∣∣∣2
1

=
16

4
− 64

3
+ 28− 4− (

1

4
− 8

3
+ 7− 2)

= 23− 56

3
− 1

4
=

49

12
.

It is worth examining this problem a bit more. We have seen one way to look at it,

by viewing the desired area as a big area minus a small area, which leads naturally to the

difference between two integrals. But it is instructive to consider how we might find the

desired area directly. We can approximate the area by dividing the area into thin sections

and approximating the area of each section by a rectangle, as indicated in figure 9.1.2.

The area of a typical rectangle is ∆x(f(xi)− g(xi)), so the total area is approximately

n−1∑
i=0

(f(xi)− g(xi))∆x.

This is exactly the sort of sum that turns into an integral in the limit, namely the integral

∫ 2

1

f(x)− g(x) dx.

Of course, this is the integral we actually computed above, but we have now arrived at it

directly rather than as a modification of the difference between two other integrals. In that

example it really doesn’t matter which approach we take, but in some cases this second

approach is better.
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Figure 9.1.2 Approximating area between curves with rectangles.

EXAMPLE 9.1.2 Find the area below f(x) = −x2 + 4x+ 1 and above g(x) = −x3 +

7x2 − 10x+3 over the interval 1 ≤ x ≤ 2; these are the same curves as before but lowered

by 2. In figure 9.1.3 we show the two curves together. Note that the lower curve now dips

below the x-axis. This makes it somewhat tricky to view the desired area as a big area

minus a smaller area, but it is just as easy as before to think of approximating the area

by rectangles. The height of a typical rectangle will still be f(xi)− g(xi), even if g(xi) is

negative. Thus the area is

∫ 2

1

−x2 + 4x+ 1− (−x3 + 7x2 − 10x+ 3) dx =

∫ 2

1

x3 − 8x2 + 14x− 2 dx.

This is of course the same integral as before, because the region between the curves is

identical to the former region—it has just been moved down by 2.
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Figure 9.1.3 Area between curves.

EXAMPLE 9.1.3 Find the area between f(x) = −x2+4x and g(x) = x2− 6x+5 over

the interval 0 ≤ x ≤ 1; the curves are shown in figure 9.1.4. Generally we should interpret
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“area” in the usual sense, as a necessarily positive quantity. Since the two curves cross,

we need to compute two areas and add them. First we find the intersection point of the

curves:
−x2 + 4x = x2 − 6x+ 5

0 = 2x2 − 10x+ 5

x =
10±

√
100− 40

4
=

5±
√
15

2
.

The intersection point we want is x = a = (5−
√
15)/2. Then the total area is∫ a

0

x2 − 6x+ 5− (−x2 + 4x) dx+

∫ 1

a

−x2 + 4x− (x2 − 6x+ 5) dx

=

∫ a

0

2x2 − 10x+ 5 dx+

∫ 1

a

−2x2 + 10x− 5 dx

=
2x3

3
− 5x2 + 5x

∣∣∣∣a
0

+ −2x3

3
+ 5x2 − 5x

∣∣∣∣1
a

= −52

3
+ 5

√
15,

after a bit of simplification.
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Figure 9.1.4 Area between curves that cross.

EXAMPLE 9.1.4 Find the area between f(x) = −x2 + 4x and g(x) = x2 − 6x + 5;

the curves are shown in figure 9.1.5. Here we are not given a specific interval, so it must
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be the case that there is a “natural” region involved. Since the curves are both parabolas,

the only reasonable interpretation is the region between the two intersection points, which

we found in the previous example:

5±
√
15

2
.

If we let a = (5−
√
15)/2 and b = (5 +

√
15)/2, the total area is

∫ b

a

−x2 + 4x− (x2 − 6x+ 5) dx =

∫ b

a

−2x2 + 10x− 5 dx

= −2x3

3
+ 5x2 − 5x

∣∣∣∣b
a

= 5
√
15.

after a bit of simplification.
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Figure 9.1.5 Area bounded by two curves.

Exercises 9.1.

Find the area bounded by the curves.

1. y = x4 − x2 and y = x2 (the part to the right of the y-axis) ⇒
2. x = y3 and x = y2 ⇒
3. x = 1− y2 and y = −x− 1 ⇒
4. x = 3y − y2 and x+ y = 3 ⇒
5. y = cos(πx/2) and y = 1− x2 (in the first quadrant) ⇒
6. y = sin(πx/3) and y = x (in the first quadrant) ⇒
7. y =

√
x and y = x2 ⇒

8. y =
√
x and y =

√
x+ 1, 0 ≤ x ≤ 4 ⇒

9. x = 0 and x = 25− y2 ⇒
10. y = sinx cosx and y = sinx, 0 ≤ x ≤ π ⇒
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11. y = x3/2 and y = x2/3 ⇒
12. y = x2 − 2x and y = x− 2 ⇒

The following three exercises expand on the geometric interpretation of the hyperbolic functions.
Refer to section 4.11 and particularly to figure 4.11.2 and exercise 6 in section 4.11.

13. Compute

∫ √
x2 − 1 dx using the substitution u = arccoshx, or x = coshu; use exercise 6

in section 4.11.

14. Fix t > 0. Sketch the region R in the right half plane bounded by the curves y = x tanh t,
y = −x tanh t, and x2 − y2 = 1. Note well: t is fixed, the plane is the x-y plane.

15. Prove that the area of R is t.

9.2 Distance, Velocity, Acceleration

We next recall a general principle that will later be applied to distance-velocity-acceleration

problems, among other things. If F (u) is an anti-derivative of f(u), then

∫ b

a

f(u) du =

F (b) − F (a). Suppose that we want to let the upper limit of integration vary, i.e., we

replace b by some variable x. We think of a as a fixed starting value x0. In this new

notation the last equation (after adding F (a) to both sides) becomes:

F (x) = F (x0) +

∫ x

x0

f(u) du.

(Here u is the variable of integration, called a “dummy variable,” since it is not the variable

in the function F (x). In general, it is not a good idea to use the same letter as a variable

of integration and as a limit of integration. That is,

∫ x

x0

f(x)dx is bad notation, and can

lead to errors and confusion.)

An important application of this principle occurs when we are interested in the position

of an object at time t (say, on the x-axis) and we know its position at time t0. Let s(t)

denote the position of the object at time t (its distance from a reference point, such as

the origin on the x-axis). Then the net change in position between t0 and t is s(t)− s(t0).

Since s(t) is an anti-derivative of the velocity function v(t), we can write

s(t) = s(t0) +

∫ t

t0

v(u)du.

Similarly, since the velocity is an anti-derivative of the acceleration function a(t), we have

v(t) = v(t0) +

∫ t

t0

a(u)du.
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EXAMPLE 9.2.1 Suppose an object is acted upon by a constant force F . Find v(t)

and s(t). By Newton’s law F = ma, so the acceleration is F/m, where m is the mass of

the object. Then we first have

v(t) = v(t0) +

∫ t

t0

F

m
du = v0 +

F

m
u

∣∣∣∣t
t0

= v0 +
F

m
(t− t0),

using the usual convention v0 = v(t0). Then

s(t) = s(t0) +

∫ t

t0

(
v0 +

F

m
(u− t0)

)
du = s0 + (v0u+

F

2m
(u− t0)

2)

∣∣∣∣t
t0

= s0 + v0(t− t0) +
F

2m
(t− t0)

2.

For instance, when F/m = −g is the constant of gravitational acceleration, then this is

the falling body formula (if we neglect air resistance) familiar from elementary physics:

s0 + v0(t− t0)−
g

2
(t− t0)

2,

or in the common case that t0 = 0,

s0 + v0t−
g

2
t2.

Recall that the integral of the velocity function gives the net distance traveled. If you

want to know the total distance traveled, you must find out where the velocity function

crosses the t-axis, integrate separately over the time intervals when v(t) is positive and

when v(t) is negative, and add up the absolute values of the different integrals. For

example, if an object is thrown straight upward at 19.6 m/sec, its velocity function is

v(t) = −9.8t + 19.6, using g = 9.8 m/sec for the force of gravity. This is a straight line

which is positive for t < 2 and negative for t > 2. The net distance traveled in the first 4

seconds is thus ∫ 4

0

(−9.8t+ 19.6)dt = 0,

while the total distance traveled in the first 4 seconds is∫ 2

0

(−9.8t+ 19.6)dt+

∣∣∣∣∫ 4

2

(−9.8t+ 19.6)dt

∣∣∣∣ = 19.6 + | − 19.6| = 39.2

meters, 19.6 meters up and 19.6 meters down.
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EXAMPLE 9.2.2 The acceleration of an object is given by a(t) = cos(πt), and its

velocity at time t = 0 is 1/(2π). Find both the net and the total distance traveled in the

first 1.5 seconds.

We compute

v(t) = v(0) +

∫ t

0

cos(πu)du =
1

2π
+

1

π
sin(πu)

∣∣∣∣t
0

=
1

π

(1
2
+ sin(πt)

)
.

The net distance traveled is then

s(3/2)− s(0) =

∫ 3/2

0

1

π

(
1

2
+ sin(πt)

)
dt

=
1

π

(
t

2
− 1

π
cos(πt)

)∣∣∣∣3/2
0

=
3

4π
+

1

π2
≈ 0.340 meters.

To find the total distance traveled, we need to know when (0.5 + sin(πt)) is positive and

when it is negative. This function is 0 when sin(πt) is −0.5, i.e., when πt = 7π/6, 11π/6,

etc. The value πt = 7π/6, i.e., t = 7/6, is the only value in the range 0 ≤ t ≤ 1.5. Since

v(t) > 0 for t < 7/6 and v(t) < 0 for t > 7/6, the total distance traveled is∫ 7/6

0

1

π

(
1

2
+ sin(πt)

)
dt+

∣∣∣∫ 3/2

7/6

1

π

(
1

2
+ sin(πt)

)
dt
∣∣∣

=
1

π

(
7

12
+

1

π
cos(7π/6) +

1

π

)
+

1

π

∣∣∣3
4
− 7

12
+

1

π
cos(7π/6)

∣∣∣
=

1

π

(
7

12
+

1

π

√
3

2
+

1

π

)
+

1

π

∣∣∣3
4
− 7

12
+

1

π

√
3

2
.
∣∣∣ ≈ 0.409 meters.

Exercises 9.2.

For each velocity function find both the net distance and the total distance traveled during the
indicated time interval (graph v(t) to determine when it’s positive and when it’s negative):

1. v = cos(πt), 0 ≤ t ≤ 2.5 ⇒
2. v = −9.8t+ 49, 0 ≤ t ≤ 10 ⇒
3. v = 3(t− 3)(t− 1), 0 ≤ t ≤ 5 ⇒
4. v = sin(πt/3)− t, 0 ≤ t ≤ 1 ⇒
5. An object is shot upwards from ground level with an initial velocity of 2 meters per second;

it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒

6. An object is shot upwards from ground level with an initial velocity of 3 meters per second;
it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒
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7. An object is shot upwards from ground level with an initial velocity of 100 meters per second;
it is subject only to the force of gravity (no air resistance). Find its maximum altitude and
the time at which it hits the ground. ⇒

8. An object moves along a straight line with acceleration given by a(t) = − cos(t), and s(0) = 1
and v(0) = 0. Find the maximum distance the object travels from zero, and find its maximum
speed. Describe the motion of the object. ⇒

9. An object moves along a straight line with acceleration given by a(t) = sin(πt). Assume that
when t = 0, s(t) = v(t) = 0. Find s(t), v(t), and the maximum speed of the object. Describe
the motion of the object. ⇒

10. An object moves along a straight line with acceleration given by a(t) = 1 + sin(πt). Assume
that when t = 0, s(t) = v(t) = 0. Find s(t) and v(t). ⇒

11. An object moves along a straight line with acceleration given by a(t) = 1− sin(πt). Assume
that when t = 0, s(t) = v(t) = 0. Find s(t) and v(t). ⇒

9.3 Volume

We have seen how to compute certain areas by using integration; some volumes may also

be computed by evaluating an integral. Generally, the volumes that we can compute this

way have cross-sections that are easy to describe.
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Figure 9.3.1 Volume of a pyramid approximated by rectangular prisms. (AP)

EXAMPLE 9.3.1 Find the volume of a pyramid with a square base that is 20 meters

tall and 20 meters on a side at the base. As with most of our applications of integration, we

begin by asking how we might approximate the volume. Since we can easily compute the

volume of a rectangular prism (that is, a “box”), we will use some boxes to approximate

http://www.whitman.edu/mathematics/calculus_applets/pyramid
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the volume of the pyramid, as shown in figure 9.3.1: on the left is a cross-sectional view, on

the right is a 3D view of part of the pyramid with some of the boxes used to approximate

the volume.

Each box has volume of the form (2xi)(2xi)∆y. Unfortunately, there are two variables

here; fortunately, we can write x in terms of y: x = 10− y/2 or xi = 10− yi/2. Then the

total volume is approximately
n−1∑
i=0

4(10− yi/2)
2∆y

and in the limit we get the volume as the value of an integral:∫ 20

0

4(10− y/2)2 dy =

∫ 20

0

(20− y)2 dy = − (20− y)3

3

∣∣∣∣20
0

= −03

3
−−203

3
=

8000

3
.

As you may know, the volume of a pyramid is (1/3)(height)(area of base) = (1/3)(20)(400),

which agrees with our answer.

EXAMPLE 9.3.2 The base of a solid is the region between f(x) = x2 − 1 and g(x) =

−x2 + 1, and its cross-sections perpendicular to the x-axis are equilateral triangles, as

indicated in figure 9.3.2. The solid has been truncated to show a triangular cross-section

above x = 1/2. Find the volume of the solid.
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Figure 9.3.2 Solid with equilateral triangles as cross-sections. (AP)

A cross-section at a value xi on the x-axis is a triangle with base 2(1− x2
i ) and height√

3(1− x2
i ), so the area of the cross-section is

1

2
(base)(height) = (1− x2

i )
√
3(1− x2

i ),

http://www.whitman.edu/mathematics/calculus_applets/triangular_solid
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and the volume of a thin “slab” is then

(1− x2
i )
√
3(1− x2

i )∆x.

Thus the total volume is ∫ 1

−1

√
3(1− x2)2 dx =

16

15

√
3.

One easy way to get “nice” cross-sections is by rotating a plane figure around a line.

For example, in figure 9.3.3 we see a plane region under a curve and between two vertical

lines; then the result of rotating this around the x-axis, and a typical circular cross-section.

....................................................................................................................
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..............
.................................................

Figure 9.3.3 A solid of rotation. (AP)

Of course a real “slice” of this figure will not have straight sides, but we can approxi-

mate the volume of the slice by a cylinder or disk with circular top and bottom and straight

sides; the volume of this disk will have the form πr2∆x. As long as we can write r in terms

of x we can compute the volume by an integral.

EXAMPLE 9.3.3 Find the volume of a right circular cone with base radius 10 and

height 20. (A right circular cone is one with a circular base and with the tip of the cone

directly over the center of the base.) We can view this cone as produced by the rotation

of the line y = x/2 rotated about the x-axis, as indicated in figure 9.3.4.

At a particular point on the x-axis, say xi, the radius of the resulting cone is the

y-coordinate of the corresponding point on the line, namely yi = xi/2. Thus the total

volume is approximately
n−1∑
i=0

π(xi/2)
2 dx

and the exact volume is ∫ 20

0

π
x2

4
dx =

π

4

203

3
=

2000π

3
.

http://www.whitman.edu/mathematics/calculus_applets/volume_of_rotation
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Figure 9.3.4 A region that generates a cone; approximating the volume by circular disks.
(AP)

Note that we can instead do the calculation with a generic height and radius:∫ h

0

π
r2

h2
x2 dx =

πr2

h2

h3

3
=

πr2h

3
,

giving us the usual formula for the volume of a cone.

EXAMPLE 9.3.4 Find the volume of the object generated when the area between

y = x2 and y = x is rotated around the x-axis. This solid has a “hole” in the middle; we

can compute the volume by subtracting the volume of the hole from the volume enclosed

by the outer surface of the solid. In figure 9.3.5 we show the region that is rotated, the

resulting solid with the front half cut away, the cone that forms the outer surface, the

horn-shaped hole, and a cross-section perpendicular to the x-axis.

We have already computed the volume of a cone; in this case it is π/3. At a particular

value of x, say xi, the cross-section of the horn is a circle with radius x2
i , so the volume of

the horn is ∫ 1

0

π(x2)2 dx =

∫ 1

0

πx4 dx = π
1

5
,

so the desired volume is π/3− π/5 = 2π/15.

As with the area between curves, there is an alternate approach that computes the

desired volume “all at once” by approximating the volume of the actual solid. We can

approximate the volume of a slice of the solid with a washer-shaped volume, as indicated

in figure 9.3.5.

The volume of such a washer is the area of the face times the thickness. The thickness,

as usual, is ∆x, while the area of the face is the area of the outer circle minus the area of

http://www.whitman.edu/mathematics/calculus_applets/cone
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Figure 9.3.5 Solid with a hole, showing the outer cone and the shape to be removed to
form the hole. (AP)

the inner circle, say πR2 − πr2. In the present example, at a particular xi, the radius R is

xi and r is x2
i . Hence, the whole volume is

∫ 1

0

πx2 − πx4 dx = π

(
x3

3
− x5

5

)∣∣∣∣1
0

= π

(
1

3
− 1

5

)
=

2π

15
.

Of course, what we have done here is exactly the same calculation as before, except we

have in effect recomputed the volume of the outer cone.

Suppose the region between f(x) = x + 1 and g(x) = (x − 1)2 is rotated around the

y-axis; see figure 9.3.6. It is possible, but inconvenient, to compute the volume of the

resulting solid by the method we have used so far. The problem is that there are two

“kinds” of typical rectangles: those that go from the line to the parabola and those that

touch the parabola on both ends. To compute the volume using this approach, we need to

http://www.whitman.edu/mathematics/calculus_applets/solid_with_hole
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break the problem into two parts and compute two integrals:

π

∫ 1

0

(1 +
√
y)2 − (1−√

y)2 dy + π

∫ 4

1

(1 +
√
y)2 − (y − 1)2 dy =

8

3
π +

65

6
π =

27

2
π.

If instead we consider a typical vertical rectangle, but still rotate around the y-axis, we

get a thin “shell” instead of a thin “washer”. If we add up the volume of such thin shells

we will get an approximation to the true volume. What is the volume of such a shell?

Consider the shell at xi. Imagine that we cut the shell vertically in one place and “unroll”

it into a thin, flat sheet. This sheet will be almost a rectangular prism that is ∆x thick,

f(xi) − g(xi) tall, and 2πxi wide (namely, the circumference of the shell before it was

unrolled). The volume will then be approximately the volume of a rectangular prism with

these dimensions: 2πxi(f(xi)− g(xi))∆x. If we add these up and take the limit as usual,

we get the integral∫ 3

0

2πx(f(x)− g(x)) dx =

∫ 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

Not only does this accomplish the task with only one integral, the integral is somewhat

easier than those in the previous calculation. Things are not always so neat, but it is

often the case that one of the two methods will be simpler than the other, so it is worth

considering both before starting to do calculations.

0 1 2 3

0

1

2

3

4

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.............................................................................................................
..........
.........
.........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

0 1 2 3

0

1

2

3

4

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.............................................................................................................
..........
.........
.........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

Figure 9.3.6 Computing volumes with “shells”. (AP)

EXAMPLE 9.3.5 Suppose the area under y = −x2 + 1 between x = 0 and x = 1 is

rotated around the x-axis. Find the volume by both methods.

Disk method:

∫ 1

0

π(1− x2)2 dx =
8

15
π.

Shell method:

∫ 1

0

2πy
√
1− y dy =

8

15
π.

http://www.whitman.edu/mathematics/calculus_applets/shell
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Exercises 9.3.

1. Verify that π

∫ 1

0

(1 +
√
y)2 − (1−√y)2 dy + π

∫ 4

1

(1 +
√
y)2 − (y − 1)2 =

8

3
π +

65

6
π =

27

2
π.

2. Verify that

∫ 3

0

2πx(x+ 1− (x− 1)2) dx =
27

2
π.

3. Verify that

∫ 1

0

π(1− x2)2 dx =
8

15
π.

4. Verify that

∫ 1

0

2πy
√

1− y dy =
8

15
π.

5. Use integration to find the volume of the solid obtained by revolving the region bounded by
x+ y = 2 and the x and y axes around the x-axis. ⇒

6. Find the volume of the solid obtained by revolving the region bounded by y = x − x2 and
the x-axis around the x-axis. ⇒

7. Find the volume of the solid obtained by revolving the region bounded by y =
√
sinx between

x = 0 and x = π/2, the y-axis, and the line y = 1 around the x-axis. ⇒
8. Let S be the region of the xy-plane bounded above by the curve x3y = 64, below by the line

y = 1, on the left by the line x = 2, and on the right by the line x = 4. Find the volume of
the solid obtained by rotating S around (a) the x-axis, (b) the line y = 1, (c) the y-axis, (d)
the line x = 2. ⇒

9. The equation x2/9 + y2/4 = 1 describes an ellipse. Find the volume of the solid obtained
by rotating the ellipse around the x-axis and also around the y-axis. These solids are called
ellipsoids; one is vaguely rugby-ball shaped, one is sort of flying-saucer shaped, or perhaps
squished-beach-ball-shaped. ⇒

Figure 9.3.7 Ellipsoids.

10. Use integration to compute the volume of a sphere of radius r. You should of course get the
well-known formula 4πr3/3.

11. A hemispheric bowl of radius r contains water to a depth h. Find the volume of water in the
bowl. ⇒

12. The base of a tetrahedron (a triangular pyramid) of height h is an equilateral triangle of side
s. Its cross-sections perpendicular to an altitude are equilateral triangles. Express its volume
V as an integral, and find a formula for V in terms of h and s. Verify that your answer is
(1/3)(area of base)(height).

13. The base of a solid is the region between f(x) = cosx and g(x) = − cosx, −π/2 ≤ x ≤ π/2,
and its cross-sections perpendicular to the x-axis are squares. Find the volume of the solid.
⇒
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9.4 Average value of a function

The average of some finite set of values is a familiar concept. If, for example, the class

scores on a quiz are 10, 9, 10, 8, 7, 5, 7, 6, 3, 2, 7, 8, then the average score is the sum of

these numbers divided by the size of the class:

average score =
10 + 9 + 10 + 8 + 7 + 5 + 7 + 6 + 3 + 2 + 7 + 8

12
=

82

12
≈ 6.83.

Suppose that between t = 0 and t = 1 the speed of an object is sin(πt). What is the

average speed of the object over that time? The question sounds as if it must make sense,

yet we can’t merely add up some number of speeds and divide, since the speed is changing

continuously over the time interval.

To make sense of “average” in this context, we fall back on the idea of approximation.

Consider the speed of the object at tenth of a second intervals: sin 0, sin(0.1π), sin(0.2π),

sin(0.3π),. . . , sin(0.9π). The average speed “should” be fairly close to the average of these

ten speeds:

1

10

9∑
i=0

sin(πi/10) ≈ 1

10
6.3 = 0.63.

Of course, if we compute more speeds at more times, the average of these speeds should

be closer to the “real” average. If we take the average of n speeds at evenly spaced times,

we get:

1

n

n−1∑
i=0

sin(πi/n).

Here the individual times are ti = i/n, so rewriting slightly we have

1

n

n−1∑
i=0

sin(πti).

This is almost the sort of sum that we know turns into an integral; what’s apparently

missing is ∆t—but in fact, ∆t = 1/n, the length of each subinterval. So rewriting again:

n−1∑
i=0

sin(πti)
1

n
=

n−1∑
i=0

sin(πti)∆t.

Now this has exactly the right form, so that in the limit we get

average speed =

∫ 1

0

sin(πt) dt = −cos(πt)

π

∣∣∣∣1
0

= −cos(π)

π
+

cos(0)

π
=

2

π
≈ 0.6366 ≈ 0.64.

It’s not entirely obvious from this one simple example how to compute such an average

in general. Let’s look at a somewhat more complicated case. Suppose that the velocity
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of an object is 16t2 + 5 feet per second. What is the average velocity between t = 1 and

t = 3? Again we set up an approximation to the average:

1

n

n−1∑
i=0

16t2i + 5,

where the values ti are evenly spaced times between 1 and 3. Once again we are “missing”

∆t, and this time 1/n is not the correct value. What is ∆t in general? It is the length of

a subinterval; in this case we take the interval [1, 3] and divide it into n subintervals, so

each has length (3 − 1)/n = 2/n = ∆t. Now with the usual “multiply and divide by the

same thing” trick we can rewrite the sum:

1

n

n−1∑
i=0

16t2i + 5 =
1

3− 1

n−1∑
i=0

(16t2i + 5)
3− 1

n
=

1

2

n−1∑
i=0

(16t2i + 5)
2

n
=

1

2

n−1∑
i=0

(16t2i + 5)∆t.

In the limit this becomes

1

2

∫ 3

1

16t2 + 5 dt =
1

2

446

3
=

223

3
.

Does this seem reasonable? Let’s picture it: in figure 9.4.1 is the velocity function together

with the horizontal line y = 223/3 ≈ 74.3. Certainly the height of the horizontal line looks

at least plausible for the average height of the curve.
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Figure 9.4.1 Average velocity.

Here’s another way to interpret “average” that may make our computation appear

even more reasonable. The object of our example goes a certain distance between t = 1
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and t = 3. If instead the object were to travel at the average speed over the same time, it

should go the same distance. At an average speed of 223/3 feet per second for two seconds

the object would go 446/3 feet. How far does it actually go? We know how to compute

this: ∫ 3

1

v(t) dt =

∫ 3

1

16t2 + 5 dt =
446

3
.

So now we see that another interpretation of the calculation

1

2

∫ 3

1

16t2 + 5 dt =
1

2

446

3
=

223

3

is: total distance traveled divided by the time in transit, namely, the usual interpretation

of average speed.

In the case of speed, or more properly velocity, we can always interpret “average” as

total (net) distance divided by time. But in the case of a different sort of quantity this

interpretation does not obviously apply, while the approximation approach always does.

We might interpret the same problem geometrically: what is the average height of 16x2+5

on the interval [1, 3]? We approximate this in exactly the same way, by adding up many

sample heights and dividing by the number of samples. In the limit we get the same result:

lim
n→∞

1

n

n−1∑
i=0

16x2
i + 5 =

1

2

∫ 3

1

16x2 + 5 dx =
1

2

446

3
=

223

3
.

We can interpret this result in a slightly different way. The area under y = 16x2+5 above

[1, 3] is ∫ 3

1

16t2 + 5 dt =
446

3
.

The area under y = 223/3 over the same interval [1, 3] is simply the area of a rectangle

that is 2 by 223/3 with area 446/3. So the average height of a function is the height of the

horizontal line that produces the same area over the given interval.

Exercises 9.4.

1. Find the average height of cosx over the intervals [0, π/2], [−π/2, π/2], and [0, 2π]. ⇒
2. Find the average height of x2 over the interval [−2, 2]. ⇒
3. Find the average height of 1/x2 over the interval [1, A]. ⇒

4. Find the average height of
√

1− x2 over the interval [−1, 1]. ⇒
5. An object moves with velocity v(t) = −t2 +1 feet per second between t = 0 and t = 2. Find

the average velocity and the average speed of the object between t = 0 and t = 2. ⇒
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6. The observation deck on the 102nd floor of the Empire State Building is 1,224 feet above
the ground. If a steel ball is dropped from the observation deck its velocity at time t is
approximately v(t) = −32t feet per second. Find the average speed between the time it is
dropped and the time it hits the ground, and find its speed when it hits the ground. ⇒

9.5 Work

A fundamental concept in classical physics is work: If an object is moved in a straight

line against a force F for a distance s the work done is W = Fs.

EXAMPLE 9.5.1 How much work is done in lifting a 10 pound weight vertically a

distance of 5 feet? The force due to gravity on a 10 pound weight is 10 pounds at the

surface of the earth, and it does not change appreciably over 5 feet. The work done is

W = 10 · 5 = 50 foot-pounds.

In reality few situations are so simple. The force might not be constant over the range

of motion, as in the next example.

EXAMPLE 9.5.2 How much work is done in lifting a 10 pound weight from the surface

of the earth to an orbit 100 miles above the surface? Over 100 miles the force due to gravity

does change significantly, so we need to take this into account. The force exerted on a 10

pound weight at a distance r from the center of the earth is F = k/r2 and by definition

it is 10 when r is the radius of the earth (we assume the earth is a sphere). How can we

approximate the work done? We divide the path from the surface to orbit into n small

subpaths. On each subpath the force due to gravity is roughly constant, with value k/r2i
at distance ri. The work to raise the object from ri to ri+1 is thus approximately k/r2i∆r

and the total work is approximately

n−1∑
i=0

k

r2i
∆r,

or in the limit

W =

∫ r1

r0

k

r2
dr,

where r0 is the radius of the earth and r1 is r0 plus 100 miles. The work is

W =

∫ r1

r0

k

r2
dr = − k

r

∣∣∣∣r1
r0

= − k

r1
+

k

r0
.

Using r0 = 20925525 feet we have r1 = 21453525. The force on the 10 pound weight at

the surface of the earth is 10 pounds, so 10 = k/209255252, giving k = 4378775965256250.
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Then

− k

r1
+

k

r0
=

491052320000

95349
≈ 5150052 foot-pounds.

Note that if we assume the force due to gravity is 10 pounds over the whole distance we

would calculate the work as 10(r1− r0) = 10 · 100 · 5280 = 5280000, somewhat higher since

we don’t account for the weakening of the gravitational force.

EXAMPLE 9.5.3 How much work is done in lifting a 10 kilogram object from the

surface of the earth to a distance D from the center of the earth? This is the same

problem as before in different units, and we are not specifying a value for D. As before

W =

∫ D

r0

k

r2
dr = − k

r

∣∣∣∣D
r0

= − k

D
+

k

r0
.

While “weight in pounds” is a measure of force, “weight in kilograms” is a measure of mass.

To convert to force we need to use Newton’s law F = ma. At the surface of the earth the

acceleration due to gravity is approximately 9.8 meters per second squared, so the force is

F = 10 ·9.8 = 98. The units here are “kilogram-meters per second squared” or “kg m/s2”,

also known as a Newton (N), so F = 98 N. The radius of the earth is approximately 6378.1

kilometers or 6378100 meters. Now the problem proceeds as before. From F = k/r2 we

compute k: 98 = k/63781002, k = 3.986655642 · 1015. Then the work is:

W = − k

D
+ 6.250538000 · 108 Newton-meters.

As D increases W of course gets larger, since the quantity being subtracted, −k/D, gets

smaller. But note that the work W will never exceed 6.250538000 · 108, and in fact will

approach this value as D gets larger. In short, with a finite amount of work, namely

6.250538000 · 108 N-m, we can lift the 10 kilogram object as far as we wish from earth.

Next is an example in which the force is constant, but there are many objects moving

different distances.

EXAMPLE 9.5.4 Suppose that a water tank is shaped like a right circular cone with

the tip at the bottom, and has height 10 meters and radius 2 meters at the top. If the

tank is full, how much work is required to pump all the water out over the top? Here we

have a large number of atoms of water that must be lifted different distances to get to the

top of the tank. Fortunately, we don’t really have to deal with individual atoms—we can

consider all the atoms at a given depth together.
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Figure 9.5.1 Cross-section of a conical water tank.

To approximate the work, we can divide the water in the tank into horizontal sections,

approximate the volume of water in a section by a thin disk, and compute the amount of

work required to lift each disk to the top of the tank. As usual, we take the limit as the

sections get thinner and thinner to get the total work.

At depth h the circular cross-section through the tank has radius r = (10 − h)/5, by

similar triangles, and area π(10−h)2/25. A section of the tank at depth h thus has volume

approximately π(10 − h)2/25∆h and so contains σπ(10 − h)2/25∆h kilograms of water,

where σ is the density of water in kilograms per cubic meter; σ ≈ 1000. The force due to

gravity on this much water is 9.8σπ(10−h)2/25∆h, and finally, this section of water must

be lifted a distance h, which requires h9.8σπ(10− h)2/25∆h Newton-meters of work. The

total work is therefore

W =
9.8σπ

25

∫ 10

0

h(10− h)2 dh =
980000

3
π ≈ 1026254 Newton-meters.

A spring has a “natural length,” its length if nothing is stretching or compressing

it. If the spring is either stretched or compressed the spring provides an opposing force;

according to Hooke’s Law the magnitude of this force is proportional to the distance the

spring has been stretched or compressed: F = kx. The constant of proportionality, k, of

course depends on the spring. Note that x here represents the change in length from the

natural length.

EXAMPLE 9.5.5 Suppose k = 5 for a given spring that has a natural length of 0.1

meters. Suppose a force is applied that compresses the spring to length 0.08. What is

the magnitude of the force? Assuming that the constant k has appropriate dimensions

(namely, kg/s2), the force is 5(0.1− 0.08) = 5(0.02) = 0.1 Newtons.
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EXAMPLE 9.5.6 How much work is done in compressing the spring in the previous

example from its natural length to 0.08 meters? From 0.08 meters to 0.05 meters? How

much work is done to stretch the spring from 0.1 meters to 0.15 meters? We can approx-

imate the work by dividing the distance that the spring is compressed (or stretched) into

small subintervals. Then the force exerted by the spring is approximately constant over the

subinterval, so the work required to compress the spring from xi to xi+1 is approximately

5(xi − 0.1)∆x. The total work is approximately

n−1∑
i=0

5(xi − 0.1)∆x

and in the limit

W =

∫ 0.08

0.1

5(x−0.1) dx =
5(x− 0.1)2

2

∣∣∣∣0.08
0.1

=
5(0.08− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

1000
N-m.

The other values we seek simply use different limits. To compress the spring from 0.08

meters to 0.05 meters takes

W =

∫ 0.05

0.08

5(x− 0.1) dx =
5x2

2

∣∣∣∣0.05
0.08

=
5(0.05− 0.1)2

2
− 5(0.08− 0.1)2

2
=

21

4000
N-m

and to stretch the spring from 0.1 meters to 0.15 meters requires

W =

∫ 0.15

0.1

5(x− 0.1) dx =
5x2

2

∣∣∣∣0.15
0.1

=
5(0.15− 0.1)2

2
− 5(0.1− 0.1)2

2
=

1

160
N-m.

Exercises 9.5.

1. How much work is done in lifting a 100 kilogram weight from the surface of the earth to an
orbit 35,786 kilometers above the surface of the earth? ⇒

2. How much work is done in lifting a 100 kilogram weight from an orbit 1000 kilometers above
the surface of the earth to an orbit 35,786 kilometers above the surface of the earth? ⇒

3. A water tank has the shape of an upright cylinder with radius r = 1 meter and height 10
meters. If the depth of the water is 5 meters, how much work is required to pump all the
water out the top of the tank? ⇒

4. Suppose the tank of the previous problem is lying on its side, so that the circular ends are
vertical, and that it has the same amount of water as before. How much work is required
to pump the water out the top of the tank (which is now 2 meters above the bottom of the
tank)? ⇒
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5. A water tank has the shape of the bottom half of a sphere with radius r = 1 meter. If the
tank is full, how much work is required to pump all the water out the top of the tank? ⇒

6. A spring has constant k = 10 kg/s2. How much work is done in compressing it 1/10 meter
from its natural length? ⇒

7. A force of 2 Newtons will compress a spring from 1 meter (its natural length) to 0.8 meters.
How much work is required to stretch the spring from 1.1 meters to 1.5 meters? ⇒

8. A 20 meter long steel cable has density 2 kilograms per meter, and is hanging straight down.
How much work is required to lift the entire cable to the height of its top end? ⇒

9. The cable in the previous problem has a 100 kilogram bucket of concrete attached to its lower
end. How much work is required to lift the entire cable and bucket to the height of its top
end? ⇒

10. Consider again the cable and bucket of the previous problem. How much work is required
to lift the bucket 10 meters by raising the cable 10 meters? (The top half of the cable ends
up at the height of the top end of the cable, while the bottom half of the cable is lifted 10
meters.) ⇒

9.6 Center of Mass

Suppose a beam is 10 meters long, and that there are three weights on the beam: a 10

kilogram weight 3 meters from the left end, a 5 kilogram weight 6 meters from the left end,

and a 4 kilogram weight 8 meters from the left end. Where should a fulcrum be placed

so that the beam balances? Let’s assign a scale to the beam, from 0 at the left end to 10

at the right, so that we can denote locations on the beam simply as x coordinates; the

weights are at x = 3, x = 6, and x = 8, as in figure 9.6.1.

3 6 8
..........................................................

.......
.......
.............

.......

.......

.......

.......

.......

......................................................................................................

10
.......
.......
.......
.......
.......
.......
......................................................................................................

5
.......
.......
.......
.......
.......
.......
......................................................................................................

4

Figure 9.6.1 A beam with three masses.

Suppose to begin with that the fulcrum is placed at x = 5. What will happen? Each

weight applies a force to the beam that tends to rotate it around the fulcrum; this effect

is measured by a quantity called torque, proportional to the mass times the distance

from the fulcrum. Of course, weights on different sides of the fulcrum rotate the beam

in opposite directions. We can distinguish this by using a signed distance in the formula

for torque. So with the fulcrum at 5, the torques induced by the three weights will be

proportional to (3 − 5)10 = −20, (6 − 5)5 = 5, and (8 − 5)4 = 12. For the beam to

balance, the sum of the torques must be zero; since the sum is −20 + 5 + 12 = −3, the

beam rotates counter-clockwise, and to get the beam to balance we need to move the

fulcrum to the left. To calculate exactly where the fulcrum should be, we let x̄ denote the

location of the fulcrum when the beam is in balance. The total torque on the beam is then
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(3− x̄)10 + (6− x̄)5 + (8− x̄)4 = 92− 19x̄. Since the beam balances at x̄ it must be that

92 − 19x̄ = 0 or x̄ = 92/19 ≈ 4.84, that is, the fulcrum should be placed at x = 92/19 to

balance the beam.

Now suppose that we have a beam with varying density—some portions of the beam

contain more mass than other portions of the same size. We want to figure out where to

put the fulcrum so that the beam balances.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

Figure 9.6.2 A solid beam.

EXAMPLE 9.6.1 Suppose the beam is 10 meters long and that the density is 1 + x

kilograms per meter at location x on the beam. To approximate the solution, we can think

of the beam as a sequence of weights “on” a beam. For example, we can think of the

portion of the beam between x = 0 and x = 1 as a weight sitting at x = 0, the portion

between x = 1 and x = 2 as a weight sitting at x = 1, and so on, as indicated in figure 9.6.2.

We then approximate the mass of the weights by assuming that each portion of the beam

has constant density. So the mass of the first weight is approximately m0 = (1 + 0)1 = 1

kilograms, namely, (1 + 0) kilograms per meter times 1 meter. The second weight is

m1 = (1 + 1)1 = 2 kilograms, and so on to the tenth weight with m9 = (1 + 9)1 = 10

kilograms. So in this case the total torque is

(0− x̄)m0 + (1− x̄)m1 + · · ·+ (9− x̄)m9 = (0− x̄)1 + (1− x̄)2 + · · ·+ (9− x̄)10.

If we set this to zero and solve for x̄ we get x̄ = 6. In general, if we divide the beam into

n portions, the mass of weight number i will be mi = (1 + xi)(xi+1 − xi) = (1 + xi)∆x

and the torque induced by weight number i will be (xi − x̄)mi = (xi − x̄)(1 + xi)∆x. The

total torque is then

(x0 − x̄)(1 + x0)∆x+ (x1 − x̄)(1 + x1)∆x+ · · ·+ (xn−1 − x̄)(1 + xn−1)∆x

=

n−1∑
i=0

xi(1 + xi)∆x−
n−1∑
i=0

x̄(1 + xi)∆x

=
n−1∑
i=0

xi(1 + xi)∆x− x̄
n−1∑
i=0

(1 + xi)∆x.
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If we set this equal to zero and solve for x̄ we get an approximation to the balance point

of the beam:

0 =

n−1∑
i=0

xi(1 + xi)∆x− x̄

n−1∑
i=0

(1 + xi)∆x

x̄
n−1∑
i=0

(1 + xi)∆x =
n−1∑
i=0

xi(1 + xi)∆x

x̄ =

n−1∑
i=0

xi(1 + xi)∆x

n−1∑
i=0

(1 + xi)∆x

.

The denominator of this fraction has a very familiar interpretation. Consider one term of

the sum in the denominator: (1 + xi)∆x. This is the density near xi times a short length,

∆x, which in other words is approximately the mass of the beam between xi and xi+1.

When we add these up we get approximately the mass of the beam.

Now each of the sums in the fraction has the right form to turn into an integral, which

in turn gives us the exact value of x̄:

x̄ =

∫ 10

0

x(1 + x) dx∫ 10

0

(1 + x) dx

.

The numerator of this fraction is called the moment of the system around zero:

∫ 10

0

x(1 + x) dx =

∫ 10

0

x+ x2 dx =
1150

3
,

and the denominator is the mass of the beam:∫ 10

0

(1 + x) dx = 60,

and the balance point, officially called the center of mass, is

x̄ =
1150

3

1

60
=

115

18
≈ 6.39.
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It should be apparent that there was nothing special about the density function σ(x) =

1 + x or the length of the beam, or even that the left end of the beam is at the origin.

In general, if the density of the beam is σ(x) and the beam covers the interval [a, b], the

moment of the beam around zero is

M0 =

∫ b

a

xσ(x) dx

and the total mass of the beam is

M =

∫ b

a

σ(x) dx

and the center of mass is at

x̄ =
M0

M
.

EXAMPLE 9.6.2 Suppose a beam lies on the x-axis between 20 and 30, and has density

function σ(x) = x−19. Find the center of mass. This is the same as the previous example

except that the beam has been moved. Note that the density at the left end is 20− 19 = 1

and at the right end is 30 − 19 = 11, as before. Hence the center of mass must be at

approximately 20 + 6.39 = 26.39. Let’s see how the calculation works out.

M0 =

∫ 30

20

x(x− 19) dx =

∫ 30

20

x2 − 19x dx =
x3

3
− 19x2

2

∣∣∣∣30
20

=
4750

3

M =

∫ 30

20

x− 19 dx =
x2

2
− 19x

∣∣∣∣30
20

= 60

M0

M
=

4750

3

1

60
=

475

18
≈ 26.39.

EXAMPLE 9.6.3 Suppose a flat plate of uniform density has the shape contained by

y = x2, y = 1, and x = 0, in the first quadrant. Find the center of mass. (Since the density

is constant, the center of mass depends only on the shape of the plate, not the density, or

in other words, this is a purely geometric quantity. In such a case the center of mass is

called the centroid.)

This is a two dimensional problem, but it can be solved as if it were two one dimensional

problems: we need to find the x and y coordinates of the center of mass, x̄ and ȳ, and

fortunately we can do these independently. Imagine looking at the plate edge on, from

below the x-axis. The plate will appear to be a beam, and the mass of a short section
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Figure 9.6.3 Center of mass for a two dimensional plate.

of the “beam”, say between xi and xi+1, is the mass of a strip of the plate between xi

and xi+1. See figure 9.6.3 showing the plate from above and as it appears edge on. Since

the plate has uniform density we may as well assume that σ = 1. Then the mass of the

plate between xi and xi+1 is approximately mi = σ(1−x2
i )∆x = (1−x2

i )∆x. Now we can

compute the moment around the y-axis:

My =

∫ 1

0

x(1− x2) dx =
1

4

and the total mass

M =

∫ 1

0

(1− x2) dx =
2

3

and finally

x̄ =
1

4

3

2
=

3

8
.

Next we do the same thing to find ȳ. The mass of the plate between yi and yi+1 is

approximately ni =
√
y∆y, so

Mx =

∫ 1

0

y
√
y dy =

2

5

and

ȳ =
2

5

3

2
=

3

5
,

since the total mass M is the same. The center of mass is shown in figure 9.6.3.

EXAMPLE 9.6.4 Find the center of mass of a thin, uniform plate whose shape is the

region between y = cosx and the x-axis between x = −π/2 and x = π/2. It is clear
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that x̄ = 0, but for practice let’s compute it anyway. We will need the total mass, so we

compute it first:

M =

∫ π/2

−π/2
cosx dx = sinx

∣∣∣π/2
−π/2

= 2.

The moment around the y-axis is

My =

∫ π/2

−π/2
x cosx dx = cosx+ x sinx

∣∣∣π/2
−π/2

= 0

and the moment around the x-axis is

Mx =

∫ 1

0

y · 2 arccos y dy = y2 arccos y − y
√

1− y2

2
+

arcsin y

2

∣∣∣∣∣
1

0

=
π

4
.

Thus

x̄ =
0

2
, ȳ =

π

8
≈ 0.393.

Exercises 9.6.

1. A beam 10 meters long has density σ(x) = x2 at distance x from the left end of the beam.
Find the center of mass x̄. ⇒

2. A beam 10 meters long has density σ(x) = sin(πx/10) at distance x from the left end of the
beam. Find the center of mass x̄. ⇒

3. A beam 4 meters long has density σ(x) = x3 at distance x from the left end of the beam.
Find the center of mass x̄. ⇒

4. Verify that

∫
2x arccosx dx = x2 arccosx− x

√
1− x2

2
+

arcsinx

2
+ C.

5. A thin plate lies in the region between y = x2 and the x-axis between x = 1 and x = 2. Find
the centroid. ⇒

6. A thin plate fills the upper half of the unit circle x2 + y2 = 1. Find the centroid. ⇒
7. A thin plate lies in the region contained by y = x and y = x2. Find the centroid. ⇒
8. A thin plate lies in the region contained by y = 4−x2 and the x-axis. Find the centroid. ⇒
9. A thin plate lies in the region contained by y = x1/3 and the x-axis between x = 0 and x = 1.

Find the centroid. ⇒
10. A thin plate lies in the region contained by

√
x+
√
y = 1 and the axes in the first quadrant.

Find the centroid. ⇒
11. A thin plate lies in the region between the circle x2 + y2 = 4 and the circle x2 + y2 = 1,

above the x-axis. Find the centroid. ⇒
12. A thin plate lies in the region between the circle x2 + y2 = 4 and the circle x2 + y2 = 1 in

the first quadrant. Find the centroid. ⇒
13. A thin plate lies in the region between the circle x2 + y2 = 25 and the circle x2 + y2 = 16

above the x-axis. Find the centroid. ⇒
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9.7 Kinetic energy; improper integrals

Recall example 9.5.3 in which we computed the work required to lift an object from the

surface of the earth to some large distance D away. Since F = k/x2 we computed∫ D

r0

k

x2
dx = − k

D
+

k

r0
.

We noticed that as D increases, k/D decreases to zero so that the amount of work increases

to k/r0. More precisely,

lim
D→∞

∫ D

r0

k

x2
dx = lim

D→∞
− k

D
+

k

r0
=

k

r0
.

We might reasonably describe this calculation as computing the amount of work required

to lift the object “to infinity,” and abbreviate the limit as

lim
D→∞

∫ D

r0

k

x2
dx =

∫ ∞
r0

k

x2
dx.

Such an integral, with a limit of infinity, is called an improper integral. This is a bit

unfortunate, since it’s not really “improper” to do this, nor is it really “an integral”—it is

an abbreviation for the limit of a particular sort of integral. Nevertheless, we’re stuck with

the term, and the operation itself is perfectly legitimate. It may at first seem odd that a

finite amount of work is sufficient to lift an object to “infinity”, but sometimes surprising

things are nevertheless true, and this is such a case. If the value of an improper integral

is a finite number, as in this example, we say that the integral converges, and if not we

say that the integral diverges.

Here’s another way, perhaps even more surprising, to interpret this calculation. We

know that one interpretation of ∫ D

1

1

x2
dx

is the area under y = 1/x2 from x = 1 to x = D. Of course, as D increases this area

increases. But since ∫ D

1

1

x2
dx = − 1

D
+

1

1
,

while the area increases, it never exceeds 1, that is∫ ∞
1

1

x2
dx = 1.

The area of the infinite region under y = 1/x2 from x = 1 to infinity is finite.
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Consider a slightly different sort of improper integral:

∫ ∞
−∞

xe−x
2

dx. There are two

ways we might try to compute this. First, we could break it up into two more familiar

integrals: ∫ ∞
−∞

xe−x
2

dx =

∫ 0

−∞
xe−x

2

dx+

∫ ∞
0

xe−x
2

dx.

Now we do these as before:

∫ 0

−∞
xe−x

2

dx = lim
D→∞

−e−x
2

2

∣∣∣∣∣
0

D

= −1

2
,

and ∫ ∞
0

xe−x
2

dx = lim
D→∞

−e−x
2

2

∣∣∣∣∣
D

0

=
1

2
,

so ∫ ∞
−∞

xe−x
2

dx = −1

2
+

1

2
= 0.

Alternately, we might try

∫ ∞
−∞

xe−x
2

dx = lim
D→∞

∫ D

−D
xe−x

2

dx = lim
D→∞

−e−x
2

2

∣∣∣∣∣
D

−D

= lim
D→∞

−e−D
2

2
+

e−D
2

2
= 0.

So we get the same answer either way. This does not always happen; sometimes the second

approach gives a finite number, while the first approach does not; the exercises provide

examples. In general, we interpret the integral

∫ ∞
−∞

f(x) dx according to the first method:

both integrals

∫ a

−∞
f(x) dx and

∫ ∞
a

f(x) dx must converge for the original integral to

converge. The second approach does turn out to be useful; when lim
D→∞

∫ D

−D
f(x) dx = L,

and L is finite, then L is called the Cauchy Principal Value of

∫ ∞
−∞

f(x) dx.

Here’s a more concrete application of these ideas. We know that in general

W =

∫ x1

x0

F dx

is the work done against the force F in moving from x0 to x1. In the case that F is the

force of gravity exerted by the earth, it is customary to make F < 0 since the force is
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“downward.” This makes the work W negative when it should be positive, so typically the

work in this case is defined as

W = −
∫ x1

x0

F dx.

Also, by Newton’s Law, F = ma(t). This means that

W = −
∫ x1

x0

ma(t) dx.

Unfortunately this integral is a bit problematic: a(t) is in terms of t, while the limits and

the “dx” are in terms of x. But x and t are certainly related here: x = x(t) is the function

that gives the position of the object at time t, so v = v(t) = dx/dt = x′(t) is its velocity

and a(t) = v′(t) = x′′(t). We can use v = x′(t) as a substitution to convert the integral

from “dx” to “dv” in the usual way, with a bit of cleverness along the way:

dv = x′′(t) dt = a(t) dt = a(t)
dt

dx
dx

dx

dt
dv = a(t) dx

v dv = a(t) dx.

Substituting in the integral:

W = −
∫ x1

x0

ma(t) dx = −
∫ v1

v0

mv dv = − mv2

2

∣∣∣∣v1
v0

= −mv21
2

+
mv20
2

.

You may recall seeing the expression mv2/2 in a physics course—it is called the kinetic

energy of the object. We have shown here that the work done in moving the object from

one place to another is the same as the change in kinetic energy.

We know that the work required to move an object from the surface of the earth to

infinity is

W =

∫ ∞
r0

k

r2
dr =

k

r0
.

At the surface of the earth the acceleration due to gravity is approximately 9.8 meters

per second squared, so the force on an object of mass m is F = 9.8m. The radius of the

earth is approximately 6378.1 kilometers or 6378100 meters. Since the force due to gravity

obeys an inverse square law, F = k/r2 and 9.8m = k/63781002, k = 398665564178000m

and W = 62505380m.
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Now suppose that the initial velocity of the object, v0, is just enough to get it to

infinity, that is, just enough so that the object never slows to a stop, but so that its speed

decreases to zero, i.e., so that v1 = 0. Then

62505380m = W = −mv21
2

+
mv20
2

=
mv20
2

so

v0 =
√
125010760 ≈ 11181 meters per second,

or about 40251 kilometers per hour. This speed is called the escape velocity. Notice that

the mass of the object, m, canceled out at the last step; the escape velocity is the same

for all objects. Of course, it takes considerably more energy to get a large object up to

40251 kph than a small one, so it is certainly more difficult to get a large object into deep

space than a small one. Also, note that while we have computed the escape velocity for

the earth, this speed would not in fact get an object “to infinity” because of the large mass

in our neighborhood called the sun. Escape velocity for the sun starting at the distance of

the earth from the sun is nearly 4 times the escape velocity we have calculated.

Exercises 9.7.

1. Is the area under y = 1/x from 1 to infinity finite or infinite? If finite, compute the area. ⇒
2. Is the area under y = 1/x3 from 1 to infinity finite or infinite? If finite, compute the area.
⇒

3. Does

∫ ∞

0

x2 + 2x− 1 dx converge or diverge? If it converges, find the value. ⇒

4. Does

∫ ∞

1

1/
√
x dx converge or diverge? If it converges, find the value. ⇒

5. Does

∫ ∞

0

e−x dx converge or diverge? If it converges, find the value. ⇒

6.

∫ 1/2

0

(2x − 1)−3 dx is an improper integral of a slightly different sort. Express it as a limit

and determine whether it converges or diverges; if it converges, find the value. ⇒

7. Does

∫ 1

0

1/
√
x dx converge or diverge? If it converges, find the value. ⇒

8. Does

∫ π/2

0

sec2 x dx converge or diverge? If it converges, find the value. ⇒

9. Does

∫ ∞

−∞

x2

4 + x6
dx converge or diverge? If it converges, find the value. ⇒

10. Does

∫ ∞

−∞
x dx converge or diverge? If it converges, find the value. Also find the Cauchy

Principal Value, if it exists. ⇒

11. Does

∫ ∞

−∞
sinx dx converge or diverge? If it converges, find the value. Also find the Cauchy

Principal Value, if it exists. ⇒
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12. Does

∫ ∞

−∞
cosx dx converge or diverge? If it converges, find the value. Also find the Cauchy

Principal Value, if it exists. ⇒
13. Suppose the curve y = 1/x is rotated around the x-axis generating a sort of funnel or horn

shape, called Gabriel’s horn or Toricelli’s trumpet. Is the volume of this funnel from
x = 1 to infinity finite or infinite? If finite, compute the volume. ⇒

14. An officially sanctioned baseball must be between 142 and 149 grams. How much work,
in Newton-meters, does it take to throw a ball at 80 miles per hour? At 90 mph? At
100.9 mph? (According to the Guinness Book of World Records, at http://www.baseball-

almanac.com/recbooks/rb_guin.shtml, “The greatest reliably recorded speed at which a
baseball has been pitched is 100.9 mph by Lynn Nolan Ryan (California Angels) at Anaheim
Stadium in California on August 20, 1974.”) ⇒

9.8 Probability

You perhaps have at least a rudimentary understanding of discrete probability, which

measures the likelihood of an “event” when there are a finite number of possibilities. For

example, when an ordinary six-sided die is rolled, the probability of getting any particular

number is 1/6. In general, the probability of an event is the number of ways the event can

happen divided by the number of ways that “anything” can happen.

For a slightly more complicated example, consider the case of two six-sided dice. The

dice are physically distinct, which means that rolling a 2–5 is different than rolling a 5–2;

each is an equally likely event out of a total of 36 ways the dice can land, so each has a

probability of 1/36.

Most interesting events are not so simple. More interesting is the probability of rolling

a certain sum out of the possibilities 2 through 12. It is clearly not true that all sums are

equally likely: the only way to roll a 2 is to roll 1–1, while there are many ways to roll a 7.

Because the number of possibilities is quite small, and because a pattern quickly becomes

evident, it is easy to see that the probabilities of the various sums are:

P (2) = P (12) = 1/36

P (3) = P (11) = 2/36

P (4) = P (10) = 3/36

P (5) = P (9) = 4/36

P (6) = P (8) = 5/36

P (7) = 6/36

Here we use P (n) to mean “the probability of rolling an n.” Since we have correctly

accounted for all possibilities, the sum of all these probabilities is 36/36 = 1; the probability

that the sum is one of 2 through 12 is 1, because there are no other possibilities.

http://www.baseball-almanac.com/recbooks/rb_guin.shtml
http://www.baseball-almanac.com/recbooks/rb_guin.shtml
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The study of probability is concerned with more difficult questions as well; for example,

suppose the two dice are rolled many times. On the average, what sum will come up? In

the language of probability, this average is called the expected value of the sum. This is

at first a little misleading, as it does not tell us what to “expect” when the two dice are

rolled, but what we expect the long term average will be.

Suppose that two dice are rolled 36 million times. Based on the probabilities, we would

expect about 1 million rolls to be 2, about 2 million to be 3, and so on, with a roll of 7

topping the list at about 6 million. The sum of all rolls would be 1 million times 2 plus 2

million times 3, and so on, and dividing by 36 million we would get the average:

x̄ = (2 · 106 + 3(2 · 106) + · · ·+ 7(6 · 106) + · · ·+ 12 · 106) 1

36 · 106

= 2
106

36 · 106
+ 3

2 · 106

36 · 106
+ · · ·+ 7

6 · 106

36 · 106
+ · · ·+ 12

106

36 · 106

= 2P (2) + 3P (3) + · · ·+ 7P (7) + · · ·+ 12P (12)

=
12∑
i=2

iP (i) = 7.

There is nothing special about the 36 million in this calculation. No matter what the

number of rolls, once we simplify the average, we get the same

12∑
i=2

iP (i). While the actual

average value of a large number of rolls will not be exactly 7, the average should be close

to 7 when the number of rolls is large. Turning this around, if the average is not close to

7, we should suspect that the dice are not fair.

A variable, say X, that can take certain values, each with a corresponding probability,

is called a random variable; in the example above, the random variable was the sum of

the two dice. If the possible values for X are x1, x2,. . . ,xn, then the expected value of the

random variable is E(X) =
n∑

i=1

xiP (xi). The expected value is also called the mean.

When the number of possible values for X is finite, we say that X is a discrete random

variable. In many applications of probability, the number of possible values of a random

variable is very large, perhaps even infinite. To deal with the infinite case we need a

different approach, and since there is a sum involved, it should not be wholly surprising

that integration turns out to be a useful tool. It then turns out that even when the

number of possibilities is large but finite, it is frequently easier to pretend that the number

is infinite. Suppose, for example, that a dart is thrown at a dart board. Since the dart

board consists of a finite number of atoms, there are in some sense only a finite number

of places for the dart to land, but it is easier to explore the probabilities involved by

pretending that the dart can land on any point in the usual x-y plane.
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DEFINITION 9.8.1 Let f : R → R be a function. If f(x) ≥ 0 for every x and∫ ∞
−∞

f(x) dx = 1 then f is a probability density function.

We associate a probability density function with a random variable X by stipulating

that the probability that X is between a and b is

∫ b

a

f(x) dx. Because of the requirement

that the integral from −∞ to ∞ be 1, all probabilities are less than or equal to 1, and the

probability that X takes on some value between −∞ and ∞ is 1, as it should be.

EXAMPLE 9.8.2 Consider again the two dice example; we can view it in a way that

more resembles the probability density function approach. Consider a random variable X

that takes on any real value with probabilities given by the probability density function in

figure 9.8.1. The function f consists of just the top edges of the rectangles, with vertical

sides drawn for clarity; the function is zero below 1.5 and above 12.5. The area of each

rectangle is the probability of rolling the sum in the middle of the bottom of the rectangle,

or

P (n) =

∫ n+1/2

n−1/2
f(x) dx.

The probability of rolling a 4, 5, or 6 is

P (n) =

∫ 13/2

7/2

f(x) dx.

Of course, we could also compute probabilities that don’t make sense in the context of the

dice, such as the probability that X is between 4 and 5.8.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

Figure 9.8.1 A probability density function for two dice.
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The function

F (x) = P (X ≤ x) =

∫ x

−∞
f(t)dt

is called the cumulative distribution function or simply (probability) distribution.

EXAMPLE 9.8.3 Suppose that a < b and

f(x) =

{
1

b− a
if a ≤ x ≤ b

0 otherwise.

Then f(x) is the uniform probability density function on [a, b]. and the corresponding

distribution is the uniform distribution on [a, b].

EXAMPLE 9.8.4 Consider the function f(x) = e−x
2/2. What can we say about∫ ∞

−∞
e−x

2/2 dx?

We cannot find an antiderivative of f , but we can see that this integral is some finite

number. Notice that 0 < f(x) = e−x
2/2 ≤ e−x/2 for |x| > 1. This implies that the area

under e−x
2/2 is less than the area under e−x/2, over the interval [1,∞). It is easy to

compute the latter area, namely ∫ ∞
1

e−x/2 dx =
2√
e
,

so ∫ ∞
1

e−x
2/2 dx

is some finite number smaller than 2/
√
e. Because f is symmetric around the y-axis,∫ −1

−∞
e−x

2/2 dx =

∫ ∞
1

e−x
2/2 dx.

This means that∫ ∞
−∞

e−x
2/2 dx =

∫ −1
−∞

e−x
2/2 dx+

∫ 1

−1
e−x

2/2 dx+

∫ ∞
1

e−x
2/2 dx = A

for some finite positive number A. Now if we let g(x) = f(x)/A,∫ ∞
−∞

g(x) dx =
1

A

∫ ∞
−∞

e−x
2/2 dx =

1

A
A = 1,

so g is a probability density function. It turns out to be very useful, and is called the

standard normal probability density function or more informally the bell curve,
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Figure 9.8.2 The bell curve.

giving rise to the standard normal distribution. See figure 9.8.2 for the graph of the

bell curve.

We have shown that A is some finite number without computing it; we cannot compute

it with the techniques we have available. By using some techniques from multivariable

calculus, it can be shown that A =
√
2π.

EXAMPLE 9.8.5 The exponential distribution has probability density function

f(x) =
{
0 x < 0
ce−cx x ≥ 0

where c is a positive constant.

The mean or expected value of a random variable is quite useful, as hinted at in

our discussion of dice. Recall that the mean for a discrete random variable is E(X) =
n∑

i=1

xiP (xi). In the more general context we use an integral in place of the sum.

DEFINITION 9.8.6 The mean of a random variable X with probability density func-

tion f is µ = E(X) =

∫ ∞
−∞

xf(x) dx, provided the integral converges.

When the mean exists it is unique, since it is the result of an explicit calculation. The

mean does not always exist.

The mean might look familiar; it is essentially identical to the center of mass of a one-

dimensional beam, as discussed in section 9.6. The probability density function f plays

the role of the physical density function, but now the “beam” has infinite length. If we

consider only a finite portion of the beam, say between a and b, then the center of mass is

x̄ =

∫ b

a

xf(x) dx∫ b

a

f(x) dx

.
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If we extend the beam to infinity, we get

x̄ =

∫ ∞
−∞

xf(x) dx∫ ∞
−∞

f(x) dx

=

∫ ∞
−∞

xf(x) dx = E(X),

because

∫ ∞
−∞

f(x) dx = 1. In the center of mass interpretation, this integral is the total

mass of the beam, which is always 1 when f is a probability density function.

EXAMPLE 9.8.7 The mean of the standard normal distribution is∫ ∞
−∞

x
e−x

2/2

√
2π

dx.

We compute the two halves:

∫ 0

−∞
x
e−x

2/2

√
2π

dx = lim
D→−∞

−e−x
2/2

√
2π

∣∣∣∣∣
0

D

= − 1√
2π

and ∫ ∞
0

x
e−x

2/2

√
2π

dx = lim
D→∞

−e−x
2/2

√
2π

∣∣∣∣∣
D

0

=
1√
2π

.

The sum of these is 0, which is the mean.

While the mean is very useful, it typically is not enough information to properly

evaluate a situation. For example, suppose we could manufacture an 11-sided die, with

the faces numbered 2 through 12 so that each face is equally likely to be down when the die

is rolled. The value of a roll is the value on this lower face. Rolling the die gives the same

range of values as rolling two ordinary dice, but now each value occurs with probability

1/11. The expected value of a roll is

2

11
+

3

11
+ · · ·+ 12

11
= 7.

The mean does not distinguish the two cases, though of course they are quite different.

If f is a probability density function for a random variable X, with mean µ, we would

like to measure how far a “typical” value of X is from µ. One way to measure this distance
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is (X − µ)2; we square the difference so as to measure all distances as positive. To get the

typical such squared distance, we compute the mean. For two dice, for example, we get

(2− 7)2
1

36
+ (3− 7)2

2

36
+ · · ·+ (7− 7)2

6

36
+ · · · (11− 7)2

2

36
+ (12− 7)2

1

36
=

35

36
.

Because we squared the differences this does not directly measure the typical distance we

seek; if we take the square root of this we do get such a measure,
√
35/36 ≈ 2.42. Doing

the computation for the strange 11-sided die we get

(2− 7)2
1

11
+ (3− 7)2

1

11
+ · · ·+ (7− 7)2

1

11
+ · · · (11− 7)2

1

11
+ (12− 7)2

1

11
= 10,

with square root approximately 3.16. Comparing 2.42 to 3.16 tells us that the two-dice

rolls clump somewhat more closely near 7 than the rolls of the weird die, which of course

we already knew because these examples are quite simple.

To perform the same computation for a probability density function the sum is replaced

by an integral, just as in the computation of the mean. The expected value of the squared

distances is

V (X) =

∫ ∞
−∞

(x− µ)2f(x) dx,

called the variance. The square root of the variance is the standard deviation, denoted

σ.

EXAMPLE 9.8.8 We compute the standard deviation of the standard normal distru-

bution. The variance is
1√
2π

∫ ∞
−∞

x2e−x
2/2 dx.

To compute the antiderivative, use integration by parts, with u = x and dv = xe−x
2/2 dx.

This gives ∫
x2e−x

2/2 dx = −xe−x
2/2 +

∫
e−x

2/2 dx.

We cannot do the new integral, but we know its value when the limits are −∞ to ∞, from

our discussion of the standard normal distribution. Thus

1√
2π

∫ ∞
−∞

x2e−x
2/2 dx = − 1√

2π
xe−x

2/2

∣∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

e−x
2/2 dx = 0 +

1√
2π

√
2π = 1.

The standard deviation is then
√
1 = 1.



228 Chapter 9 Applications of Integration

EXAMPLE 9.8.9 Here is a simple example showing how these ideas can be useful.

Suppose it is known that, in the long run, 1 out of every 100 computer memory chips

produced by a certain manufacturing plant is defective when the manufacturing process is

running correctly. Suppose 1000 chips are selected at random and 15 of them are defective.

This is more than the ‘expected’ number (10), but is it so many that we should suspect

that something has gone wrong in the manufacturing process? We are interested in the

probability that various numbers of defective chips arise; the probability distribution is

discrete: there can only be a whole number of defective chips. But (under reasonable

assumptions) the distribution is very close to a normal distribution, namely this one:

f(x) =
1√

2π
√
1000(.01)(.99)

exp

(
−(x− 10)2

2(1000)(.01)(.99)

)
,

which is pictured in figure 9.8.3 (recall that exp(x) = ex).
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Figure 9.8.3 Normal density function for the defective chips example.

Now how do we measure how unlikely it is that under normal circumstances we would

see 15 defective chips? We can’t compute the probability of exactly 15 defective chips, as

this would be

∫ 15

15

f(x) dx = 0. We could compute

∫ 15.5

14.5

f(x) dx ≈ 0.036; this means there

is only a 3.6% chance that the number of defective chips is 15. (We cannot compute these

integrals exactly; computer software has been used to approximate the integral values in

this discussion.) But this is misleading:

∫ 10.5

9.5

f(x) dx ≈ 0.126, which is larger, certainly,

but still small, even for the “most likely” outcome. The most useful question, in most

circumstances, is this: how likely is it that the number of defective chips is “far from”

the mean? For example, how likely, or unlikely, is it that the number of defective chips

is different by 5 or more from the expected value of 10? This is the probability that the

number of defective chips is less than 5 or larger than 15, namely∫ 5

−∞
f(x) dx+

∫ ∞
15

f(x) dx ≈ 0.11.

So there is an 11% chance that this happens—not large, but not tiny. Hence the 15

defective chips does not appear to be cause for alarm: about one time in nine we would
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expect to see the number of defective chips 5 or more away from the expected 10. How

about 20? Here we compute∫ 0

−∞
f(x) dx+

∫ ∞
20

f(x) dx ≈ 0.0015.

So there is only a 0.15% chance that the number of defective chips is more than 10 away

from the mean; this would typically be interpreted as too suspicious to ignore—it shouldn’t

happen if the process is running normally.

The big question, of course, is what level of improbability should trigger concern?

It depends to some degree on the application, and in particular on the consequences of

getting it wrong in one direction or the other. If we’re wrong, do we lose a little money?

A lot of money? Do people die? In general, the standard choices are 5% and 1%. So what

we should do is find the number of defective chips that has only, let us say, a 1% chance

of occurring under normal circumstances, and use that as the relevant number. In other

words, we want to know when∫ 10−r

−∞
f(x) dx+

∫ ∞
10+r

f(x) dx < 0.01.

A bit of trial and error shows that with r = 8 the value is about 0.011, and with r = 9 it

is about 0.004, so if the number of defective chips is 19 or more, or 1 or fewer, we should

look for problems. If the number is high, we worry that the manufacturing process has

a problem, or conceivably that the process that tests for defective chips is not working

correctly and is flagging good chips as defective. If the number is too low, we suspect that

the testing procedure is broken, and is not detecting defective chips.

Exercises 9.8.

1. Verify that

∫ ∞

1

e−x/2 dx = 2/
√
e.

2. Show that the function in example 9.8.5 is a probability density function. Compute the mean
and standard deviation. ⇒

3. Compute the mean and standard deviation of the uniform distribution on [a, b]. (See exam-
ple 9.8.3.) ⇒

4. What is the expected value of one roll of a fair six-sided die? ⇒
5. What is the expected sum of one roll of three fair six-sided dice? ⇒
6. Let µ and σ be real numbers with σ > 0. Show that

N(x) =
1√
2πσ

e
− (x−µ)2

2σ2

is a probability density function. You will not be able to compute this integral directly; use
a substitution to convert the integral into the one from example 9.8.4. The function N is
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the probability density function of the normal distribution with mean µ and standard
deviation σ. Show that the mean of the normal distribution is µ and the standard deviation
is σ.

7. Let

f(x) =

{
1

x2
x ≥ 1

0 x < 1

Show that f is a probability density function, and that the distribution has no mean.

8. Let

f(x) =

{
x −1 ≤ x ≤ 1
1 1 < x ≤ 2
0 otherwise.

Show that

∫ ∞

−∞
f(x) dx = 1. Is f a probability density function? Justify your answer.

9. If you have access to appropriate software, find r so that∫ 10−r

−∞
f(x) dx+

∫ ∞

10+r

f(x) dx ≈ 0.05,

using the function of example 9.8.9. Discuss the impact of using this new value of r to decide
whether to investigate the chip manufacturing process. ⇒

9.9 Arc Length

Here is another geometric application of the integral: find the length of a portion of a

curve. As usual, we need to think about how we might approximate the length, and turn

the approximation into an integral.

We already know how to compute one simple arc length, that of a line segment. If the

endpoints are P0(x0, y0) and P1(x1, y1) then the length of the segment is the distance be-

tween the points,
√
(x1 − x0)2 + (y1 − y0)2, from the Pythagorean theorem, as illustrated

in figure 9.9.1.
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y1 − y0

√
(x1 − x0)2 + (y1 − y0)2

Figure 9.9.1 The length of a line segment.
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Figure 9.9.2 Approximating arc length with line segments.

Now if the graph of f is “nice” (say, differentiable) it appears that we can approximate

the length of a portion of the curve with line segments, and that as the number of segments

increases, and their lengths decrease, the sum of the lengths of the line segments will

approach the true arc length; see figure 9.9.2.

Now we need to write a formula for the sum of the lengths of the line segments, in a

form that we know becomes an integral in the limit. So we suppose we have divided the

interval [a, b] into n subintervals as usual, each with length ∆x = (b−a)/n, and endpoints

a = x0, x1, x2, . . . , xn = b. The length of a typical line segment, joining (xi, f(xi))

to (xi+1, f(xi+1)), is
√

(∆x)2 + (f(xi+1)− f(xi))2. By the Mean Value Theorem (6.5.2),

there is a number ti in (xi, xi+1) such that f ′(ti)∆x = f(xi+1) − f(xi), so the length of

the line segment can be written as√
(∆x)2 + (f ′(ti))2∆x2 =

√
1 + (f ′(ti))2 ∆x.

The arc length is then

lim
n→∞

n−1∑
i=0

√
1 + (f ′(ti))2 ∆x =

∫ b

a

√
1 + (f ′(x))2 dx.

Note that the sum looks a bit different than others we have encountered, because the

approximation contains a ti instead of an xi. In the past we have always used left endpoints

(namely, xi) to get a representative value of f on [xi, xi+1]; now we are using a different

point, but the principle is the same.

To summarize, to compute the length of a curve on the interval [a, b], we compute the

integral ∫ b

a

√
1 + (f ′(x))2 dx.

Unfortunately, integrals of this form are typically difficult or impossible to compute exactly,

because usually none of our methods for finding antiderivatives will work. In practice this

means that the integral will usually have to be approximated.
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EXAMPLE 9.9.1 Let f(x) =
√

r2 − x2, the upper half circle of radius r. The length

of this curve is half the circumference, namely πr. Let’s compute this with the arc length

formula. The derivative f ′ is −x/
√
r2 − x2 so the integral is

∫ r

−r

√
1 +

x2

r2 − x2
dx =

∫ r

−r

√
r2

r2 − x2
dx = r

∫ r

−r

√
1

r2 − x2
dx.

Using a trigonometric substitution, we find the antiderivative, namely arcsin(x/r). Notice

that the integral is improper at both endpoints, as the function
√
1/(r2 − x2) is undefined

when x = ±r. So we need to compute

lim
D→−r+

∫ 0

D

√
1

r2 − x2
dx+ lim

D→r−

∫ D

0

√
1

r2 − x2
dx.

This is not difficult, and has value π, so the original integral, with the extra r in front, has

value πr as expected.

Exercises 9.9.

1. Find the arc length of f(x) = x3/2 on [0, 2]. ⇒
2. Find the arc length of f(x) = x2/8− lnx on [1, 2]. ⇒
3. Find the arc length of f(x) = (1/3)(x2 + 2)3/2 on the interval [0, a]. ⇒
4. Find the arc length of f(x) = ln(sinx) on the interval [π/4, π/3]. ⇒

5. Let a > 0. Show that the length of y = coshx on [0, a] is equal to

∫ a

0

coshx dx.

6. Find the arc length of f(x) = coshx on [0, ln 2]. ⇒
7. Set up the integral to find the arc length of sinx on the interval [0, π]; do not evaluate the

integral. If you have access to appropriate software, approximate the value of the integral.
⇒

8. Set up the integral to find the arc length of y = xe−x on the interval [2, 3]; do not evaluate the
integral. If you have access to appropriate software, approximate the value of the integral.
⇒

9. Find the arc length of y = ex on the interval [0, 1]. (This can be done exactly; it is a bit
tricky and a bit long.) ⇒

9.10 Surface Area

Another geometric question that arises naturally is: “What is the surface area of a vol-

ume?” For example, what is the surface area of a sphere? More advanced techniques

are required to approach this question in general, but we can compute the areas of some

volumes generated by revolution.
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As usual, the question is: how might we approximate the surface area? For a surface

obtained by rotating a curve around an axis, we can take a polygonal approximation to

the curve, as in the last section, and rotate it around the same axis. This gives a surface

composed of many “truncated cones;” a truncated cone is called a frustum of a cone.

Figure 9.10.1 illustrates this approximation.

Figure 9.10.1 Approximating a surface (left) by portions of cones (right).

So we need to be able to compute the area of a frustum of a cone. Since the frustum

can be formed by removing a small cone from the top of a larger one, we can compute

the desired area if we know the surface area of a cone. Suppose a right circular cone has

base radius r and slant height h. If we cut the cone from the vertex to the base circle

and flatten it out, we obtain a sector of a circle with radius h and arc length 2πr, as in

figure 9.10.2. The angle at the center, in radians, is then 2πr/h, and the area of the cone

is equal to the area of the sector of the circle. Let A be the area of the sector; since the

area of the entire circle is πh2, we have

A

πh2
=

2πr/h

2π

A = πrh.

Now suppose we have a frustum of a cone with slant height h and radii r0 and r1, as

in figure 9.10.3. The area of the entire cone is πr1(h0 + h), and the area of the small cone

is πr0h0; thus, the area of the frustum is πr1(h0 + h)− πr0h0 = π((r1 − r0)h0 + r1h). By
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Figure 9.10.2 The area of a cone.

similar triangles,
h0

r0
=

h0 + h

r1
.

With a bit of algebra this becomes (r1 − r0)h0 = r0h; substitution into the area gives

π((r1 − r0)h0 + r1h) = π(r0h+ r1h) = πh(r0 + r1) = 2π
r0 + r1

2
h = 2πrh.

The final form is particularly easy to remember, with r equal to the average of r0 and r1,

as it is also the formula for the area of a cylinder. (Think of a cylinder of radius r and

height h as the frustum of a cone of infinite height.)
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Figure 9.10.3 The area of a frustum.

Now we are ready to approximate the area of a surface of revolution. On one subin-

terval, the situation is as shown in figure 9.10.4. When the line joining two points on the
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curve is rotated around the x-axis, it forms a frustum of a cone. The area is

2πrh = 2π
f(xi) + f(xi+1)

2

√
1 + (f ′(ti))2 ∆x.

Here
√
1 + (f ′(ti))2 ∆x is the length of the line segment, as we found in the previous

section. Assuming f is a continuous function, there must be some x∗i in [xi, xi+1] such

that (f(xi) + f(xi+1))/2 = f(x∗i ), so the approximation for the surface area is

n−1∑
i=0

2πf(x∗i )
√
1 + (f ′(ti))2 ∆x.

This is not quite the sort of sum we have seen before, as it contains two different values

in the interval [xi, xi+1], namely x∗i and ti. Nevertheless, using more advanced techniques

than we have available here, it turns out that

lim
n→∞

n−1∑
i=0

2πf(x∗i )
√
1 + (f ′(ti))2 ∆x =

∫ b

a

2πf(x)
√
1 + (f ′(x))2 dx

is the surface area we seek. (Roughly speaking, this is because while x∗i and ti are distinct

values in [xi, xi+1], they get closer and closer to each other as the length of the interval

shrinks.)
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(xi, f(xi))

(xi+1, f(xi+1))

Figure 9.10.4 One subinterval.

EXAMPLE 9.10.1 We compute the surface area of a sphere of radius r. The sphere can

be obtained by rotating the graph of f(x) =
√
r2 − x2 about the x-axis. The derivative
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f ′ is −x/
√
r2 − x2, so the surface area is given by

A = 2π

∫ r

−r

√
r2 − x2

√
1 +

x2

r2 − x2
dx

= 2π

∫ r

−r

√
r2 − x2

√
r2

r2 − x2
dx

= 2π

∫ r

−r
r dx = 2πr

∫ r

−r
1 dx = 4πr2

If the curve is rotated around the y axis, the formula is nearly identical, because the

length of the line segment we use to approximate a portion of the curve doesn’t change.

Instead of the radius f(x∗i ), we use the new radius x̄i = (xi+xi+1)/2, and the surface area

integral becomes ∫ b

a

2πx
√
1 + (f ′(x))2 dx.

EXAMPLE 9.10.2 Compute the area of the surface formed when f(x) = x2 between

0 and 2 is rotated around the y-axis.

We compute f ′(x) = 2x, and then

2π

∫ 2

0

x
√
1 + 4x2 dx =

π

6
(173/2 − 1),

by a simple substitution.

Exercises 9.10.

1. Compute the area of the surface formed when f(x) = 2
√
1− x between −1 and 0 is rotated

around the x-axis. ⇒
2. Compute the surface area of example 9.10.2 by rotating f(x) =

√
x around the x-axis.

3. Compute the area of the surface formed when f(x) = x3 between 1 and 3 is rotated around
the x-axis. ⇒

4. Compute the area of the surface formed when f(x) = 2+ cosh(x) between 0 and 1 is rotated
around the x-axis. ⇒

5. Consider the surface obtained by rotating the graph of f(x) = 1/x, x ≥ 1, around the x-axis.
This surface is called Gabriel’s horn or Toricelli’s trumpet. In exercise 13 in section 9.7
we saw that Gabriel’s horn has finite volume. Show that Gabriel’s horn has infinite surface
area.

6. Consider the circle (x − 2)2 + y2 = 1. Sketch the surface obtained by rotating this circle
about the y-axis. (The surface is called a torus.) What is the surface area? ⇒
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7. Consider the ellipse with equation x2/4 + y2 = 1. If the ellipse is rotated around the x-axis
it forms an ellipsoid. Compute the surface area. ⇒

8. Generalize the preceding result: rotate the ellipse given by x2/a2 + y2/b2 = 1 about the
x-axis and find the surface area of the resulting ellipsoid. You should consider two cases,
when a > b and when a < b. Compare to the area of a sphere. ⇒





10
Polar Coordinates,

Parametric Equations

10.1 Polar Coordinates

Coordinate systems are tools that let us use algebraic methods to understand geometry.

While the rectangular (also called Cartesian) coordinates that we have been using are

the most common, some problems are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or

in three-dimensional space by a set of numbers. In rectangular coordinates these numbers

are interpreted, roughly speaking, as the lengths of the sides of a rectangle. In polar

coordinates a point in the plane is identified by a pair of numbers (r, θ). The number θ

measures the angle between the positive x-axis and a ray that goes through the point, as

shown in figure 10.1.1; the number r measures the distance from the origin to the point.

Figure 10.1.1 shows the point with rectangular coordinates (1,
√
3) and polar coordinates

(2, π/3), 2 units from the origin and π/3 radians from the positive x-axis.

√
3

1
........
........
........
........
........
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........
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........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..................
............

(2, π/3)•

.......
........
....

Figure 10.1.1 Polar coordinates of the point (1,
√
3).

239
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Just as we describe curves in the plane using equations involving x and y, so can we

describe curves using equations involving r and θ. Most common are equations of the form

r = f(θ).

EXAMPLE 10.1.1 Graph the curve given by r = 2. All points with r = 2 are at

distance 2 from the origin, so r = 2 describes the circle of radius 2 with center at the

origin.

EXAMPLE 10.1.2 Graph the curve given by r = 1 + cos θ. We first consider y =

1 + cosx, as in figure 10.1.2. As θ goes through the values in [0, 2π], the value of r tracks

the value of y, forming the “cardioid” shape of figure 10.1.2. For example, when θ = π/2,

r = 1 + cos(π/2) = 1, so we graph the point at distance 1 from the origin along the

positive y-axis, which is at an angle of π/2 from the positive x-axis. When θ = 7π/4,

r = 1 + cos(7π/4) = 1 +
√
2/2 ≈ 1.71, and the corresponding point appears in the fourth

quadrant. This illustrates one of the potential benefits of using polar coordinates: the

equation for this curve in rectangular coordinates would be quite complicated.
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Figure 10.1.2 A cardioid: y = 1 + cosx on the left, r = 1 + cos θ on the right.

Each point in the plane is associated with exactly one pair of numbers in the rect-

angular coordinate system; each point is associated with an infinite number of pairs in

polar coordinates. In the cardioid example, we considered only the range 0 ≤ θ ≤ 2π,

and already there was a duplicate: (2, 0) and (2, 2π) are the same point. Indeed, every

value of θ outside the interval [0, 2π) duplicates a point on the curve r = 1 + cos θ when

0 ≤ θ < 2π. We can even make sense of polar coordinates like (−2, π/4): go to the direc-

tion π/4 and then move a distance 2 in the opposite direction; see figure 10.1.3. As usual,

a negative angle θ means an angle measured clockwise from the positive x-axis. The point

in figure 10.1.3 also has coordinates (2, 5π/4) and (2,−3π/4).

The relationship between rectangular and polar coordinates is quite easy to under-

stand. The point with polar coordinates (r, θ) has rectangular coordinates x = r cos θ

and y = r sin θ; this follows immediately from the definition of the sine and cosine func-

tions. Using figure 10.1.3 as an example, the point shown has rectangular coordinates
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−2
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−2 −1 1 2
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Figure 10.1.3 The point (−2, π/4) = (2, 5π/4) = (2,−3π/4) in polar coordinates.

x = (−2) cos(π/4) = −
√
2 ≈ 1.4142 and y = (−2) sin(π/4) = −

√
2. This makes it very

easy to convert equations from rectangular to polar coordinates.

EXAMPLE 10.1.3 Find the equation of the line y = 3x+ 2 in polar coordinates. We

merely substitute: r sin θ = 3r cos θ + 2, or r =
2

sin θ − 3 cos θ
.

EXAMPLE 10.1.4 Find the equation of the circle (x − 1/2)2 + y2 = 1/4 in polar

coordinates. Again substituting: (r cos θ − 1/2)2 + r2 sin2 θ = 1/4. A bit of algebra turns

this into r = cos(t). You should try plotting a few (r, θ) values to convince yourself that

this makes sense.

EXAMPLE 10.1.5 Graph the polar equation r = θ. Here the distance from the origin

exactly matches the angle, so a bit of thought makes it clear that when θ ≥ 0 we get the

spiral of Archimedes in figure 10.1.4. When θ < 0, r is also negative, and so the full graph

is the right hand picture in the figure.
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Figure 10.1.4 The spiral of Archimedes and the full graph of r = θ.

Converting polar equations to rectangular equations can be somewhat trickier, and

graphing polar equations directly is also not always easy.
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EXAMPLE 10.1.6 Graph r = 2 sin θ. Because the sine is periodic, we know that we

will get the entire curve for values of θ in [0, 2π). As θ runs from 0 to π/2, r increases

from 0 to 2. Then as θ continues to π, r decreases again to 0. When θ runs from π to

2π, r is negative, and it is not hard to see that the first part of the curve is simply traced

out again, so in fact we get the whole curve for values of θ in [0, π). Thus, the curve looks

something like figure 10.1.5. Now, this suggests that the curve could possibly be a circle,

and if it is, it would have to be the circle x2 + (y − 1)2 = 1. Having made this guess, we

can easily check it. First we substitute for x and y to get (r cos θ)2 + (r sin θ − 1)2 = 1;

expanding and simplifying does indeed turn this into r = 2 sin θ.
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Figure 10.1.5 Graph of r = 2 sin θ.

Exercises 10.1.

1. Plot these polar coordinate points on one graph: (2, π/3), (−3, π/2), (−2,−π/4), (1/2, π),
(1, 4π/3), (0, 3π/2).

Find an equation in polar coordinates that has the same graph as the given equation in
rectangular coordinates.

2. y = 3x ⇒
3. y = −4 ⇒
4. xy2 = 1 ⇒
5. x2 + y2 = 5 ⇒
6. y = x3 ⇒
7. y = sinx ⇒
8. y = 5x+ 2 ⇒
9. x = 2 ⇒

10. y = x2 + 1 ⇒
11. y = 3x2 − 2x ⇒
12. y = x2 + y2 ⇒

Sketch the curve.

13. r = cos θ
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14. r = sin(θ + π/4)

15. r = − sec θ

16. r = θ/2, θ ≥ 0

17. r = 1 + θ1/π2

18. r = cot θ csc θ

19. r =
1

sin θ + cos θ

20. r2 = −2 sec θ csc θ

In the exercises below, find an equation in rectangular coordinates that has the same graph
as the given equation in polar coordinates.

21. r = sin(3θ) ⇒
22. r = sin2 θ ⇒
23. r = sec θ csc θ ⇒
24. r = tan θ ⇒

10.2 Slopes in polar coordinates

When we describe a curve using polar coordinates, it is still a curve in the x-y plane. We

would like to be able to compute slopes and areas for these curves using polar coordinates.

We have seen that x = r cos θ and y = r sin θ describe the relationship between polar

and rectangular coordinates. If in turn we are interested in a curve given by r = f(θ),

then we can write x = f(θ) cos θ and y = f(θ) sin θ, describing x and y in terms of θ alone.

The first of these equations describes θ implicitly in terms of x, so using the chain rule we

may compute
dy

dx
=

dy

dθ

dθ

dx
.

Since dθ/dx = 1/(dx/dθ), we can instead compute

dy

dx
=

dy/dθ

dx/dθ
=

f(θ) cos θ + f ′(θ) sin θ

−f(θ) sin θ + f ′(θ) cos θ
.

EXAMPLE 10.2.1 Find the points at which the curve given by r = 1 + cos θ has a

vertical or horizontal tangent line. Since this function has period 2π, we may restrict our

attention to the interval [0, 2π) or (−π, π], as convenience dictates. First, we compute the

slope:

dy

dx
=

(1 + cos θ) cos θ − sin θ sin θ

−(1 + cos θ) sin θ − sin θ cos θ
=

cos θ + cos2 θ − sin2 θ

− sin θ − 2 sin θ cos θ
.
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This fraction is zero when the numerator is zero (and the denominator is not zero). The

numerator is 2 cos2 θ + cos θ − 1 so by the quadratic formula

cos θ =
−1±

√
1 + 4 · 2
4

= −1 or
1

2
.

This means θ is π or ±π/3. However, when θ = π, the denominator is also 0, so we cannot

conclude that the tangent line is horizontal.

Setting the denominator to zero we get

−θ − 2 sin θ cos θ = 0

sin θ(1 + 2 cos θ) = 0,

so either sin θ = 0 or cos θ = −1/2. The first is true when θ is 0 or π, the second when θ

is 2π/3 or 4π/3. However, as above, when θ = π, the numerator is also 0, so we cannot

conclude that the tangent line is vertical. Figure 10.2.1 shows points corresponding to θ

equal to 0, ±π/3, 2π/3 and 4π/3 on the graph of the function. Note that when θ = π the

curve hits the origin and does not have a tangent line.
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Figure 10.2.1 Points of vertical and horizontal tangency for r = 1 + cos θ.

We know that the second derivative f ′′(x) is useful in describing functions, namely,

in describing concavity. We can compute f ′′(x) in terms of polar coordinates as well. We

already know how to write dy/dx = y′ in terms of θ, then

d

dx

dy

dx
=

dy′

dx
=

dy′

dθ

dθ

dx
=

dy′/dθ

dx/dθ
.

EXAMPLE 10.2.2 We find the second derivative for the cardioid r = 1 + cos θ:

d

dθ

cos θ + cos2 θ − sin2 θ

− sin θ − 2 sin θ cos θ
· 1

dx/dθ
= · · · = 3(1 + cos θ)

(sin θ + 2 sin θ cos θ)2
· 1

−(sin θ + 2 sin θ cos θ)

=
−3(1 + cos θ)

(sin θ + 2 sin θ cos θ)3
.

The ellipsis here represents rather a substantial amount of algebra. We know from above

that the cardioid has horizontal tangents at ±π/3; substituting these values into the second
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derivative we get y′′(π/3) = −
√
3/2 and y′′(−π/3) =

√
3/2, indicating concave down and

concave up respectively. This agrees with the graph of the function.

Exercises 10.2.

Compute y′ = dy/dx and y′′ = d2y/dx2.

1. r = θ ⇒ 2. r = 1 + sin θ ⇒
3. r = cos θ ⇒ 4. r = sin θ ⇒
5. r = sec θ ⇒ 6. r = sin(2θ) ⇒

Sketch the curves over the interval [0, 2π] unless otherwise stated.

7. r = sin θ + cos θ 8. r = 2 + 2 sin θ

9. r =
3

2
+ sin θ 10. r = 2 + cos θ

11. r =
1

2
+ cos θ 12. r = cos(θ/2), 0 ≤ θ ≤ 4π

13. r = sin(θ/3), 0 ≤ θ ≤ 6π 14. r = sin2 θ

15. r = 1 + cos2(2θ) 16. r = sin2(3θ)

17. r = tan θ 18. r = sec(θ/2), 0 ≤ θ ≤ 4π

19. r = 1 + sec θ 20. r =
1

1− cos θ

21. r =
1

1 + sin θ
22. r = cot(2θ)

23. r = π/θ, 0 ≤ θ ≤ ∞ 24. r = 1 + π/θ, 0 ≤ θ ≤ ∞
25. r =

√
π/θ, 0 ≤ θ ≤ ∞

10.3 Areas in polar coordinates

We can use the equation of a curve in polar coordinates to compute some areas bounded

by such curves. The basic approach is the same as with any application of integration: find

an approximation that approaches the true value. For areas in rectangular coordinates, we

approximated the region using rectangles; in polar coordinates, we use sectors of circles,

as depicted in figure 10.3.1. Recall that the area of a sector of a circle is αr2/2, where

α is the angle subtended by the sector. If the curve is given by r = f(θ), and the angle

subtended by a small sector is ∆θ, the area is (∆θ)(f(θ))2/2. Thus we approximate the

total area as
n−1∑
i=0

1

2
f(θi)

2 ∆θ.

In the limit this becomes ∫ b

a

1

2
f(θ)2 dθ.
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EXAMPLE 10.3.1 We find the area inside the cardioid r = 1 + cos θ.

∫ 2π

0

1

2
(1+cos θ)2 dθ =

1

2

∫ 2π

0

1+2 cos θ+cos2 θ dθ =
1

2
(θ + 2 sin θ +

θ

2
+

sin 2θ

4
)

∣∣∣∣2π
0

=
3π

2
.
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Figure 10.3.1 Approximating area by sectors of circles.

EXAMPLE 10.3.2 We find the area between the circles r = 2 and r = 4 sin θ, as shown

in figure 10.3.2. The two curves intersect where 2 = 4 sin θ, or sin θ = 1/2, so θ = π/6 or

5π/6. The area we want is then

1

2

∫ 5π/6

π/6

16 sin2 θ − 4 dθ =
4

3
π + 2

√
3.

..

Figure 10.3.2 An area between curves.

This example makes the process appear more straightforward than it is. Because

points have many different representations in polar coordinates, it is not always so easy to

identify points of intersection.
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EXAMPLE 10.3.3 We find the shaded area in the first graph of figure 10.3.3 as the

difference of the other two shaded areas. The cardioid is r = 1 + sin θ and the circle is

r = 3 sin θ. We attempt to find points of intersection:

1 + sin θ = 3 sin θ

1 = 2 sin θ

1/2 = sin θ.

This has solutions θ = π/6 and 5π/6; π/6 corresponds to the intersection in the first quad-

rant that we need. Note that no solution of this equation corresponds to the intersection

point at the origin, but fortunately that one is obvious. The cardioid goes through the

origin when θ = −π/2; the circle goes through the origin at multiples of π, starting with

0.

Now the larger region has area

1

2

∫ π/6

−π/2
(1 + sin θ)2 dθ =

π

2
− 9

16

√
3

and the smaller has area

1

2

∫ π/6

0

(3 sin θ)2 dθ =
3π

8
− 9

16

√
3

so the area we seek is π/8.

.. . .

Figure 10.3.3 An area between curves.
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Exercises 10.3.

Find the area enclosed by the curve.

1. r =
√
sin θ ⇒ 2. r = 2 + cos θ ⇒

3. r = sec θ, π/6 ≤ θ ≤ π/3 ⇒ 4. r = cos θ, 0 ≤ θ ≤ π/3 ⇒
5. r = 2a cos θ, a > 0 ⇒ 6. r = 4 + 3 sin θ ⇒
7. Find the area inside the loop formed by r = tan(θ/2). ⇒
8. Find the area inside one loop of r = cos(3θ). ⇒
9. Find the area inside one loop of r = sin2 θ. ⇒

10. Find the area inside the small loop of r = (1/2) + cos θ. ⇒
11. Find the area inside r = (1/2) + cos θ, including the area inside the small loop. ⇒
12. Find the area inside one loop of r2 = cos(2θ). ⇒

13. Find the area enclosed by r = tan θ and r =
csc θ√

2
. ⇒

14. Find the area inside r = 2 cos θ and outside r = 1. ⇒
15. Find the area inside r = 2 sin θ and above the line r = (3/2) csc θ. ⇒
16. Find the area inside r = θ, 0 ≤ θ ≤ 2π. ⇒
17. Find the area inside r =

√
θ, 0 ≤ θ ≤ 2π. ⇒

18. Find the area inside both r =
√
3 cos θ and r = sin θ. ⇒

19. Find the area inside both r = 1− cos θ and r = cos θ. ⇒
20. The center of a circle of radius 1 is on the circumference of a circle of radius 2. Find the area

of the region inside both circles. ⇒
21. Find the shaded area in figure 10.3.4. The curve is r = θ, 0 ≤ θ ≤ 3π. ⇒

..

Figure 10.3.4 An area bounded by the spiral of Archimedes.
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10.4 Parametric Equations

When we computed the derivative dy/dx using polar coordinates, we used the expressions

x = f(θ) cos θ and y = f(θ) sin θ. These two equations completely specify the curve,

though the form r = f(θ) is simpler. The expanded form has the virtue that it can easily

be generalized to describe a wider range of curves than can be specified in rectangular or

polar coordinates.

Suppose f(t) and g(t) are functions. Then the equations x = f(t) and y = g(t)

describe a curve in the plane. In the case of the polar coordinates equations, the variable

t is replaced by θ which has a natural geometric interpretation. But t in general is simply

an arbitrary variable, often called in this case a parameter, and this method of specifying

a curve is known as parametric equations. One important interpretation of t is time.

In this interpretation, the equations x = f(t) and y = g(t) give the position of an object

at time t.

EXAMPLE 10.4.1 Describe the path of an object that moves so that its position at

time t is given by x = cos t, y = cos2 t. We see immediately that y = x2, so the path lies

on this parabola. The path is not the entire parabola, however, since x = cos t is always

between −1 and 1. It is now easy to see that the object oscillates back and forth on the

parabola between the endpoints (1, 1) and (−1, 1), and is at point (1, 1) at time t = 0.

It is sometimes quite easy to describe a complicated path in parametric equations

when rectangular and polar coordinate expressions are difficult or impossible to devise.

EXAMPLE 10.4.2 A wheel of radius 1 rolls along a straight line, say the x-axis. A

point on the rim of the wheel will trace out a curve, called a cycloid. Assume the point

starts at the origin; find parametric equations for the curve.

Figure 10.4.1 illustrates the generation of the curve (click on the AP link to see an

animation). The wheel is shown at its starting point, and again after it has rolled through

about 490 degrees. We take as our parameter t the angle through which the wheel has

turned, measured as shown clockwise from the line connecting the center of the wheel

to the ground. Because the radius is 1, the center of the wheel has coordinates (t, 1).

We seek to write the coordinates of the point on the rim as (t + ∆x, 1 + ∆y), where

∆x and ∆y are as shown in figure 10.4.2. These values are nearly the sine and cosine

of the angle t, from the unit circle definition of sine and cosine. However, some care is

required because we are measuring t from a nonstandard starting line and in a clockwise

direction, as opposed to the usual counterclockwise direction. A bit of thought reveals

that ∆x = − sin t and ∆y = − cos t. Thus the parametric equations for the cycloid are

x = t− sin t, y = 1− cos t.
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Figure 10.4.1 A cycloid. (AP)
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Figure 10.4.2 The wheel.

Exercises 10.4.

1. What curve is described by x = t2, y = t4? If t is interpreted as time, describe how the
object moves on the curve.

2. What curve is described by x = 3 cos t, y = 3 sin t? If t is interpreted as time, describe how
the object moves on the curve.

3. What curve is described by x = 3 cos t, y = 2 sin t? If t is interpreted as time, describe how
the object moves on the curve.

4. What curve is described by x = 3 sin t, y = 3 cos t? If t is interpreted as time, describe how
the object moves on the curve.

5. Sketch the curve described by x = t3− t, y = t2. If t is interpreted as time, describe how the
object moves on the curve.

6. A wheel of radius 1 rolls along a straight line, say the x-axis. A point P is located halfway
between the center of the wheel and the rim; assume P starts at the point (0, 1/2). As the
wheel rolls, P traces a curve; find parametric equations for the curve. ⇒

7. A wheel of radius 1 rolls around the outside of a circle of radius 3. A point P on the rim of
the wheel traces out a curve called a hypercycloid, as indicated in figure 10.4.3. Assuming
P starts at the point (3, 0), find parametric equations for the curve. ⇒

8. A wheel of radius 1 rolls around the inside of a circle of radius 3. A point P on the rim of
the wheel traces out a curve called a hypocycloid, as indicated in figure 10.4.3. Assuming
P starts at the point (3, 0), find parametric equations for the curve. ⇒

9. An involute of a circle is formed as follows: Imagine that a long (that is, infinite) string is
wound tightly around a circle, and that you grasp the end of the string and begin to unwind
it, keeping the string taut. The end of the string traces out the involute. Find parametric
equations for this curve, using a circle of radius 1, and assuming that the string unwinds
counter-clockwise and the end of the string is initially at (1, 0). Figure 10.4.4 shows part of
the curve; the dotted lines represent the string at a few different times. ⇒

http://www.whitman.edu/mathematics/calculus_applets/cycloid
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Figure 10.4.3 A hypercycloid and a hypocycloid.
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Figure 10.4.4 An involute of a circle.

10.5 Calculus with Parametric Equations

We have already seen how to compute slopes of curves given by parametric equations—it

is how we computed slopes in polar coordinates.

EXAMPLE 10.5.1 Find the slope of the cycloid x = t−sin t, y = 1−cos t. We compute

x′ = 1− cos t, y′ = sin t, so
dy

dx
=

sin t

1− cos t
.

Note that when t is an odd multiple of π, like π or 3π, this is (0/2) = 0, so there is

a horizontal tangent line, in agreement with figure 10.4.1. At even multiples of π, the

fraction is 0/0, which is undefined. The figure shows that there is no tangent line at such

points.
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Areas can be a bit trickier with parametric equations, depending on the curve and the

area desired. We can potentially compute areas between the curve and the x-axis quite

easily.

EXAMPLE 10.5.2 Find the area under one arch of the cycloid x = t−sin t, y = 1−cos t.

We would like to compute ∫ 2π

0

y dx,

but we do not know y in terms of x. However, the parametric equations allow us to make

a substitution: use y = 1 − cos t to replace y, and compute dx = (1 − cos t) dt. Then the

integral becomes ∫ 2π

0

(1− cos t)(1− cos t) dt = 3π.

Note that we need to convert the original x limits to t limits using x = t − sin t. When

x = 0, t = sin t, which happens only when t = 0. Likewise, when x = 2π, t − 2π = sin t

and t = 2π. Alternately, because we understand how the cycloid is produced, we can see

directly that one arch is generated by 0 ≤ t ≤ 2π. In general, of course, the t limits will

be different than the x limits.

This technique will allow us to compute some quite interesting areas, as illustrated by

the exercises.

As a final example, we see how to compute the length of a curve given by parametric

equations. Section 9.9 investigates arc length for functions given as y in terms of x, and

develops the formula for length:

∫ b

a

√
1 +

(
dy

dx

)2

dx.

Using some properties of derivatives, including the chain rule, we can convert this to use

parametric equations x = f(t), y = g(t):

∫ b

a

√
1 +

(
dy

dx

)2

dx =

∫ b

a

√(
dx

dt

)2

+

(
dx

dt

)2(
dy

dx

)2
dt

dx
dx

=

∫ v

u

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ v

u

√
(f ′(t))2 + (g′(t))2 dt.

Here u and v are the t limits corresponding to the x limits a and b.
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EXAMPLE 10.5.3 Find the length of one arch of the cycloid. From x = t − sin t,

y = 1− cos t, we get the derivatives f ′ = 1− cos t and g′ = sin t, so the length is∫ 2π

0

√
(1− cos t)2 + sin2 t dt =

∫ 2π

0

√
2− 2 cos t dt.

Now we use the formula sin2(t/2) = (1− cos(t))/2 or 4 sin2(t/2) = 2− 2 cos t to get∫ 2π

0

√
4 sin2(t/2) dt.

Since 0 ≤ t ≤ 2π, sin(t/2) ≥ 0, so we can rewrite this as∫ 2π

0

2 sin(t/2) dt = 8.

Exercises 10.5.

1. Consider the curve of exercise 6 in section 10.4. Find all values of t for which the curve has
a horizontal tangent line. ⇒

2. Consider the curve of exercise 6 in section 10.4. Find the area under one arch of the curve.
⇒

3. Consider the curve of exercise 6 in section 10.4. Set up an integral for the length of one arch
of the curve. ⇒

4. Consider the hypercycloid of exercise 7 in section 10.4. Find all points at which the curve
has a horizontal tangent line. ⇒

5. Consider the hypercycloid of exercise 7 in section 10.4. Find the area between the large circle
and one arch of the curve. ⇒

6. Consider the hypercycloid of exercise 7 in section 10.4. Find the length of one arch of the
curve. ⇒

7. Consider the hypocycloid of exercise 8 in section 10.4. Find the area inside the curve. ⇒
8. Consider the hypocycloid of exercise 8 in section 10.4. Find the length of one arch of the

curve. ⇒
9. Recall the involute of a circle from exercise 9 in section 10.4. Find the point in the first

quadrant in figure 10.4.4 at which the tangent line is vertical. ⇒
10. Recall the involute of a circle from exercise 9 in section 10.4. Instead of an infinite string,

suppose we have a string of length π attached to the unit circle at (−1, 0), and initially laid
around the top of the circle with its end at (1, 0). If we grasp the end of the string and begin
to unwind it, we get a piece of the involute, until the string is vertical. If we then keep the
string taut and continue to rotate it counter-clockwise, the end traces out a semi-circle with
center at (−1, 0), until the string is vertical again. Continuing, the end of the string traces
out the mirror image of the initial portion of the curve; see figure 10.5.1. Find the area of
the region inside this curve and outside the unit circle. ⇒
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Figure 10.5.1 A region formed by the end of a string.

11. Find the length of the curve from the previous exercise, shown in figure 10.5.1. ⇒
12. Find the length of the spiral of Archimedes (figure 10.3.4) for 0 ≤ θ ≤ 2π. ⇒
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Sequences and Series

Consider the following sum:

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2i
+ · · ·

The dots at the end indicate that the sum goes on forever. Does this make sense? Can

we assign a numerical value to an infinite sum? While at first it may seem difficult or

impossible, we have certainly done something similar when we talked about one quantity

getting “closer and closer” to a fixed quantity. Here we could ask whether, as we add more

and more terms, the sum gets closer and closer to some fixed value. That is, look at

1

2
=

1

2
3

4
=

1

2
+

1

4
7

8
=

1

2
+

1

4
+

1

8
15

16
=

1

2
+

1

4
+

1

8
+

1

16

and so on, and ask whether these values have a limit. It seems pretty clear that they do,

namely 1. In fact, as we will see, it’s not hard to show that

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2i
=

2i − 1

2i
= 1− 1

2i

255
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and then

lim
i→∞

1− 1

2i
= 1− 0 = 1.

There is one place that you have long accepted this notion of infinite sum without really

thinking of it as a sum:

0.33333̄ =
3

10
+

3

100
+

3

1000
+

3

10000
+ · · · = 1

3
,

for example, or

3.14159 . . . = 3 +
1

10
+

4

100
+

1

1000
+

5

10000
+

9

100000
+ · · · = π.

Our first task, then, to investigate infinite sums, called series, is to investigate limits of

sequences of numbers. That is, we officially call

∞∑
i=1

1

2i
=

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2i
+ · · ·

a series, while

1

2
,
3

4
,
7

8
,
15

16
, . . . ,

2i − 1

2i
, . . .

is a sequence, and
∞∑
i=1

1

2i
= lim

i→∞

2i − 1

2i
,

that is, the value of a series is the limit of a particular sequence.

11.1 Sequences

While the idea of a sequence of numbers, a1, a2, a3, . . . is straightforward, it is useful to

think of a sequence as a function. We have up until now dealt with functions whose domains

are the real numbers, or a subset of the real numbers, like f(x) = sinx. A sequence is a

function with domain the natural numbers N = {1, 2, 3, . . .} or the non-negative integers,

Z≥0 = {0, 1, 2, 3, . . .}. The range of the function is still allowed to be the real numbers; in

symbols, we say that a sequence is a function f :N → R. Sequences are written in a few

different ways, all equivalent; these all mean the same thing:

a1, a2, a3, . . .

{an}∞n=1

{f(n)}∞n=1

As with functions on the real numbers, we will most often encounter sequences that

can be expressed by a formula. We have already seen the sequence ai = f(i) = 1 − 1/2i,
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and others are easy to come by:

f(i) =
i

i+ 1

f(n) =
1

2n

f(n) = sin(nπ/6)

f(i) =
(i− 1)(i+ 2)

2i

Frequently these formulas will make sense if thought of either as functions with domain R
or N, though occasionally one will make sense only for integer values.

Faced with a sequence we are interested in the limit

lim
i→∞

f(i) = lim
i→∞

ai.

We already understand

lim
x→∞

f(x)

when x is a real valued variable; now we simply want to restrict the “input” values to be

integers. No real difference is required in the definition of limit, except that we specify, per-

haps implicitly, that the variable is an integer. Compare this definition to definition 4.10.4.

DEFINITION 11.1.1 Suppose that {an}∞n=1 is a sequence. We say that lim
n→∞

an = L

if for every ϵ > 0 there is an N > 0 so that whenever n > N , |an − L| < ϵ. If lim
n→∞

an = L

we say that the sequence converges, otherwise it diverges.

If f(i) defines a sequence, and f(x) makes sense, and lim
x→∞

f(x) = L, then it is clear

that lim
i→∞

f(i) = L as well, but it is important to note that the converse of this statement

is not true. For example, since lim
x→∞

(1/x) = 0, it is clear that also lim
i→∞

(1/i) = 0, that is,

the numbers
1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . .

get closer and closer to 0. Consider this, however: Let f(n) = sin(nπ). This is the sequence

sin(0π), sin(1π), sin(2π), sin(3π), . . . = 0, 0, 0, 0, . . .

since sin(nπ) = 0 when n is an integer. Thus lim
n→∞

f(n) = 0. But lim
x→∞

f(x), when x is

real, does not exist: as x gets bigger and bigger, the values sin(xπ) do not get closer and
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closer to a single value, but take on all values between −1 and 1 over and over. In general,

whenever you want to know lim
n→∞

f(n) you should first attempt to compute lim
x→∞

f(x),

since if the latter exists it is also equal to the first limit. But if for some reason lim
x→∞

f(x)

does not exist, it may still be true that lim
n→∞

f(n) exists, but you’ll have to figure out

another way to compute it.

It is occasionally useful to think of the graph of a sequence. Since the function is

defined only for integer values, the graph is just a sequence of dots. In figure 11.1.1 we see

the graphs of two sequences and the graphs of the corresponding real functions.
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Figure 11.1.1 Graphs of sequences and their corresponding real functions.

Not surprisingly, the properties of limits of real functions translate into properties of

sequences quite easily. Theorem 2.3.6 about limits becomes

THEOREM 11.1.2 Suppose that lim
n→∞

an = L and lim
n→∞

bn = M and k is some constant.

Then
lim

n→∞
kan = k lim

n→∞
an = kL

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = L+M

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn = L−M

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn = LM

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

=
L

M
, if M is not 0

Likewise the Squeeze Theorem (4.3.1) becomes
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THEOREM 11.1.3 Suppose that an ≤ bn ≤ cn for all n > N , for some N . If lim
n→∞

an =

lim
n→∞

cn = L, then lim
n→∞

bn = L.

And a final useful fact:

THEOREM 11.1.4 lim
n→∞

|an| = 0 if and only if lim
n→∞

an = 0.

This says simply that the size of an gets close to zero if and only if an gets close to

zero.

EXAMPLE 11.1.5 Determine whether

{
n

n+ 1

}∞
n=0

converges or diverges. If it con-

verges, compute the limit. Since this makes sense for real numbers we consider

lim
x→∞

x

x+ 1
= lim

x→∞
1− 1

x+ 1
= 1− 0 = 1.

Thus the sequence converges to 1.

EXAMPLE 11.1.6 Determine whether

{
lnn

n

}∞
n=1

converges or diverges. If it con-

verges, compute the limit. We compute

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0,

using L’Hôpital’s Rule. Thus the sequence converges to 0.

EXAMPLE 11.1.7 Determine whether {(−1)n}∞n=0 converges or diverges. If it con-

verges, compute the limit. This does not make sense for all real exponents, but the sequence

is easy to understand: it is

1,−1, 1,−1, 1 . . .

and clearly diverges.

EXAMPLE 11.1.8 Determine whether {(−1/2)n}∞n=0 converges or diverges. If it con-

verges, compute the limit. We consider the sequence {|(−1/2)n|}∞n=0 = {(1/2)n}∞n=0. Then

lim
x→∞

(
1

2

)x

= lim
x→∞

1

2x
= 0,

so by theorem 11.1.4 the sequence converges to 0.
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EXAMPLE 11.1.9 Determine whether {(sinn)/
√
n}∞n=1 converges or diverges. If it

converges, compute the limit. Since | sinn| ≤ 1, 0 ≤ | sinn/
√
n| ≤ 1/

√
n and we can use

theorem 11.1.3 with an = 0 and cn = 1/
√
n. Since lim

n→∞
an = lim

n→∞
cn = 0, lim

n→∞
sinn/

√
n =

0 and the sequence converges to 0.

EXAMPLE 11.1.10 A particularly common and useful sequence is {rn}∞n=0, for various

values of r. Some are quite easy to understand: If r = 1 the sequence converges to 1 since

every term is 1, and likewise if r = 0 the sequence converges to 0. If r = −1 this is

the sequence of example 11.1.7 and diverges. If r > 1 or r < −1 the terms rn get large

without limit, so the sequence diverges. If 0 < r < 1 then the sequence converges to 0.

If −1 < r < 0 then |rn| = |r|n and 0 < |r| < 1, so the sequence {|r|n}∞n=0 converges to

0, so also {rn}∞n=0 converges to 0. converges. In summary, {rn} converges precisely when

−1 < r ≤ 1 in which case

lim
n→∞

rn =
{
0 if −1 < r < 1
1 if r = 1

Sometimes we will not be able to determine the limit of a sequence, but we still would

like to know whether it converges. In some cases we can determine this even without being

able to compute the limit.

A sequence is called increasing or sometimes strictly increasing if ai < ai+1 for

all i. It is called non-decreasing or sometimes (unfortunately) increasing if ai ≤ ai+1

for all i. Similarly a sequence is decreasing if ai > ai+1 for all i and non-increasing if

ai ≥ ai+1 for all i. If a sequence has any of these properties it is called monotonic.

EXAMPLE 11.1.11 The sequence{
2i − 1

2i

}∞
i=1

=
1

2
,
3

4
,
7

8
,
15

16
, . . . ,

is increasing, and {
n+ 1

n

}∞
i=1

=
2

1
,
3

2
,
4

3
,
5

4
, . . .

is decreasing.

A sequence is bounded above if there is some number N such that an ≤ N for every

n, and bounded below if there is some number N such that an ≥ N for every n. If a

sequence is bounded above and bounded below it is bounded. If a sequence {an}∞n=0 is

increasing or non-decreasing it is bounded below (by a0), and if it is decreasing or non-

increasing it is bounded above (by a0). Finally, with all this new terminology we can state

an important theorem.
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THEOREM 11.1.12 If a sequence is bounded and monotonic then it converges.

We will not prove this; the proof appears in many calculus books. It is not hard to

believe: suppose that a sequence is increasing and bounded, so each term is larger than the

one before, yet never larger than some fixed value N . The terms must then get closer and

closer to some value between a0 and N . It need not be N , since N may be a “too-generous”

upper bound; the limit will be the smallest number that is above all of the terms ai.

EXAMPLE 11.1.13 All of the terms (2i − 1)/2i are less than 2, and the sequence is

increasing. As we have seen, the limit of the sequence is 1—1 is the smallest number that

is bigger than all the terms in the sequence. Similarly, all of the terms (n+1)/n are bigger

than 1/2, and the limit is 1—1 is the largest number that is smaller than the terms of the

sequence.

We don’t actually need to know that a sequence is monotonic to apply this theorem—

it is enough to know that the sequence is “eventually” monotonic, that is, that at some

point it becomes increasing or decreasing. For example, the sequence 10, 9, 8, 15, 3, 21, 4,

3/4, 7/8, 15/16, 31/32, . . . is not increasing, because among the first few terms it is not.

But starting with the term 3/4 it is increasing, so the theorem tells us that the sequence

3/4, 7/8, 15/16, 31/32, . . . converges. Since convergence depends only on what happens as

n gets large, adding a few terms at the beginning can’t turn a convergent sequence into a

divergent one.

EXAMPLE 11.1.14 Show that {n1/n} converges.

We first show that this sequence is decreasing, that is, that n1/n > (n+1)1/(n+1). Consider

the real function f(x) = x1/x when x ≥ 1. We can compute the derivative, f ′(x) =

x1/x(1−lnx)/x2, and note that when x ≥ 3 this is negative. Since the function has negative

slope, n1/n > (n+ 1)1/(n+1) when n ≥ 3. Since all terms of the sequence are positive, the

sequence is decreasing and bounded when n ≥ 3, and so the sequence converges. (As it

happens, we can compute the limit in this case, but we know it converges even without

knowing the limit; see exercise 1.)

EXAMPLE 11.1.15 Show that {n!/nn} converges.

Again we show that the sequence is decreasing, and since each term is positive the sequence

converges. We can’t take the derivative this time, as x! doesn’t make sense for x real. But

we note that if an+1/an < 1 then an+1 < an, which is what we want to know. So we look

at an+1/an:

an+1

an
=

(n+ 1)!

(n+ 1)n+1

nn

n!
=

(n+ 1)!

n!

nn

(n+ 1)n+1
=

n+ 1

n+ 1

(
n

n+ 1

)n

=

(
n

n+ 1

)n

< 1.
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(Again it is possible to compute the limit; see exercise 2.)

Exercises 11.1.

1. Compute lim
x→∞

x1/x. ⇒

2. Use the squeeze theorem to show that lim
n→∞

n!

nn
= 0.

3. Determine whether {
√
n+ 47−

√
n}∞n=0 converges or diverges. If it converges, compute the

limit. ⇒

4. Determine whether

{
n2 + 1

(n+ 1)2

}∞

n=0

converges or diverges. If it converges, compute the limit.

⇒

5. Determine whether

{
n+ 47√
n2 + 3n

}∞

n=1

converges or diverges. If it converges, compute the

limit. ⇒

6. Determine whether

{
2n

n!

}∞

n=0

converges or diverges. ⇒

11.2 Series

While much more can be said about sequences, we now turn to our principal interest,

series. Recall that a series, roughly speaking, is the sum of a sequence: if {an}∞n=0 is a

sequence then the associated series is

∞∑
i=0

an = a0 + a1 + a2 + · · ·

Associated with a series is a second sequence, called the sequence of partial sums

{sn}∞n=0:

sn =
n∑

i=0

ai.

So

s0 = a0, s1 = a0 + a1, s2 = a0 + a1 + a2, . . .

A series converges if the sequence of partial sums converges, and otherwise the series

diverges.

EXAMPLE 11.2.1 If an = kxn,

∞∑
n=0

an is called a geometric series. A typical partial

sum is

sn = k + kx+ kx2 + kx3 + · · ·+ kxn = k(1 + x+ x2 + x3 + · · ·+ xn).
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We note that

sn(1− x) = k(1 + x+ x2 + x3 + · · ·+ xn)(1− x)

= k(1 + x+ x2 + x3 + · · ·+ xn)1− k(1 + x+ x2 + x3 + · · ·+ xn−1 + xn)x

= k(1 + x+ x2 + x3 + · · ·+ xn − x− x2 − x3 − · · · − xn − xn+1)

= k(1− xn+1)

so
sn(1− x) = k(1− xn+1)

sn = k
1− xn+1

1− x
.

If |x| < 1, lim
n→∞

xn = 0 so

lim
n→∞

sn = lim
n→∞

k
1− xn+1

1− x
= k

1

1− x
.

Thus, when |x| < 1 the geometric series converges to k/(1−x). When, for example, k = 1

and x = 1/2:

sn =
1− (1/2)n+1

1− 1/2
=

2n+1 − 1

2n
= 2− 1

2n
and

∞∑
n=0

1

2n
=

1

1− 1/2
= 2.

We began the chapter with the series

∞∑
n=1

1

2n
,

namely, the geometric series without the first term 1. Each partial sum of this series is 1

less than the corresponding partial sum for the geometric series, so of course the limit is

also one less than the value of the geometric series, that is,

∞∑
n=1

1

2n
= 1.

It is not hard to see that the following theorem follows from theorem 11.1.2.

THEOREM 11.2.2 Suppose that
∑

an and
∑

bn are convergent series, and c is a

constant. Then

1.
∑

can is convergent and
∑

can = c
∑

an
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2.
∑

(an + bn) is convergent and
∑

(an + bn) =
∑

an +
∑

bn.

The two parts of this theorem are subtly different. Suppose that
∑

an diverges; does∑
can also diverge if c is non-zero? Yes: suppose instead that

∑
can converges; then by

the theorem,
∑

(1/c)can converges, but this is the same as
∑

an, which by assumption

diverges. Hence
∑

can also diverges. Note that we are applying the theorem with an
replaced by can and c replaced by (1/c).

Now suppose that
∑

an and
∑

bn diverge; does
∑

(an + bn) also diverge? Now the

answer is no: Let an = 1 and bn = −1, so certainly
∑

an and
∑

bn diverge. But
∑

(an +

bn) =
∑

(1 + −1) =
∑

0 = 0. Of course, sometimes
∑

(an + bn) will also diverge, for

example, if an = bn = 1, then
∑

(an + bn) =
∑

(1 + 1) =
∑

2 diverges.

In general, the sequence of partial sums sn is harder to understand and analyze than

the sequence of terms an, and it is difficult to determine whether series converge and if so

to what. Sometimes things are relatively simple, starting with the following.

THEOREM 11.2.3 If
∑

an converges then lim
n→∞

an = 0.

Proof. Since
∑

an converges, lim
n→∞

sn = L and lim
n→∞

sn−1 = L, because this really says

the same thing but “renumbers” the terms. By theorem 11.1.2,

lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = L− L = 0.

But

sn − sn−1 = (a0 + a1 + a2 + · · ·+ an)− (a0 + a1 + a2 + · · ·+ an−1) = an,

so as desired lim
n→∞

an = 0.

This theorem presents an easy divergence test: if given a series
∑

an the limit lim
n→∞

an

does not exist or has a value other than zero, the series diverges. Note well that the

converse is not true: If lim
n→∞

an = 0 then the series does not necessarily converge.

EXAMPLE 11.2.4 Show that
∞∑

n=1

n

n+ 1
diverges.

We compute the limit:

lim
n→∞

n

n+ 1
= 1 ̸= 0.

Looking at the first few terms perhaps makes it clear that the series has no chance of

converging:
1

2
+

2

3
+

3

4
+

4

5
+ · · ·
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will just get larger and larger; indeed, after a bit longer the series starts to look very much

like · · ·+ 1 + 1 + 1 + 1 + · · ·, and of course if we add up enough 1’s we can make the sum

as large as we desire.

EXAMPLE 11.2.5 Show that
∞∑

n=1

1

n
diverges.

Here the theorem does not apply: lim
n→∞

1/n = 0, so it looks like perhaps the series con-

verges. Indeed, if you have the fortitude (or the software) to add up the first 1000 terms

you will find that
1000∑
n=1

1

n
≈ 7.49,

so it might be reasonable to speculate that the series converges to something in the neigh-

borhood of 10. But in fact the partial sums do go to infinity; they just get big very, very

slowly. Consider the following:

1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

1

4
+

1

4
= 1 +

1

2
+

1

2

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
> 1 +

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
= 1 +

1

2
+

1

2
+

1

2

1+
1

2
+

1

3
+ · · ·+ 1

16
> 1+

1

2
+

1

4
+

1

4
+

1

8
+ · · ·+ 1

8
+

1

16
+ · · ·+ 1

16
= 1+

1

2
+

1

2
+

1

2
+

1

2

and so on. By swallowing up more and more terms we can always manage to add at least

another 1/2 to the sum, and by adding enough of these we can make the partial sums as

big as we like. In fact, it’s not hard to see from this pattern that

1 +
1

2
+

1

3
+ · · ·+ 1

2n
> 1 +

n

2
,

so to make sure the sum is over 100, for example, we’d add up terms until we get to

around 1/2198, that is, about 4 · 1059 terms. This series,
∑

(1/n), is called the harmonic

series.

Exercises 11.2.

1. Explain why

∞∑
n=1

n2

2n2 + 1
diverges. ⇒

2. Explain why

∞∑
n=1

5

21/n + 14
diverges. ⇒

3. Explain why

∞∑
n=1

3

n
diverges. ⇒
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4. Compute

∞∑
n=0

4

(−3)n −
3

3n
. ⇒

5. Compute

∞∑
n=0

3

2n
+

4

5n
. ⇒

6. Compute

∞∑
n=0

4n+1

5n
. ⇒

7. Compute

∞∑
n=0

3n+1

7n+1
. ⇒

8. Compute

∞∑
n=1

(
3

5

)n

. ⇒

9. Compute

∞∑
n=1

3n

5n+1
. ⇒

11.3 The Integral Test

It is generally quite difficult, often impossible, to determine the value of a series exactly.

In many cases it is possible at least to determine whether or not the series converges, and

so we will spend most of our time on this problem.

If all of the terms an in a series are non-negative, then clearly the sequence of partial

sums sn is non-decreasing. This means that if we can show that the sequence of partial

sums is bounded, the series must converge. We know that if the series converges, the

terms an approach zero, but this does not mean that an ≥ an+1 for every n. Many useful

and interesting series do have this property, however, and they are among the easiest to

understand. Let’s look at an example.

EXAMPLE 11.3.1 Show that
∞∑

n=1

1

n2
converges.

The terms 1/n2 are positive and decreasing, and since lim
x→∞

1/x2 = 0, the terms 1/n2

approach zero. We seek an upper bound for all the partial sums, that is, we want to

find a number N so that sn ≤ N for every n. The upper bound is provided courtesy of

integration, and is inherent in figure 11.3.1.

The figure shows the graph of y = 1/x2 together with some rectangles that lie com-

pletely below the curve and that all have base length one. Because the heights of the

rectangles are determined by the height of the curve, the areas of the rectangles are 1/12,

1/22, 1/32, and so on—in other words, exactly the terms of the series. The partial sum

sn is simply the sum of the areas of the first n rectangles. Because the rectangles all lie

between the curve and the x-axis, any sum of rectangle areas is less than the corresponding
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0

1

2

0 1 2 3 4 5



A = 1

A = 1/4

Figure 11.3.1 Graph of y = 1/x2 with rectangles.

area under the curve, and so of course any sum of rectangle areas is less than the area

under the entire curve, that is, all the way to infinity. There is a bit of trouble at the left

end, where there is an asymptote, but we can work around that easily. Here it is:

sn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
< 1 +

∫ n

1

1

x2
dx < 1 +

∫ ∞
1

1

x2
dx = 1 + 1 = 2,

recalling that we computed this improper integral in section 9.7. Since the sequence of

partial sums sn is increasing and bounded above by 2, we know that lim
n→∞

sn = L < 2, and

so the series converges to some number less than 2. In fact, it is possible, though difficult,

to show that L = π2/6 ≈ 1.6.

We already know that
∑

1/n diverges. What goes wrong if we try to apply this

technique to it? Here’s the calculation:

sn =
1

1
+

1

2
+

1

3
+ · · ·+ 1

n
< 1 +

∫ n

1

1

x
dx < 1 +

∫ ∞
1

1

x
dx = 1 +∞.

The problem is that the improper integral doesn’t converge. Note well that this does

not prove that
∑

1/n diverges, just that this particular calculation fails to prove that it

converges. A slight modification, however, allows us to prove in a second way that
∑

1/n

diverges.

EXAMPLE 11.3.2 Consider a slightly altered version of figure 11.3.1, shown in fig-

ure 11.3.2.

The rectangles this time are above the curve, that is, each rectangle completely contains

the corresponding area under the curve. This means that

sn =
1

1
+

1

2
+

1

3
+ · · ·+ 1

n
>

∫ n+1

1

1

x
dx = lnx

∣∣∣n+1

1
= ln(n+ 1).

As n gets bigger, ln(n + 1) goes to infinity, so the sequence of partial sums sn must also

go to infinity, so the harmonic series diverges.
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A = 1

A = 1/2
A = 1/3

Figure 11.3.2 Graph of y = 1/x with rectangles.

The important fact that clinches this example is that

lim
n→∞

∫ n+1

1

1

x
dx = ∞,

which we can rewrite as ∫ ∞
1

1

x
dx = ∞.

So these two examples taken together indicate that we can prove that a series converges

or prove that it diverges with a single calculation of an improper integral. This is known

as the integral test, which we state as a theorem.

THEOREM 11.3.3 Suppose that f(x) > 0 and is decreasing on the infinite interval

[k,∞) (for some k ≥ 1) and that an = f(n). Then the series

∞∑
n=1

an converges if and only

if the improper integral

∫ ∞
1

f(x) dx converges.

The two examples we have seen are called p-series; a p-series is any series of the form∑
1/np. If p ≤ 0, lim

n→∞
1/np ̸= 0, so the series diverges. For positive values of p we can

determine precisely which series converge.

THEOREM 11.3.4 A p-series with p > 0 converges if and only if p > 1.

Proof. We use the integral test; we have already done p = 1, so assume that p ̸= 1.∫ ∞
1

1

xp
dx = lim

D→∞

x1−p

1− p

∣∣∣∣D
1

= lim
D→∞

D1−p

1− p
− 1

1− p
.

If p > 1 then 1 − p < 0 and lim
D→∞

D1−p = 0, so the integral converges. If 0 < p < 1 then

1− p > 0 and lim
D→∞

D1−p = ∞, so the integral diverges.
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EXAMPLE 11.3.5 Show that
∞∑

n=1

1

n3
converges.

We could of course use the integral test, but now that we have the theorem we may simply

note that this is a p-series with p > 1.

EXAMPLE 11.3.6 Show that
∞∑

n=1

5

n4
converges.

We know that if
∞∑

n=1

1/n4 converges then
∞∑

n=1

5/n4 also converges, by theorem 11.2.2. Since

∞∑
n=1

1/n4 is a convergent p-series,
∞∑

n=1

5/n4 converges also.

EXAMPLE 11.3.7 Show that

∞∑
n=1

5√
n

diverges.

This also follows from theorem 11.2.2: Since
∞∑

n=1

1√
n

is a p-series with p = 1/2 < 1, it

diverges, and so does
∞∑

n=1

5√
n
.

Since it is typically difficult to compute the value of a series exactly, a good approx-

imation is frequently required. In a real sense, a good approximation is only as good as

we know it is, that is, while an approximation may in fact be good, it is only valuable in

practice if we can guarantee its accuracy to some degree. This guarantee is usually easy

to come by for series with decreasing positive terms.

EXAMPLE 11.3.8 Approximate
∑

1/n2 to two decimal places.

Referring to figure 11.3.1, if we approximate the sum by
N∑

n=1

1/n2, the error we make is

the total area of the remaining rectangles, all of which lie under the curve 1/x2 from x = N

out to infinity. So we know the true value of the series is larger than the approximation,

and no bigger than the approximation plus the area under the curve from N to infinity.

Roughly, then, we need to find N so that∫ ∞
N

1

x2
dx < 1/100.
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We can compute the integral: ∫ ∞
N

1

x2
dx =

1

N
,

so N = 100 is a good starting point. Adding up the first 100 terms gives approximately

1.634983900, and that plus 1/100 is 1.644983900, so approximating the series by the value

halfway between these will be at most 1/200 = 0.005 in error. The midpoint is 1.639983900,

but while this is correct to ±0.005, we can’t tell if the correct two-decimal approximation

is 1.63 or 1.64. We need to make N big enough to reduce the guaranteed error, perhaps to

around 0.004 to be safe, so we would need 1/N ≈ 0.008, or N = 125. Now the sum of the

first 125 terms is approximately 1.636965982, and that plus 0.008 is 1.644965982 and the

point halfway between them is 1.640965982. The true value is then 1.640965982±0.004, and

all numbers in this range round to 1.64, so 1.64 is correct to two decimal places. We have

mentioned that the true value of this series can be shown to be π2/6 ≈ 1.644934068 which

rounds down to 1.64 (just barely) and is indeed below the upper bound of 1.644965982,

again just barely. Frequently approximations will be even better than the “guaranteed”

accuracy, but not always, as this example demonstrates.

Exercises 11.3.

Determine whether each series converges or diverges.

1.

∞∑
n=1

1

nπ/4
⇒ 2.

∞∑
n=1

n

n2 + 1
⇒

3.
∞∑

n=1

lnn

n2
⇒ 4.

∞∑
n=1

1

n2 + 1
⇒

5.

∞∑
n=1

1

en
⇒ 6.

∞∑
n=1

n

en
⇒

7.

∞∑
n=2

1

n lnn
⇒ 8.

∞∑
n=2

1

n(lnn)2
⇒

9. Find an N so that

∞∑
n=1

1

n4
is between

N∑
n=1

1

n4
and

N∑
n=1

1

n4
+ 0.005. ⇒

10. Find an N so that

∞∑
n=0

1

en
is between

N∑
n=0

1

en
and

N∑
n=0

1

en
+ 10−4. ⇒

11. Find an N so that

∞∑
n=1

lnn

n2
is between

N∑
n=1

lnn

n2
and

N∑
n=1

lnn

n2
+ 0.005. ⇒

12. Find an N so that
∞∑

n=2

1

n(lnn)2
is between

N∑
n=2

1

n(lnn)2
and

N∑
n=2

1

n(lnn)2
+ 0.005. ⇒
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11.4 Alternating Series

Next we consider series with both positive and negative terms, but in a regular pattern:

they alternate, as in the alternating harmonic series for example:

∞∑
n=1

(−1)n−1

n
=

1

1
+

−1

2
+

1

3
+

−1

4
+ · · · = 1

1
− 1

2
+

1

3
− 1

4
+ · · · .

In this series the sizes of the terms decrease, that is, |an| forms a decreasing sequence,

but this is not required in an alternating series. As with positive term series, however,

when the terms do have decreasing sizes it is easier to analyze the series, much easier, in

fact, than positive term series. Consider pictorially what is going on in the alternating

harmonic series, shown in figure 11.4.1. Because the sizes of the terms an are decreasing,

the partial sums s1, s3, s5, and so on, form a decreasing sequence that is bounded below

by s2, so this sequence must converge. Likewise, the partial sums s2, s4, s6, and so on,

form an increasing sequence that is bounded above by s1, so this sequence also converges.

Since all the even numbered partial sums are less than all the odd numbered ones, and

since the “jumps” (that is, the ai terms) are getting smaller and smaller, the two sequences

must converge to the same value, meaning the entire sequence of partial sums s1, s2, s3, . . .

converges as well.

1
4

1 = s1 = a1

a2 = − 1
2

s2 = 1
2

a3

s3

a4

s4

a5

s5

a6

s6

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................... ............

.......................................................................................................................................................................................................................................................
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Figure 11.4.1 The alternating harmonic series.

There’s nothing special about the alternating harmonic series—the same argument

works for any alternating sequence with decreasing size terms. The alternating series test

is worth calling a theorem.

THEOREM 11.4.1 Suppose that {an}∞n=1 is a non-increasing sequence of positive

numbers and lim
n→∞

an = 0. Then the alternating series

∞∑
n=1

(−1)n−1an converges.

Proof. The odd numbered partial sums, s1, s3, s5, and so on, form a non-increasing

sequence, because s2k+3 = s2k+1 − a2k+2 + a2k+3 ≤ s2k+1, since a2k+2 ≥ a2k+3. This
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sequence is bounded below by s2, so it must converge, say lim
k→∞

s2k+1 = L. Likewise,

the partial sums s2, s4, s6, and so on, form a non-decreasing sequence that is bounded

above by s1, so this sequence also converges, say lim
k→∞

s2k = M . Since lim
n→∞

an = 0 and

s2k+1 = s2k + a2k+1,

L = lim
k→∞

s2k+1 = lim
k→∞

(s2k + a2k+1) = lim
k→∞

s2k + lim
k→∞

a2k+1 = M + 0 = M,

so L = M , the two sequences of partial sums converge to the same limit, and this means

the entire sequence of partial sums also converges to L.

Another useful fact is implicit in this discussion. Suppose that

L =
∞∑

n=1

(−1)n−1an

and that we approximate L by a finite part of this sum, say

L ≈
N∑

n=1

(−1)n−1an.

Because the terms are decreasing in size, we know that the true value of L must be between

this approximation and the next one, that is, between

N∑
n=1

(−1)n−1an and

N+1∑
n=1

(−1)n−1an.

Depending on whether N is odd or even, the second will be larger or smaller than the first.

EXAMPLE 11.4.2 Approximate the alternating harmonic series to one decimal place.

We need to go roughly to the point at which the next term to be added or subtracted

is 1/10. Adding up the first nine and the first ten terms we get approximately 0.746 and

0.646. These are 1/10 apart, but it is not clear how the correct value would be rounded. It

turns out that we are able to settle the question by computing the sums of the first eleven

and twelve terms, which give 0.737 and 0.653, so correct to one place the value is 0.7.

We have considered alternating series with first index 1, and in which the first term is

positive, but a little thought shows this is not crucial. The same test applies to any similar

series, such as
∞∑

n=0

(−1)nan,
∞∑

n=1

(−1)nan,
∞∑

n=17

(−1)nan, etc.
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Exercises 11.4.

Determine whether the following series converge or diverge.

1.

∞∑
n=1

(−1)n−1

2n+ 5
⇒ 2.

∞∑
n=4

(−1)n−1

√
n− 3

⇒

3.

∞∑
n=1

(−1)n−1 n

3n− 2
⇒ 4.

∞∑
n=1

(−1)n−1 lnn

n
⇒

5. Approximate

∞∑
n=1

(−1)n−1 1

n3
to two decimal places. ⇒

6. Approximate
∞∑

n=1

(−1)n−1 1

n4
to two decimal places. ⇒

11.5 Comparison Tests

As we begin to compile a list of convergent and divergent series, new ones can sometimes

be analyzed by comparing them to ones that we already understand.

EXAMPLE 11.5.1 Does

∞∑
n=2

1

n2 lnn
converge?

The obvious first approach, based on what we know, is the integral test. Unfortunately,

we can’t compute the required antiderivative. But looking at the series, it would appear

that it must converge, because the terms we are adding are smaller than the terms of a

p-series, that is,
1

n2 lnn
<

1

n2
,

when n ≥ 3. Since adding up the terms 1/n2 doesn’t get “too big”, the new series “should”

also converge. Let’s make this more precise.

The series
∞∑

n=2

1

n2 lnn
converges if and only if

∞∑
n=3

1

n2 lnn
converges—all we’ve done is

dropped the initial term. We know that
∞∑

n=3

1

n2
converges. Looking at two typical partial

sums:

sn =
1

32 ln 3
+

1

42 ln 4
+

1

52 ln 5
+ · · ·+ 1

n2 lnn
<

1

32
+

1

42
+

1

52
+ · · ·+ 1

n2
= tn.

Since the p-series converges, say to L, and since the terms are positive, tn < L. Since the

terms of the new series are positive, the sn form an increasing sequence and sn < tn < L

for all n. Hence the sequence {sn} is bounded and so converges.
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Sometimes, even when the integral test applies, comparison to a known series is easier,

so it’s generally a good idea to think about doing a comparison before doing the integral

test.

EXAMPLE 11.5.2 Does
∞∑

n=2

| sinn|
n2

converge?

We can’t apply the integral test here, because the terms of this series are not decreasing.

Just as in the previous example, however,

| sinn|
n2

≤ 1

n2
,

because | sinn| ≤ 1. Once again the partial sums are non-decreasing and bounded above

by
∑

1/n2 = L, so the new series converges.

Like the integral test, the comparison test can be used to show both convergence and

divergence. In the case of the integral test, a single calculation will confirm whichever is

the case. To use the comparison test we must first have a good idea as to convergence or

divergence and pick the sequence for comparison accordingly.

EXAMPLE 11.5.3 Does
∞∑

n=2

1√
n2 − 3

converge?

We observe that the −3 should have little effect compared to the n2 inside the square

root, and therefore guess that the terms are enough like 1/
√
n2 = 1/n that the series

should diverge. We attempt to show this by comparison to the harmonic series. We note

that
1√

n2 − 3
>

1√
n2

=
1

n
,

so that

sn =
1√

22 − 3
+

1√
32 − 3

+ · · ·+ 1√
n2 − 3

>
1

2
+

1

3
+ · · ·+ 1

n
= tn,

where tn is 1 less than the corresponding partial sum of the harmonic series (because we

start at n = 2 instead of n = 1). Since lim
n→∞

tn = ∞, lim
n→∞

sn = ∞ as well.

So the general approach is this: If you believe that a new series is convergent, attempt

to find a convergent series whose terms are larger than the terms of the new series; if you

believe that a new series is divergent, attempt to find a divergent series whose terms are

smaller than the terms of the new series.
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EXAMPLE 11.5.4 Does
∞∑

n=1

1√
n2 + 3

converge?

Just as in the last example, we guess that this is very much like the harmonic series

and so diverges. Unfortunately,
1√

n2 + 3
<

1

n
,

so we can’t compare the series directly to the harmonic series. A little thought leads us to

1√
n2 + 3

>
1√

n2 + 3n2
=

1

2n
,

so if
∑

1/(2n) diverges then the given series diverges. But since
∑

1/(2n) = (1/2)
∑

1/n,

theorem 11.2.2 implies that it does indeed diverge.

For reference we summarize the comparison test in a theorem.

THEOREM 11.5.5 Suppose that an and bn are non-negative for all n and that an ≤ bn
when n ≥ N , for some N .

If
∞∑

n=0

bn converges, so does
∞∑

n=0

an.

If
∞∑

n=0

an diverges, so does
∞∑

n=0

bn.

Exercises 11.5.

Determine whether the series converge or diverge.

1.

∞∑
n=1

1

2n2 + 3n+ 5
⇒ 2.

∞∑
n=2

1

2n2 + 3n− 5
⇒

3.
∞∑

n=1

1

2n2 − 3n− 5
⇒ 4.

∞∑
n=1

3n+ 4

2n2 + 3n+ 5
⇒

5.

∞∑
n=1

3n2 + 4

2n2 + 3n+ 5
⇒ 6.

∞∑
n=1

lnn

n
⇒

7.
∞∑

n=1

lnn

n3
⇒ 8.

∞∑
n=2

1

lnn
⇒

9.

∞∑
n=1

3n

2n + 5n
⇒ 10.

∞∑
n=1

3n

2n + 3n
⇒
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11.6 Absolute Convergence

Roughly speaking there are two ways for a series to converge: As in the case of
∑

1/n2,

the individual terms get small very quickly, so that the sum of all of them stays finite, or,

as in the case of
∑

(−1)n−1/n, the terms don’t get small fast enough (
∑

1/n diverges),

but a mixture of positive and negative terms provides enough cancellation to keep the

sum finite. You might guess from what we’ve seen that if the terms get small fast enough

to do the job, then whether or not some terms are negative and some positive the series

converges.

THEOREM 11.6.1 If

∞∑
n=0

|an| converges, then
∞∑

n=0

an converges.

Proof. Note that 0 ≤ an+|an| ≤ 2|an| so by the comparison test
∞∑

n=0

(an+|an|) converges.

Now
∞∑

n=0

(an + |an|)−
∞∑

n=0

|an| =
∞∑

n=0

an + |an| − |an| =
∞∑

n=0

an

converges by theorem 11.2.2.

So given a series
∑

an with both positive and negative terms, you should first ask

whether
∑

|an| converges. This may be an easier question to answer, because we have

tests that apply specifically to terms with non-negative terms. If
∑

|an| converges then

you know that
∑

an converges as well. If
∑

|an| diverges then it still may be true that∑
an converges—you will have to do more work to decide the question. Another way to

think of this result is: it is (potentially) easier for
∑

an to converge than for
∑

|an| to
converge, because the latter series cannot take advantage of cancellation.

If
∑

|an| converges we say that
∑

an converges absolutely; to say that
∑

an converges

absolutely is to say that any cancellation that happens to come along is not really needed,

as the terms already get small so fast that convergence is guaranteed by that alone. If∑
an converges but

∑
|an| does not, we say that

∑
an converges conditionally. For

example
∞∑

n=1

(−1)n−1
1

n2
converges absolutely, while

∞∑
n=1

(−1)n−1
1

n
converges conditionally.

EXAMPLE 11.6.2 Does

∞∑
n=2

sinn

n2
converge?
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In example 11.5.2 we saw that
∞∑

n=2

| sinn|
n2

converges, so the given series converges abso-

lutely.

EXAMPLE 11.6.3 Does
∞∑

n=0

(−1)n
3n+ 4

2n2 + 3n+ 5
converge?

Taking the absolute value,

∞∑
n=0

3n+ 4

2n2 + 3n+ 5
diverges by comparison to

∞∑
n=1

3

10n
, so if the

series converges it does so conditionally. It is true that lim
n→∞

(3n+ 4)/(2n2 + 3n+ 5) = 0,

so to apply the alternating series test we need to know whether the terms are decreasing.

If we let f(x) = (3x+ 4)/(2x2 + 3x+ 5) then f ′(x) = −(6x2 + 16x− 3)/(2x2 + 3x+ 5)2,

and it is not hard to see that this is negative for x ≥ 1, so the series is decreasing and by

the alternating series test it converges.

Exercises 11.6.

Determine whether each series converges absolutely, converges conditionally, or diverges.

1.

∞∑
n=1

(−1)n−1 1

2n2 + 3n+ 5
⇒ 2.

∞∑
n=1

(−1)n−1 3n2 + 4

2n2 + 3n+ 5
⇒

3.

∞∑
n=1

(−1)n−1 lnn

n
⇒ 4.

∞∑
n=1

(−1)n−1 lnn

n3
⇒

5.

∞∑
n=2

(−1)n 1

lnn
⇒ 6.

∞∑
n=0

(−1)n 3n

2n + 5n
⇒

7.

∞∑
n=0

(−1)n 3n

2n + 3n
⇒ 8.

∞∑
n=1

(−1)n−1 arctann

n
⇒

11.7 The Ratio and Root Tests

Does the series

∞∑
n=0

n5

5n
converge? It is possible, but a bit unpleasant, to approach this

with the integral test or the comparison test, but there is an easier way. Consider what

happens as we move from one term to the next in this series:

· · ·+ n5

5n
+

(n+ 1)5

5n+1
+ · · ·

The denominator goes up by a factor of 5, 5n+1 = 5 · 5n, but the numerator goes up by

much less: (n+1)5 = n5 +5n4 +10n3 +10n2 +5n+1, which is much less than 5n5 when

n is large, because 5n4 is much less than n5. So we might guess that in the long run it
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begins to look as if each term is 1/5 of the previous term. We have seen series that behave

like this:
∞∑

n=0

1

5n
=

5

4
,

a geometric series. So we might try comparing the given series to some variation of this

geometric series. This is possible, but a bit messy. We can in effect do the same thing,

but bypass most of the unpleasant work.

The key is to notice that

lim
n→∞

an+1

an
= lim

n→∞

(n+ 1)5

5n+1

5n

n5
= lim

n→∞

(n+ 1)5

n5

1

5
= 1 · 1

5
=

1

5
.

This is really just what we noticed above, done a bit more officially: in the long run, each

term is one fifth of the previous term. Now pick some number between 1/5 and 1, say 1/2.

Because

lim
n→∞

an+1

an
=

1

5
,

then when n is big enough, say n ≥ N for some N ,

an+1

an
<

1

2
and an+1 <

an
2
.

So aN+1 < aN/2, aN+2 < aN+1/2 < aN/4, aN+3 < aN+2/2 < aN+1/4 < aN/8, and so

on. The general form is aN+k < aN/2k. So if we look at the series

∞∑
k=0

aN+k = aN + aN+1 + aN+2 + aN+3 + · · ·+ aN+k + · · · ,

its terms are less than or equal to the terms of the sequence

aN +
aN
2

+
aN
4

+
aN
8

+ · · ·+ aN
2k

+ · · · =
∞∑
k=0

aN
2k

= 2aN .

So by the comparison test,
∞∑
k=0

aN+k converges, and this means that
∞∑

n=0

an converges,

since we’ve just added the fixed number a0 + a1 + · · ·+ aN−1.

Under what circumstances could we do this? What was crucial was that the limit of

an+1/an, say L, was less than 1 so that we could pick a value r so that L < r < 1. The

fact that L < r (1/5 < 1/2 in our example) means that we can compare the series
∑

an
to
∑

rn, and the fact that r < 1 guarantees that
∑

rn converges. That’s really all that is
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required to make the argument work. We also made use of the fact that the terms of the

series were positive; in general we simply consider the absolute values of the terms and we

end up testing for absolute convergence.

THEOREM 11.7.1 The Ratio Test Suppose that lim
n→∞

|an+1/an| = L. If L < 1

the series
∑

an converges absolutely, if L > 1 the series diverges, and if L = 1 this test

gives no information.

Proof. The example above essentially proves the first part of this, if we simply replace

1/5 by L and 1/2 by r. Suppose that L > 1, and pick r so that 1 < r < L. Then for

n ≥ N , for some N ,
|an+1|
|an|

> r and |an+1| > r|an|.

This implies that |aN+k| > rk|aN |, but since r > 1 this means that lim
k→∞

|aN+k| ̸= 0, which

means also that lim
n→∞

an ̸= 0. By the divergence test, the series diverges.

To see that we get no information when L = 1, we need to exhibit two series with

L = 1, one that converges and one that diverges. It is easy to see that
∑

1/n2 and
∑

1/n

do the job.

EXAMPLE 11.7.2 The ratio test is particularly useful for series involving the factorial

function. Consider
∞∑

n=0

5n/n!.

lim
n→∞

5n+1

(n+ 1)!

n!

5n
= lim

n→∞

5n+1

5n
n!

(n+ 1)!
= lim

n→∞
5

1

(n+ 1)
= 0.

Since 0 < 1, the series converges.

A similar argument, which we will not do, justifies a similar test that is occasionally

easier to apply.

THEOREM 11.7.3 The Root Test Suppose that lim
n→∞

|an|1/n = L. If L < 1 the

series
∑

an converges absolutely, if L > 1 the series diverges, and if L = 1 this test gives

no information.

The proof of the root test is actually easier than that of the ratio test, and is a good

exercise.

EXAMPLE 11.7.4 Analyze
∞∑

n=0

5n

nn
.
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The ratio test turns out to be a bit difficult on this series (try it). Using the root test:

lim
n→∞

(
5n

nn

)1/n

= lim
n→∞

(5n)1/n

(nn)1/n
= lim

n→∞

5

n
= 0.

Since 0 < 1, the series converges.

The root test is frequently useful when n appears as an exponent in the general term

of the series.

Exercises 11.7.

1. Compute lim
n→∞

|an+1/an| for the series
∑

1/n2.

2. Compute lim
n→∞

|an+1/an| for the series
∑

1/n.

3. Compute lim
n→∞

|an|1/n for the series
∑

1/n2.

4. Compute lim
n→∞

|an|1/n for the series
∑

1/n.

Determine whether the series converge.

5.

∞∑
n=0

(−1)n 3
n

5n
⇒

6.
∞∑

n=1

n!

nn
⇒

7.

∞∑
n=1

n5

nn
⇒

8.
∞∑

n=1

(n!)2

nn
⇒

9. Prove theorem 11.7.3, the root test.

11.8 Power Series

Recall that we were able to analyze all geometric series “simultaneously” to discover that

∞∑
n=0

kxn =
k

1− x
,

if |x| < 1, and that the series diverges when |x| ≥ 1. At the time, we thought of x as an

unspecified constant, but we could just as well think of it as a variable, in which case the
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series
∞∑

n=0

kxn

is a function, namely, the function k/(1− x), as long as |x| < 1. While k/(1− x) is a rea-

sonably easy function to deal with, the more complicated
∑

kxn does have its attractions:

it appears to be an infinite version of one of the simplest function types—a polynomial.

This leads naturally to the questions: Do other functions have representations as series?

Is there an advantage to viewing them in this way?

The geometric series has a special feature that makes it unlike a typical polynomial—

the coefficients of the powers of x are the same, namely k. We will need to allow more

general coefficients if we are to get anything other than the geometric series.

DEFINITION 11.8.1 A power series has the form

∞∑
n=0

anx
n,

with the understanding that an may depend on n but not on x.

EXAMPLE 11.8.2
∞∑

n=1

xn

n
is a power series. We can investigate convergence using the

ratio test:

lim
n→∞

|x|n+1

n+ 1

n

|x|n
= lim

n→∞
|x| n

n+ 1
= |x|.

Thus when |x| < 1 the series converges and when |x| > 1 it diverges, leaving only two values

in doubt. When x = 1 the series is the harmonic series and diverges; when x = −1 it is the

alternating harmonic series (actually the negative of the usual alternating harmonic series)

and converges. Thus, we may think of
∞∑

n=1

xn

n
as a function from the interval [−1, 1) to

the real numbers.

A bit of thought reveals that the ratio test applied to a power series will always have

the same nice form. In general, we will compute

lim
n→∞

|an+1||x|n+1

|an||x|n
= lim

n→∞
|x| |an+1|

|an|
= |x| lim

n→∞

|an+1|
|an|

= L|x|,

assuming that lim |an+1|/|an| exists. Then the series converges if L|x| < 1, that is, if

|x| < 1/L, and diverges if |x| > 1/L. Only the two values x = ±1/L require further
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investigation. Thus the series will definitely define a function on the interval (−1/L, 1/L),

and perhaps will extend to one or both endpoints as well. Two special cases deserve

mention: if L = 0 the limit is 0 no matter what value x takes, so the series converges for

all x and the function is defined for all real numbers. If L = ∞, then no matter what

value x takes the limit is infinite and the series converges only when x = 0. The value 1/L

is called the radius of convergence of the series, and the interval on which the series

converges is the interval of convergence.

Consider again the geometric series,

∞∑
n=0

xn =
1

1− x
.

Whatever benefits there might be in using the series form of this function are only avail-

able to us when x is between −1 and 1. Frequently we can address this shortcoming by

modifying the power series slightly. Consider this series:

∞∑
n=0

(x+ 2)n

3n
=
∞∑

n=0

(
x+ 2

3

)n

=
1

1− x+2
3

=
3

1− x
,

because this is just a geometric series with x replaced by (x+2)/3. Multiplying both sides

by 1/3 gives
∞∑

n=0

(x+ 2)n

3n+1
=

1

1− x
,

the same function as before. For what values of x does this series converge? Since it is a

geometric series, we know that it converges when

|x+ 2|/3 < 1

|x+ 2| < 3

−3 < x+ 2 < 3

−5 < x < 1.

So we have a series representation for 1/(1−x) that works on a larger interval than before,

at the expense of a somewhat more complicated series. The endpoints of the interval of

convergence now are −5 and 1, but note that they can be more compactly described as

−2 ± 3. We say that 3 is the radius of convergence, and we now say that the series is

centered at −2.
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DEFINITION 11.8.3 A power series centered at a has the form

∞∑
n=0

an(x− a)n,

with the understanding that an may depend on n but not on x.

Exercises 11.8.

Find the radius and interval of convergence for each series. In exercises 3 and 4, do not attempt
to determine whether the endpoints are in the interval of convergence.

1.

∞∑
n=0

nxn ⇒ 2.

∞∑
n=0

xn

n!
⇒

3.

∞∑
n=1

n!

nn
xn ⇒ 4.

∞∑
n=1

n!

nn
(x− 2)n ⇒

5.

∞∑
n=1

(n!)2

nn
(x− 2)n ⇒ 6.

∞∑
n=1

(x+ 5)n

n(n+ 1)
⇒

11.9 Calculus with Power Series

Now we know that some functions can be expressed as power series, which look like infinite

polynomials. Since calculus, that is, computation of derivatives and antiderivatives, is easy

for polynomials, the obvious question is whether the same is true for infinite series. The

answer is yes:

THEOREM 11.9.1 Suppose the power series f(x) =
∞∑

n=0

an(x − a)n has radius of

convergence R. Then

f ′(x) =

∞∑
n=0

nan(x− a)n−1,

∫
f(x) dx = C +

∞∑
n=0

an
n+ 1

(x− a)n+1,

and these two series have radius of convergence R as well.
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EXAMPLE 11.9.2 Starting with the geometric series:

1

1− x
=

∞∑
n=0

xn

∫
1

1− x
dx = − ln |1− x| =

∞∑
n=0

1

n+ 1
xn+1

ln |1− x| =
∞∑

n=0

− 1

n+ 1
xn+1

when |x| < 1. The series does not converge when x = 1 but does converge when x = −1

or 1 − x = 2. The interval of convergence is [−1, 1), or 0 < 1 − x ≤ 2, so we can use the

series to represent ln(x) when 0 < x ≤ 2. For example

ln(3/2) = ln(1−−1/2) =

∞∑
n=0

(−1)n
1

n+ 1

1

2n+1

and so

ln(3/2) ≈ 1

2
− 1

8
+

1

24
− 1

64
+

1

160
− 1

384
+

1

896
=

909

2240
≈ 0.406.

Because this is an alternating series with decreasing terms, we know that the true value

is between 909/2240 and 909/2240 − 1/2048 = 29053/71680 ≈ .4053, so correct to two

decimal places the value is 0.41.

What about ln(9/4)? Since 9/4 is larger than 2 we cannot use the series directly, but

ln(9/4) = ln((3/2)2) = 2 ln(3/2) ≈ 0.82,

so in fact we get a lot more from this one calculation than first meets the eye. To estimate

the true value accurately we actually need to be a bit more careful. When we multiply by

two we know that the true value is between 0.8106 and 0.812, so rounded to two decimal

places the true value is 0.81.

Exercises 11.9.

1. Find a series representation for ln 2. ⇒
2. Find a power series representation for 1/(1− x)2. ⇒
3. Find a power series representation for 2/(1− x)3. ⇒
4. Find a power series representation for 1/(1− x)3. What is the radius of convergence? ⇒

5. Find a power series representation for

∫
ln(1− x) dx. ⇒
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11.10 Taylor Series

We have seen that some functions can be represented as series, which may give valuable

information about the function. So far, we have seen only those examples that result from

manipulation of our one fundamental example, the geometric series. We would like to start

with a given function and produce a series to represent it, if possible.

Suppose that f(x) =
∞∑

n=0

anx
n on some interval of convergence. Then we know that

we can compute derivatives of f by taking derivatives of the terms of the series. Let’s look

at the first few in general:

f ′(x) =
∞∑

n=1

nanx
n−1 = a1 + 2a2x+ 3a3x

2 + 4a4x
3 + · · ·

f ′′(x) =
∞∑

n=2

n(n− 1)anx
n−2 = 2a2 + 3 · 2a3x+ 4 · 3a4x2 + · · ·

f ′′′(x) =
∞∑

n=3

n(n− 1)(n− 2)anx
n−3 = 3 · 2a3 + 4 · 3 · 2a4x+ · · ·

By examining these it’s not hard to discern the general pattern. The kth derivative must

be

f (k)(x) =

∞∑
n=k

n(n− 1)(n− 2) · · · (n− k + 1)anx
n−k

= k(k − 1)(k − 2) · · · (2)(1)ak + (k + 1)(k) · · · (2)ak+1x+

+ (k + 2)(k + 1) · · · (3)ak+2x
2 + · · ·

We can shrink this quite a bit by using factorial notation:

f (k)(x) =
∞∑

n=k

n!

(n− k)!
anx

n−k = k!ak + (k + 1)!ak+1x+
(k + 2)!

2!
ak+2x

2 + · · ·

Now substitute x = 0:

f (k)(0) = k!ak +

∞∑
n=k+1

n!

(n− k)!
an0

n−k = k!ak,

and solve for ak:

ak =
f (k)(0)

k!
.

Note the special case, obtained from the series for f itself, that gives f(0) = a0.
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So if a function f can be represented by a series, we know just what series it is. Given

a function f , the series
∞∑

n=0

f (n)(0)

n!
xn

is called the Maclaurin series for f .

EXAMPLE 11.10.1 Find the Maclaurin series for f(x) = 1/(1 − x). We need to

compute the derivatives of f (and hope to spot a pattern).

f(x) = (1− x)−1

f ′(x) = (1− x)−2

f ′′(x) = 2(1− x)−3

f ′′′(x) = 6(1− x)−4

f (4)(x) = 4!(1− x)−5

...

f (n)(x) = n!(1− x)−n−1

So
f (n)(0)

n!
=

n!(1− 0)−n−1

n!
= 1

and the Maclaurin series is
∞∑

n=0

1 · xn =
∞∑

n=0

xn,

the geometric series.

A warning is in order here. Given a function f we may be able to compute the

Maclaurin series, but that does not mean we have found a series representation for f . We

still need to know where the series converges, and if, where it converges, it converges to

f(x). While for most commonly encountered functions the Maclaurin series does indeed

converge to f on some interval, this is not true of all functions, so care is required.

As a practical matter, if we are interested in using a series to approximate a function,

we will need some finite number of terms of the series. Even for functions with messy

derivatives we can compute these using computer software like Sage. If we want to know the

whole series, that is, a typical term in the series, we need a function whose derivatives fall

into a pattern that we can discern. A few of the most important functions are fortunately

very easy.
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EXAMPLE 11.10.2 Find the Maclaurin series for sinx.

The derivatives are quite easy: f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,

f (4)(x) = sinx, and then the pattern repeats. We want to know the derivatives at zero: 1,

0, −1, 0, 1, 0, −1, 0,. . . , and so the Maclaurin series is

x− x3

3!
+

x5

5!
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

We should always determine the radius of convergence:

lim
n→∞

|x|2n+3

(2n+ 3)!

(2n+ 1)!

|x|2n+1
= lim

n→∞

|x|2

(2n+ 3)(2n+ 2)
= 0,

so the series converges for every x. Since it turns out that this series does indeed converge

to sinx everywhere, we have a series representation for sinx for every x. Here is an

interactive plot of the sine and some of its series approximations.

Sometimes the formula for the nth derivative of a function f is difficult to discover,

but a combination of a known Maclaurin series and some algebraic manipulation leads

easily to the Maclaurin series for f .

EXAMPLE 11.10.3 Find the Maclaurin series for x sin(−x).

To get from sinx to x sin(−x) we substitute −x for x and then multiply by x. We can

do the same thing to the series for sinx:

x
∞∑

n=0

(−1)n
(−x)2n+1

(2n+ 1)!
= x

∞∑
n=0

(−1)n(−1)2n+1 x2n+1

(2n+ 1)!
=
∞∑

n=0

(−1)n+1 x2n+2

(2n+ 1)!
.

As we have seen, a general power series can be centered at a point other than zero,

and the method that produces the Maclaurin series can also produce such series.

EXAMPLE 11.10.4 Find a series centered at −2 for 1/(1− x).

If the series is
∞∑

n=0

an(x+ 2)n then looking at the kth derivative:

k!(1− x)−k−1 =

∞∑
n=k

n!

(n− k)!
an(x+ 2)n−k

and substituting x = −2 we get k!3−k−1 = k!ak and ak = 3−k−1 = 1/3k+1, so the series is

∞∑
n=0

(x+ 2)n

3n+1
.

We’ve already seen this, on page 282.

http://www.whitman.edu/mathematics/calculus_applets/jsxgraph/taylor_series.html
http://www.whitman.edu/mathematics/calculus_applets/jsxgraph/taylor_series.html
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Such a series is called the Taylor series for the function, and the general term has

the form
f (n)(a)

n!
(x− a)n.

A Maclaurin series is simply a Taylor series with a = 0.

Exercises 11.10.

For each function, find the Maclaurin series or Taylor series centered at a, and the radius of
convergence.

1. cosx ⇒
2. ex ⇒
3. 1/x, a = 5 ⇒
4. lnx, a = 1 ⇒
5. lnx, a = 2 ⇒
6. 1/x2, a = 1 ⇒
7. 1/

√
1− x ⇒

8. Find the first four terms of the Maclaurin series for tanx (up to and including the x3 term).
⇒

9. Use a combination of Maclaurin series and algebraic manipulation to find a series centered
at zero for x cos(x2). ⇒

10. Use a combination of Maclaurin series and algebraic manipulation to find a series centered
at zero for xe−x. ⇒

11.11 Taylor's Theorem

One of the most important uses of infinite series is the potential for using an initial portion

of the series for f to approximate f . We have seen, for example, that when we add up the

first n terms of an alternating series with decreasing terms that the difference between this

and the true value is at most the size of the next term. A similar result is true of many

Taylor series.

THEOREM 11.11.1 Suppose that f is defined on some open interval I around a and

suppose f (N+1)(x) exists on this interval. Then for each x ̸= a in I there is a value z

between x and a so that

f(x) =
N∑

n=0

f (n)(a)

n!
(x− a)n +

f (N+1)(z)

(N + 1)!
(x− a)N+1.
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Proof. The proof requires some cleverness to set up, but then the details are quite

elementary. We want to define a function F (t). Start with the equation

F (t) =
N∑

n=0

f (n)(t)

n!
(x− t)n +B(x− t)N+1.

Here we have replaced a by t in the first N + 1 terms of the Taylor series, and added a

carefully chosen term on the end, with B to be determined. Note that we are temporarily

keeping x fixed, so the only variable in this equation is t, and we will be interested only in

t between a and x. Now substitute t = a:

F (a) =

N∑
n=0

f (n)(a)

n!
(x− a)n +B(x− a)N+1.

Set this equal to f(x):

f(x) =
N∑

n=0

f (n)(a)

n!
(x− a)n +B(x− a)N+1.

Since x ̸= a, we can solve this for B, which is a “constant”—it depends on x and a but

those are temporarily fixed. Now we have defined a function F (t) with the property that

F (a) = f(x). Consider also F (x): all terms with a positive power of (x − t) become zero

when we substitute x for t, so we are left with F (x) = f (0)(x)/0! = f(x). So F (t) is a

function with the same value on the endpoints of the interval [a, x]. By Rolle’s theorem

(6.5.1), we know that there is a value z ∈ (a, x) such that F ′(z) = 0. Let’s look at F ′(t).

Each term in F (t), except the first term and the extra term involving B, is a product, so

to take the derivative we use the product rule on each of these terms. It will help to write

out the first few terms of the definition:

F (t) = f(t) +
f (1)(t)

1!
(x− t)1 +

f (2)(t)

2!
(x− t)2 +

f (3)(t)

3!
(x− t)3 + · · ·

+
f (N)(t)

N !
(x− t)N +B(x− t)N+1.
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Now take the derivative:

F ′(t) = f ′(t) +

(
f (1)(t)

1!
(x− t)0(−1) +

f (2)(t)

1!
(x− t)1

)
+

(
f (2)(t)

1!
(x− t)1(−1) +

f (3)(t)

2!
(x− t)2

)
+

(
f (3)(t)

2!
(x− t)2(−1) +

f (4)(t)

3!
(x− t)3

)
+ . . .+

+

(
f (N)(t)

(N − 1)!
(x− t)N−1(−1) +

f (N+1)(t)

N !
(x− t)N

)
+B(N + 1)(x− t)N (−1).

Now most of the terms in this expression cancel out, leaving just

F ′(t) =
f (N+1)(t)

N !
(x− t)N +B(N + 1)(x− t)N (−1).

At some z, F ′(z) = 0 so

0 =
f (N+1)(z)

N !
(x− z)N +B(N + 1)(x− z)N (−1)

B(N + 1)(x− z)N =
f (N+1)(z)

N !
(x− z)N

B =
f (N+1)(z)

(N + 1)!
.

Now we can write

F (t) =

N∑
n=0

f (n)(t)

n!
(x− t)n +

f (N+1)(z)

(N + 1)!
(x− t)N+1.

Recalling that F (a) = f(x) we get

f(x) =
N∑

n=0

f (n)(a)

n!
(x− a)n +

f (N+1)(z)

(N + 1)!
(x− a)N+1,

which is what we wanted to show.

It may not be immediately obvious that this is particularly useful; let’s look at some

examples.
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EXAMPLE 11.11.2 Find a polynomial approximation for sinx accurate to ±0.005.

From Taylor’s theorem:

sinx =

N∑
n=0

f (n)(a)

n!
(x− a)n +

f (N+1)(z)

(N + 1)!
(x− a)N+1.

What can we say about the size of the term

f (N+1)(z)

(N + 1)!
(x− a)N+1?

Every derivative of sinx is ± sinx or ± cosx, so |f (N+1)(z)| ≤ 1. The factor (x− a)N+1 is

a bit more difficult, since x− a could be quite large. Let’s pick a = 0 and |x| ≤ π/2; if we

can compute sinx for x ∈ [−π/2, π/2], we can of course compute sinx for all x.

We need to pick N so that ∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣ < 0.005.

Since we have limited x to [−π/2, π/2],∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣ < 2N+1

(N + 1)!
.

The quantity on the right decreases with increasing N , so all we need to do is find an N

so that
2N+1

(N + 1)!
< 0.005.

A little trial and error shows that N = 8 works, and in fact 29/9! < 0.0015, so

sinx =

8∑
n=0

f (n)(0)

n!
xn ± 0.0015

= x− x3

6
+

x5

120
− x7

5040
± 0.0015.

Figure 11.11.1 shows the graphs of sinx and and the approximation on [0, 3π/2]. As x

gets larger, the approximation heads to negative infinity very quickly, since it is essentially

acting like −x7.
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Figure 11.11.1 sinx and a polynomial approximation. (AP)

We can extract a bit more information from this example. If we do not limit the value

of x, we still have ∣∣∣∣f (N+1)(z)

(N + 1)!
xN+1

∣∣∣∣ ≤ ∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣
so that sinx is represented by

N∑
n=0

f (n)(0)

n!
xn ±

∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣ .
If we can show that

lim
N→∞

∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣ = 0

for each x then

sinx =
∞∑

n=0

f (n)(0)

n!
xn =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

that is, the sine function is actually equal to its Maclaurin series for all x. How can we

prove that the limit is zero? Suppose that N is larger than |x|, and let M be the largest

integer less than |x| (if M = 0 the following is even easier). Then

|xN+1|
(N + 1)!

=
|x|

N + 1

|x|
N

|x|
N − 1

· · · |x|
M + 1

|x|
M

|x|
M − 1

· · · |x|
2

|x|
1

≤ |x|
N + 1

· 1 · 1 · · · 1 · |x|
M

|x|
M − 1

· · · |x|
2

|x|
1

=
|x|

N + 1

|x|M

M !
.

The quantity |x|M/M ! is a constant, so

lim
N→∞

|x|
N + 1

|x|M

M !
= 0

http://www.whitman.edu/mathematics/calculus_applets/jsxgraph/taylor_series.html
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and by the Squeeze Theorem (11.1.3)

lim
N→∞

∣∣∣∣ xN+1

(N + 1)!

∣∣∣∣ = 0

as desired. Essentially the same argument works for cosx and ex; unfortunately, it is more

difficult to show that most functions are equal to their Maclaurin series.

EXAMPLE 11.11.3 Find a polynomial approximation for ex near x = 2 accurate to

±0.005.

From Taylor’s theorem:

ex =

N∑
n=0

e2

n!
(x− 2)n +

ez

(N + 1)!
(x− 2)N+1,

since f (n)(x) = ex for all n. We are interested in x near 2, and we need to keep |(x−2)N+1|
in check, so we may as well specify that |x− 2| ≤ 1, so x ∈ [1, 3]. Also∣∣∣∣ ez

(N + 1)!

∣∣∣∣ ≤ e3

(N + 1)!
,

so we need to find an N that makes e3/(N + 1)! ≤ 0.005. This time N = 5 makes

e3/(N + 1)! < 0.0015, so the approximating polynomial is

ex = e2 + e2(x− 2) +
e2

2
(x− 2)2 +

e2

6
(x− 2)3 +

e2

24
(x− 2)4 +

e2

120
(x− 2)5 ± 0.0015.

This presents an additional problem for approximation, since we also need to approximate

e2, and any approximation we use will increase the error, but we will not pursue this

complication.

Note well that in these examples we found polynomials of a certain accuracy only on

a small interval, even though the series for sinx and ex converge for all x; this is typical.

To get the same accuracy on a larger interval would require more terms.

Exercises 11.11.

1. Find a polynomial approximation for cosx on [0, π], accurate to ±10−3 ⇒
2. How many terms of the series for lnx centered at 1 are required so that the guaranteed error

on [1/2, 3/2] is at most 10−3? What if the interval is instead [1, 3/2]? ⇒
3. Find the first three nonzero terms in the Taylor series for tanx on [−π/4, π/4], and compute

the guaranteed error term as given by Taylor’s theorem. (You may want to use Sage or a
similar aid.) ⇒
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4. Show that cosx is equal to its Taylor series for all x by showing that the limit of the error
term is zero as N approaches infinity.

5. Show that ex is equal to its Taylor series for all x by showing that the limit of the error term
is zero as N approaches infinity.

11.12 Additional exercises

These problems require the techniques of this chapter, and are in no particular order. Some

problems may be done in more than one way.

Determine whether the series converges.

1.

∞∑
n=0

n

n2 + 4
⇒

2.
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · · ⇒

3.

∞∑
n=0

n

(n2 + 4)2
⇒

4.

∞∑
n=0

n!

8n
⇒

5. 1− 3

4
+

5

8
− 7

12
+

9

16
+ · · · ⇒

6.

∞∑
n=0

1√
n2 + 4

⇒

7.

∞∑
n=0

sin3(n)

n2
⇒

8.

∞∑
n=0

n

en
⇒

9.
∞∑

n=0

n!

1 · 3 · 5 · · · (2n− 1)
⇒

10.

∞∑
n=1

1

n
√
n
⇒

11.
1

2 · 3 · 4 +
2

3 · 4 · 5 +
3

4 · 5 · 6 +
4

5 · 6 · 7 + · · · ⇒

12.

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

(2n)!
⇒

13.
∞∑

n=0

6n

n!
⇒

14.

∞∑
n=1

(−1)n−1

√
n

⇒
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15.

∞∑
n=1

2n3n−1

n!
⇒

16. 1 +
52

22
+

54

(2 · 4)2 +
56

(2 · 4 · 6)2 +
58

(2 · 4 · 6 · 8)2 + · · · ⇒

17.

∞∑
n=1

sin(1/n) ⇒

Find the interval and radius of convergence; you need not check the endpoints of the intervals.

18.

∞∑
n=0

2n

n!
xn ⇒

19.
∞∑

n=0

xn

1 + 3n
⇒

20.

∞∑
n=1

xn

n3n
⇒

21. x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · · ⇒

22.

∞∑
n=1

n!

n2
xn ⇒

23.
∞∑

n=1

(−1)n

n23n
x2n ⇒

24.

∞∑
n=0

(x− 1)n

n!
⇒

Find a series for each function, using the formula for Maclaurin series and algebraic manip-
ulation as appropriate.

25. 2x ⇒
26. ln(1 + x) ⇒

27. ln

(
1 + x

1− x

)
⇒

28.
√
1 + x ⇒

29.
1

1 + x2
⇒

30. arctan(x) ⇒
31. Use the answer to the previous problem to discover a series for a well-known mathematical

constant. ⇒





A
Selected Answers

1.1.1. (2/3)x+ (1/3)

1.1.2. y = −2x

1.1.3. (−2/3)x+ (1/3)

1.1.4. y = 2x+ 2, 2, −1

1.1.5. y = −x+ 6, 6, 6

1.1.6. y = x/2 + 1/2, 1/2, −1

1.1.7. y = 3/2, y-intercept: 3/2, no

x-intercept

1.1.8. y = (−2/3)x− 2, −2, −3

1.1.9. yes

1.1.10. y = 0, y = −2x+ 2, y = 2x+ 2

1.1.11. y = 75t (t in hours); 164 minutes

1.1.12. y = (9/5)x+ 32, (−40,−40)

1.1.13. y = 0.15x+ 10

1.1.14. 0.03x+ 1.2

1.1.15. (a) y ={
0 0 ≤ x < 100
(x/10)− 10 100 ≤ x ≤ 1000
x− 910 1000 < x

1.1.16. y ={
0.15x 0 ≤ x ≤ 19450
0.28x− 2528.50 19450 < x ≤ 47050
0.33x− 4881 47050 < x ≤ 97620

1.1.17. (a) P = −0.0001x+ 2

(b) x = −10000P + 20000

1.1.18. (2/25)x− (16/5)

1.2.1. (a) x2 + y2 = 9

(b) (x− 5)2 + (y − 6)2 = 9

(c) (x+ 5)2 + (y + 6)2 = 9

1.2.2. (a) ∆x = 2, ∆y = 3, m = 3/2,

y = (3/2)x− 3,
√
13

(b) ∆x = −1, ∆y = 3, m = −3,

y = −3x+ 2,
√
10

(c) ∆x = −2, ∆y = −2, m = 1,

y = x,
√
8

1.2.6. (x+ 2/7)2 + (y − 41/7)2 = 1300/49

1.3.1. {x | x ≥ 3/2}
1.3.2. {x | x ̸= −1}
1.3.3. {x | x ̸= 1 and x ̸= −1}
1.3.4. {x | x < 0}
1.3.5. {x | x ∈ R}, i.e., all x

297
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1.3.6. {x | x ≥ 0}

1.3.7. {x | h− r ≤ x ≤ h+ r}

1.3.8. {x | x ≥ 1 or x < 0}

1.3.9. {x | −1/3 < x < 1/3}

1.3.10. {x | x ≥ 0 and x ̸= 1}

1.3.11. {x | x ≥ 0 and x ̸= 1}

1.3.12. R

1.3.13. {x | x ≥ 3}, {x | x ≥ 0}

1.3.14. A = x(500− 2x), {x | 0 ≤ x ≤ 250}

1.3.15. V = r(50 − πr2), {r | 0 < r ≤√
50/π}

1.3.16. A = 2πr2+2000/r, {r | 0 < r < ∞}

2.1.1. −5, −2.47106145, −2.4067927,

−2.400676, −2.4

2.1.2. −4/3, −24/7, 7/24, 3/4

2.1.3. −0.107526881, −0.11074197,

−0.1110741,
−1

3(3 + ∆x)
→ −1

9

2.1.4.
3 + 3∆x+∆x2

1 + ∆x
→ 3

2.1.5. 3.31, 3.003001, 3.0000,

3 + 3∆x+∆x2 → 3

2.1.6. m

2.2.1. 10, 25/2, 20, 15, 25, 35.

2.2.2. 5, 4.1, 4.01, 4.001, 4 + ∆t → 4

2.2.3. −10.29, −9.849, −9.8049,

−9.8− 4.9∆t → −9.8

2.3.1. 7

2.3.2. 5

2.3.3. 0

2.3.4. undefined

2.3.5. 1/6

2.3.6. 0

2.3.7. 3

2.3.8. 172

2.3.9. 0

2.3.10. 2

2.3.11. does not exist

2.3.12.
√
2

2.3.13. 3a2

2.3.14. 512

2.3.15. −4

2.3.16. 0

2.3.18. (a) 8, (b) 6, (c) dne, (d) −2, (e) −1,

(f) 8, (g) 7, (h) 6, (i) 3, (j) −3/2,

(k) 6, (l) 2

2.4.1. −x/
√
169− x2

2.4.2. −9.8t

2.4.3. 2x+ 1/x2

2.4.4. 2ax+ b

2.4.5. 3x2

2.4.8. −2/(2x+ 1)3/2

2.4.9. 5/(t+ 2)2

2.4.10. y = −13x+ 17

2.4.11. −8

3.1.1. 100x99

3.1.2. −100x−101

3.1.3. −5x−6

3.1.4. πxπ−1

3.1.5. (3/4)x−1/4

3.1.6. −(9/7)x−16/7

3.2.1. 15x2 + 24x

3.2.2. −20x4 + 6x+ 10/x3

3.2.3. −30x+ 25

3.2.4. 6x2 + 2x− 8
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3.2.5. 3x2 + 6x− 1

3.2.6. 9x2 − x/
√
625− x2

3.2.7. y = 13x/4 + 5

3.2.8. y = 24x− 48− π3

3.2.9. −49t/5 + 5, −49/5

3.2.11.
n∑

k=1

kakx
k−1

3.2.12. x3/16− 3x/4 + 4

3.3.1. 3x2(x3 − 5x+ 10) + x3(3x2 − 5)

3.3.2. (x2+5x−3)(5x4−18x2+6x−7)+

(2x+ 5)(x5 − 6x3 + 3x2 − 7x+ 1)

3.3.3.

√
625− x2

2
√
x

− x
√
x√

625− x2

3.3.4.
−1

x19
√
625− x2

− 20
√
625− x2

x21

3.3.5. f ′ = 4(2x− 3), y = 4x− 7

3.4.1.
3x2

x3 − 5x+ 10
− x3(3x2 − 5)

(x3 − 5x+ 10)2

3.4.2.
2x+ 5

x5 − 6x3 + 3x2 − 7x+ 1
−

(x2 + 5x− 3)(5x4 − 18x2 + 6x− 7)

(x5 − 6x3 + 3x2 − 7x+ 1)2

3.4.3.
1

2
√
x
√
625− x2

+
x3/2

(625− x2)3/2

3.4.4.
−1

x19
√
625− x2

− 20
√
625− x2

x21

3.4.5. y = 17x/4− 41/4

3.4.6. y = 11x/16− 15/16

3.4.8. y = 19/169− 5x/338

3.4.9. 13/18

3.5.1. 4x3 − 9x2 + x+ 7

3.5.2. 3x2 − 4x+ 2/
√
x

3.5.3. 6(x2 + 1)2x

3.5.4.
√
169− x2 − x2/

√
169− x2

3.5.5. (2x− 4)
√
25− x2−

(x2 − 4x+ 5)x/
√
25− x2

3.5.6. −x/
√
r2 − x2

3.5.7. 2x3/
√

1 + x4

3.5.8.
1

4
√
x(5−

√
x)3/2

3.5.9. 6 + 18x

3.5.10.
2x+ 1

1− x
+

x2 + x+ 1

(1− x)2

3.5.11. −1/
√
25− x2 −

√
25− x2/x2

3.5.12.
1

2

(
−169

x2
− 1

)/√169

x
− x

3.5.13.
3x2 − 2x+ 1/x2

2
√

x3 − x2 − (1/x)

3.5.14.
300x

(100− x2)5/2

3.5.15.
1 + 3x2

3(x+ x3)2/3

3.5.16.

(
4x(x2 + 1) +

4x3 + 4x

2
√

1 + (x2 + 1)2

)/
2
√
(x2 + 1)2 +

√
1 + (x2 + 1)2

3.5.17. 5(x+ 8)4

3.5.18. −3(4− x)2

3.5.19. 6x(x2 + 5)2

3.5.20. −12x(6− 2x2)2

3.5.21. 24x2(1− 4x3)−3

3.5.22. 5 + 5/x2

3.5.23. −8(4x− 1)(2x2 − x+ 3)−3

3.5.24. 1/(x+ 1)2

3.5.25. 3(8x− 2)/(4x2 − 2x+ 1)2

3.5.26. −3x2 + 5x− 1

3.5.27. 6x(2x− 4)3 + 6(3x2 + 1)(2x− 4)2
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3.5.28. −2/(x− 1)2

3.5.29. 4x/(x2 + 1)2

3.5.30. (x2 − 6x+ 7)/(x− 3)2

3.5.31. −5/(3x− 4)2

3.5.32. 60x4 + 72x3 + 18x2 + 18x− 6

3.5.33. (5− 4x)/((2x+ 1)2(x− 3)2)

3.5.34. 1/(2(2 + 3x)2)

3.5.35. 56x6 + 72x5 + 110x4 + 100x3 +

60x2 + 28x+ 6

3.5.36. y = 23x/96− 29/96

3.5.37. y = 3− 2x/3

3.5.38. y = 13x/2− 23/2

3.5.39. y = 2x− 11

3.5.40. y =
20 + 2

√
5

5
√
4 +

√
5
x+

3
√
5

5
√

4 +
√
5

4.1.1. 2nπ − π/2, any integer n

4.1.2. nπ ± π/6, any integer n

4.1.3. (
√
2 +

√
6)/4

4.1.4. −(1 +
√
3)/(1−

√
3) = 2 +

√
3

4.1.11. t = π/2

4.3.1. 5

4.3.2. 7/2

4.3.3. 3/4

4.3.4. 1

4.3.5. −
√
2/2

4.3.6. 7

4.3.7. 2

4.4.1. sin(
√
x) cos(

√
x)/

√
x

4.4.2.
sinx

2
√
x
+

√
x cosx

4.4.3. − cosx

sin2 x

4.4.4.
(2x+ 1) sinx− (x2 + x) cosx

sin2 x

4.4.5.
− sinx cosx√
1− sin2 x

4.5.1. cos2 x− sin2 x

4.5.2. − sinx cos(cosx)

4.5.3.
tanx+ x sec2 x

2
√
x tanx

4.5.4.
sec2 x(1 + sinx)− tanx cosx

(1 + sinx)2

4.5.5. − csc2 x

4.5.6. − cscx cotx

4.5.7. 3x2 sin(23x2) + 46x4 cos(23x2)

4.5.8. 0

4.5.9. −6 cos(cos(6x)) sin(6x)

4.5.10. sin θ/(cos θ + 1)2

4.5.11. 5t4 cos(6t)− 6t5 sin(6t)

4.5.12. 3t2(sin(3t) + t cos(3t))/ cos(2t) +

2t3 sin(3t) sin(2t)/ cos2(2t)

4.5.13. nπ/2, any integer n

4.5.14. π/2 + nπ, any integer n

4.5.15.
√
3x/2 + 3/4−

√
3π/6

4.5.16. 8
√
3x+ 4− 8

√
3π/3

4.5.17. 3
√
3x/2−

√
3π/4

4.5.18. π/6 + 2nπ, 5π/6 + 2nπ, any integer

n

4.7.1. 2 ln(3)x3x
2

4.7.2.
cosx− sinx

ex

4.7.3. 2e2x

4.7.4. ex cos(ex)

4.7.5. cos(x)esin x

4.7.6. xsin x

(
cosx lnx+

sinx

x

)
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4.7.7. 3x2ex + x3ex

4.7.8. 1 + 2x ln(2)

4.7.9. −2x ln(3)(1/3)x
2

4.7.10. e4x(4x− 1)/x2

4.7.11. (3x2 + 3)/(x3 + 3x)

4.7.12. − tan(x)

4.7.13. (1− ln(x2))/(x2
√
ln(x2))

4.7.14. sec(x)

4.7.15. xcos(x)(cos(x)/x− sin(x) ln(x))

4.7.20. e

4.8.1. x/y

4.8.2. −(2x+ y)/(x+ 2y)

4.8.3. (2xy − 3x2 − y2)/(2xy − 3y2 − x2)

4.8.4. sin(x) sin(y)/(cos(x) cos(y))

4.8.5. −√
y/

√
x

4.8.6. (y sec2(x/y)−y2)/(x sec2(x/y)+y2)

4.8.7. (y − cos(x+ y))/(cos(x+ y)− x)

4.8.8. −y2/x2

4.8.9. 1

4.8.12. y = 2x± 6

4.8.13. y = x/2± 3

4.8.14. (
√
3, 2

√
3), (−

√
3,−2

√
3),

(2
√
3,
√
3), (−2

√
3,−

√
3)

4.8.15. y = 7x/
√
3− 8/

√
3

4.8.16. y = (−y
1/3
1 x+y

1/3
1 x1+x

1/3
1 y1)/x

1/3
1

4.8.17. (y − y1)/(x− x1) = (2x3
1 + 2x1y

2
1 −

x1)/(2y
3
1 + 2y1x

2
1 + y1)

4.9.3.
−1

1 + x2

4.9.5.
2x√
1− x4

4.9.6.
ex

1 + e2x

4.9.7. −3x2 cos(x3)/

√
1− sin2(x3)

4.9.8.
2

(arcsinx)
√
1− x2

4.9.9. −ex/
√
1− e2x

4.9.10. 0

4.9.11.
(1 + lnx)xx

ln 5(1 + x2x) arctan(xx)

4.10.1. 0

4.10.2. ∞

4.10.3. 1

4.10.4. 0

4.10.5. 0

4.10.6. 1

4.10.7. 1/6

4.10.8. −∞

4.10.9. 1/16

4.10.10. 1/3

4.10.11. 0

4.10.12. 3/2

4.10.13. −1/4

4.10.14. −3

4.10.15. 1/2

4.10.16. 0

4.10.17. −1

4.10.18. −1/2

4.10.19. 5

4.10.20. ∞

4.10.21. ∞

4.10.22. 2/7

4.10.23. 2

4.10.24. −∞

4.10.25. 1
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4.10.26. 1

4.10.27. 2

4.10.28. 1

4.10.29. 0

4.10.30. 1/2

4.10.31. 2

4.10.32. 0

4.10.33. ∞
4.10.34. 1/2

4.10.35. 0

4.10.36. 1/2

4.10.37. 5

4.10.38. 2
√
2

4.10.39. −1/2

4.10.40. 2

4.10.41. 0

4.10.42. ∞
4.10.43. 0

4.10.44. 3/2

4.10.45. ∞
4.10.46. 5

4.10.47. −1/2

4.10.48. does not exist

4.10.49. ∞
4.10.50. y = 1 and y = −1

5.1.1. min at x = 1/2

5.1.2. min at x = −1, max at x = 1

5.1.3. max at x = 2, min at x = 4

5.1.4. min at x = ±1, max at x = 0.

5.1.5. min at x = 1

5.1.6. none

5.1.7. none

5.1.8. min at x = 7π/12 + kπ, max at

x = −π/12 + kπ, for integer k.

5.1.9. none

5.1.10. local max at x = 5

5.1.11. local min at x = 49

5.1.12. local min at x = 0

5.1.15. one

5.2.1. min at x = 1/2

5.2.2. min at x = −1, max at x = 1

5.2.3. max at x = 2, min at x = 4

5.2.4. min at x = ±1, max at x = 0.

5.2.5. min at x = 1

5.2.6. none

5.2.7. none

5.2.8. min at x = 7π/12 + kπ, max at

x = −π/12 + kπ, for integer k.

5.2.9. none

5.2.10. max at x = 0, min at x = ±11

5.2.11. min at x = −3/2, neither at x = 0

5.2.13. min at nπ, max at π/2 + nπ

5.2.14. min at 2nπ, max at (2n+ 1)π

5.2.15. min at π/2+2nπ, max at 3π/2+2nπ

5.3.1. min at x = 1/2

5.3.2. min at x = −1, max at x = 1

5.3.3. max at x = 2, min at x = 4

5.3.4. min at x = ±1, max at x = 0.

5.3.5. min at x = 1

5.3.6. none

5.3.7. none

5.3.8. min at x = 7π/12 + nπ, max at

x = −π/12 + nπ, for integer n.

5.3.9. max at x = 63/64
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5.3.10. max at x = 7

5.3.11. max at −5−1/4, min at 5−1/4

5.3.12. none

5.3.13. max at −1, min at 1

5.3.14. min at 2−1/3

5.3.15. none

5.3.16. min at nπ

5.3.17. max at nπ, min at π/2 + nπ

5.3.18. max at π/2+2nπ, min at 3π/2+2nπ

5.4.1. concave up everywhere

5.4.2. concave up when x < 0, concave

down when x > 0

5.4.3. concave down when x < 3, concave

up when x > 3

5.4.4. concave up when x < −1/
√
3 or

x > 1/
√
3, concave down when

−1/
√
3 < x < 1/

√
3

5.4.5. concave up when x < 0 or x > 2/3,

concave down when 0 < x < 2/3

5.4.6. concave up when x < 0, concave

down when x > 0

5.4.7. concave up when x < −1 or x > 1,

concave down when −1 < x < 0 or

0 < x < 1

5.4.8. concave down on ((8n−1)π/4, (8n+

3)π/4), concave up on ((8n +

3)π/4, (8n+ 7)π/4), for integer n

5.4.9. concave down everywhere

5.4.10. concave up on (−∞, (21−
√
497)/4)

and (21 +
√
497)/4,∞)

5.4.11. concave up on (0,∞)

5.4.12. concave down on (2nπ/3, (2n +

1)π/3)

5.4.13. concave up on (0,∞)

5.4.14. concave up on (−∞,−1) and (0,∞)

5.4.15. concave down everywhere

5.4.16. concave up everywhere

5.4.17. concave up on (π/4+nπ, 3π/4+nπ)

5.4.18. inflection points at nπ,

± arcsin(
√

2/3) + nπ

5.4.19. up/incr: (3,∞), up/decr: (−∞, 0),

(2, 3), down/decr: (0, 2)

6.1.1. max at (2, 5), min at (0, 1)

6.1.2. 25× 25

6.1.3. P/4× P/4

6.1.4. w = l = 2 · 52/3, h = 52/3, h/w =

1/2

6.1.5.
3
√
100× 3

√
100× 2

3
√
100, h/s = 2

6.1.6. w = l = 21/3V 1/3, h = V 1/3/22/3,

h/w = 1/2

6.1.7. 1250 square feet

6.1.8. l2/8 square feet

6.1.9. $5000

6.1.10. 100

6.1.11. r2

6.1.12. h/r = 2

6.1.13. h/r = 2

6.1.14. r = 5 cm, h = 40/π cm, h/r = 8/π

6.1.15. 8/π

6.1.16. 4/27

6.1.17. Go direct from A to D.

6.1.18. (a) 2, (b) 7/2

6.1.19.

√
3

6
×

√
3

6
+

1

2
× 1

4
−

√
3

12

6.1.20. (a) a/6, (b) (a + b −√
a2 − ab+ b2)/6
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6.1.21. 1.5 meters wide by 1.25 meters tall

6.1.22. If k ≤ 2/π the ratio is (2 − kπ)/4;

if k ≥ 2/π, the ratio is zero: the

window should be semicircular with

no rectangular part.

6.1.23. a/b

6.1.24. w = 2r/
√
3, h = 2

√
2r/

√
3

6.1.25. 1/
√
3 ≈ 58%

6.1.26. 18× 18× 36

6.1.27. r = 5/(2π)1/3 ≈ 2.7 cm,

h = 5 · 25/3/π1/3 = 4r ≈ 10.8 cm

6.1.28. h =
750

π

(
2π2

7502

)1/3

, r =(
7502

2π2

)1/6

6.1.29. h/r =
√
2

6.1.30. The ratio of the volume of the

sphere to the volume of the cone is

1033/4096 + 33/4096
√
17 ≈ 0.2854,

so the cone occupies approximately

28.54% of the sphere.

6.1.31. P should be at distance c 3
√
a/( 3

√
a+

3
√
b) from charge A.

6.1.32. 1/2

6.1.33. $7000

6.1.34. There is a critical point when

sin θ1/v1 = sin θ2/v2, and the

second derivative is positive, so

there is a minimum at the critical

point.

6.2.1. 1/(16π) cm/s

6.2.2. 3/(1000π) meters/second

6.2.3. 1/4 m/s

6.2.4. −6/25 m/s

6.2.5. 80π mi/min

6.2.6. 3
√
5 ft/s

6.2.7. 20/(3π) cm/s

6.2.8. 13/20 ft/s

6.2.9. 5
√
10/2 m/s

6.2.10. 75/64 m/min

6.2.11. 145π/72 m/s

6.2.12. 25π/144 m/min

6.2.13. π
√
2/36 ft3/s

6.2.14. tip: 6 ft/s, length: 5/2 ft/s

6.2.15. tip: 20/11 m/s, length: 9/11 m/s

6.2.16. 380/
√
3− 150 ≈ 69.4 mph

6.2.17. 500/
√
3− 200 ≈ 88.7 km/hr

6.2.18. 18 m/s

6.2.19. 136
√
475/19 ≈ 156 km/hr

6.2.20. −50 m/s

6.2.21. 68 m/s

6.2.22. 3800/
√
329 ≈ 210 km/hr

6.2.23. 820/
√
329 + 150

√
57/

√
47 ≈ 210 km/hr

6.2.24. 4000/49 m/s

6.2.25. (a) x = a cos θ− a sin θ cot(θ+ β) =

a sinβ/ sin(θ + β), (c) ẋ ≈ 3.79 cm/s

6.3.1. x3 = 1.475773162

6.3.2. 2.15

6.3.3. 3.36

6.3.4. 2.19 or 1.26

6.4.1. ∆y = 65/16, dy = 2

6.4.2. ∆y =
√
11/10− 1, dy = 0.05

6.4.3. ∆y = sin(π/50), dy = π/50

6.4.4. dV = 8π/25

6.5.1. c = 1/2
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6.5.2. c =
√
18− 2

6.5.6. x3/3 + 47x2/2− 5x+ k

6.5.7. arctanx+ k

6.5.8. x4/4− lnx+ k

6.5.9. − cos(2x)/2 + k

7.1.1. 10

7.1.2. 35/3

7.1.3. x2

7.1.4. 2x2

7.1.5. 2x2 − 8

7.1.6. 2b2 − 2a2

7.1.7. 4 rectangles: 41/4 = 10.25,

8 rectangles: 183/16 = 11.4375

7.1.8. 23/4

7.2.1. (16/3)x3/2 + C

7.2.2. t3 + t+ C

7.2.3. 8
√
x+ C

7.2.4. −2/z + C

7.2.5. 7 ln s+ C

7.2.6. (5x+ 1)3/15 + C

7.2.7. (x− 6)3/3 + C

7.2.8. 2x5/2/5 + C

7.2.9. −4/
√
x+ C

7.2.10. 4t− t2 + C, t < 2; t2 − 4t+ 8 + C,

t ≥ 2

7.2.11. 87/2

7.2.12. 2

7.2.13. ln(10)

7.2.14. e5 − 1

7.2.15. 34/4

7.2.16. 26/6− 1/6

7.2.17. x2 − 3x

7.2.18. 2x(x4 − 3x2)

7.2.19. ex
2

7.2.20. 2xex
4

7.2.21. tan(x2)

7.2.22. 2x tan(x4)

7.3.1. It rises until t = 100/49, then falls.

The position of the object at time

t is s(t) = −4.9t2 + 20t + k. The

net distance traveled is −45/2, that

is, it ends up 45/2 meters below

where it started. The total distance

traveled is 6205/98 meters.

7.3.2.

∫ 2π

0

sin t dt = 0

7.3.3. net: 2π, total: 2π/3 + 4
√
3

7.3.4. 8

7.3.5. 17/3

7.3.6. A = 18, B = 44/3, C = 10/3

8.1.1. −(1− t)10/10 + C

8.1.2. x5/5 + 2x3/3 + x+ C

8.1.3. (x2 + 1)101/202 + C

8.1.4. −3(1− 5t)2/3/10 + C

8.1.5. (sin4 x)/4 + C

8.1.6. −(100− x2)3/2/3 + C

8.1.7. −2
√
1− x3/3 + C

8.1.8. sin(sinπt)/π + C

8.1.9. 1/(2 cos2 x) = (1/2) sec2 x+ C

8.1.10. − ln | cosx|+ C

8.1.11. 0

8.1.12. tan2(x)/2 + C

8.1.13. 1/4

8.1.14. − cos(tanx) + C

8.1.15. 1/10
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8.1.16.
√
3/4

8.1.17. (27/8)(x2 − 7)8/9 + C

8.1.18. −(37 + 1)/14

8.1.19. 0

8.1.20. f(x)2/2

8.2.1. x/2− sin(2x)/4 + C

8.2.2. − cosx+ (cos3 x)/3 + C

8.2.3. 3x/8− (sin 2x)/4 + (sin 4x)/32 + C

8.2.4. (cos5 x)/5− (cos3 x)/3 + C

8.2.5. sinx− (sin3 x)/3 + C

8.2.6. x/8− (sin 4x)/32 + C

8.2.7. (sin3 x)/3− (sin5 x)/5 + C

8.2.8. −2(cosx)5/2/5 + C

8.2.9. tanx− cotx+ C

8.2.10. (sec3 x)/3− secx+ C

8.3.1. − ln | cscx+ cotx|+ C

8.3.2. − cscx cotx/2 − (1/2) ln | cscx +

cotx|+ C

8.3.3. x
√
x2 − 1/2−ln |x+

√
x2 − 1|/2+C

8.3.4. x
√
9 + 4x2/2 +

(9/4) ln |2x+
√
9 + 4x2|+ C

8.3.5. −(1− x2)3/2/3 + C

8.3.6. arcsin(x)/8− sin(4 arcsinx)/32 +C

8.3.7. ln |x+
√

1 + x2|+ C

8.3.8. (x + 1)
√

x2 + 2x/2 −
ln |x+ 1 +

√
x2 + 2x|/2 + C

8.3.9. − arctanx− 1/x+ C

8.3.10. 2 arcsin(x/2)− x
√

4− x2/2 + C

8.3.11. arcsin(
√
x)−

√
x
√
1− x+ C

8.3.12. (2x2 + 1)
√

4x2 − 1/24 + C

8.4.1. cosx+ x sinx+ C

8.4.2. x2 sinx− 2 sinx+ 2x cosx+ C

8.4.3. (x− 1)ex + C

8.4.4. (1/2)ex
2

+ C

8.4.5. (x/2)− sin(2x)/4 + C =

(x/2)− (sinx cosx)/2 + C

8.4.6. x lnx− x+ C

8.4.7. (x2 arctanx+ arctanx− x)/2 + C

8.4.8. −x3 cosx + 3x2 sinx + 6x cosx −
6 sinx+ C

8.4.9. x3 sinx + 3x2 cosx − 6x sinx −
6 cosx+ C

8.4.10. x2/4−(cos2 x)/4−(x sinx cosx)/2+

C

8.4.11. x/4− (x cos2 x)/2+(cosx sinx)/4+

C

8.4.12. x arctan(
√
x)+arctan(

√
x)−

√
x+C

8.4.13. 2 sin(
√
x)− 2

√
x cos(

√
x) + C

8.4.14. secx cscx− 2 cotx+ C

8.5.1. − ln |x− 2|/4 + ln |x+ 2|/4 + C

8.5.2. −x3/3− 4x− 4 ln |x− 2|+
4 ln |x+ 2|+ C

8.5.3. −1/(x+ 5) + C

8.5.4. −x− ln |x− 2|+ ln |x+ 2|+ C

8.5.5. −4x+ x3/3 + 8 arctan(x/2) + C

8.5.6. (1/2) arctan(x/2 + 5/2) + C

8.5.7. x2/2− 2 ln(4 + x2) + C

8.5.8. (1/4) ln |x+3| − (1/4) ln |x+7|+C

8.5.9. (1/5) ln |2x−3|− (1/5) ln |1+x|+C

8.5.10. (1/3) ln |x| − (1/3) ln |x+ 3|+ C

8.6.1. T,S: 4± 0

8.6.2. T: 9.28125± 0.281125; S: 9± 0

8.6.3. T: 60.75± 1; S: 60± 0

8.6.4. T: 1.1167±0.0833; S: 1.1000±0.0167
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8.6.5. T: 0.3235 ± 0.0026; S: 0.3217 ±
0.000065

8.6.6. T: 0.6478 ± 0.0052; S: 0.6438 ±
0.000033

8.6.7. T: 2.8833±0.0834; S: 2.9000±0.0167

8.6.8. T: 1.1170±0.0077; S: 1.1114±0.0002

8.6.9. T: 1.097± 0.0147; S: 1.089± 0.0003

8.6.10. T: 3.63± 0.087; S: 3.62± 0.032

8.7.1.
(t+ 4)4

4
+ C

8.7.2.
(t2 − 9)5/2

5
+ C

8.7.3.
(et

2

+ 16)2

4
+ C

8.7.4. cos t− 2

3
cos3 t+ C

8.7.5.
tan2 t

2
+ C

8.7.6. ln |t2 + t+ 3|+ C

8.7.7.
1

8
ln |1− 4/t2|+ C

8.7.8.
1

25
tan(arcsin(t/5)) + C =

t

25
√
25− t2

+ C

8.7.9.
2

3

√
sin 3t+ C

8.7.10. t tan t+ ln | cos t|+ C

8.7.11. 2
√
et + 1 + C

8.7.12.
3t

8
+

sin 2t

4
+

sin 4t

32
+ C

8.7.13.
ln |t|
3

− ln |t+ 3|
3

+ C

8.7.14.
−1

sin arctan t
+ C = −

√
1 + t2/t+ C

8.7.15.
−1

2(1 + tan t)2
+ C

8.7.16.
(t2 + 1)5/2

5
− (t2 + 1)3/2

3
+ C

8.7.17.
et sin t− et cos t

2
+ C

8.7.18.
(t3/2 + 47)4

6
+ C

8.7.19.
2

3(2− t2)3/2
− 1

(2− t2)1/2
+ C

8.7.20.
ln | sin(arctan(2t/3))|

9
+ C =

(ln(4t2)− ln(9 + 4t2))/18 + C

8.7.21.
(arctan(2t))2

4
+ C

8.7.22.
3 ln |t+ 3|

4
+

ln |t− 1|
4

+ C

8.7.23.
cos7 t

7
− cos5 t

5
+ C

8.7.24.
−1

t− 3
+ C

8.7.25.
−1

ln t
+ C

8.7.26.
t2(ln t)2

2
− t2 ln t

2
+

t2

4
+ C

8.7.27. (t3 − 3t2 + 6t− 6)et + C

8.7.28.
5 +

√
5

10
ln(2t + 1 −

√
5) +

5−
√
5

10
ln(2t+ 1 +

√
5) + C

9.1.1. 8
√
2/15

9.1.2. 1/12

9.1.3. 9/2

9.1.4. 4/3

9.1.5. 2/3− 2/π

9.1.6. 3/π − 3
√
3/(2π)− 1/8

9.1.7. 1/3

9.1.8. 10
√
5/3− 6

9.1.9. 500/3
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9.1.10. 2

9.1.11. 1/5

9.1.12. 1/6

9.2.1. 1/π, 5/π

9.2.2. 0, 245

9.2.3. 20, 28

9.2.4. (3− π)/(2π), (18− 12
√
3 + π)/(4π)

9.2.5. 10/49 meters, 20/49 seconds

9.2.6. 45/98 meters, 30/49 seconds

9.2.7. 25000/49 meters, 1000/49 seconds

9.2.8. s(t) = cos t, v(t) = − sin t,

maximum distance is 1,

maximum speed is 1

9.2.9. s(t) = − sin(πt)/π2 + t/π,

v(t) = − cos(πt)/π + 1/π,

maximum speed is 2/π

9.2.10. s(t) = t2/2− sin(πt)/π2 + t/π,

v(t) = t− cos(πt)/π + 1/π

9.2.11. s(t) = t2/2 + sin(πt)/π2 − t/π,

v(t) = t+ cos(πt)/π − 1/π

9.3.5. 8π/3

9.3.6. π/30

9.3.7. π(π/2− 1)

9.3.8. (a) 114π/5 (b) 74π/5 (c) 20π

(d) 4π

9.3.9. 16π, 24π

9.3.11. πh2(3r − h)/3

9.3.13. 2π

9.4.1. 2/π; 2/π; 0

9.4.2. 4/3

9.4.3. 1/A

9.4.4. π/4

9.4.5. −1/3, 1

9.4.6. −4
√
1224 ft/s; −8

√
1224 ft/s

9.5.1. ≈ 5, 305, 028, 516 N-m

9.5.2. ≈ 4, 457, 854, 041 N-m

9.5.3. 367, 500π N-m

9.5.4. 49000π + 196000/3 N-m

9.5.5. 2450π N-m

9.5.6. 0.05 N-m

9.5.7. 6/5 N-m

9.5.8. 3920 N-m

9.5.9. 23520 N-m

9.5.10. 12740 N-m

9.6.1. 15/2

9.6.2. 5

9.6.3. 16/5

9.6.5. x̄ = 45/28, ȳ = 93/70

9.6.6. x̄ = 0, ȳ = 4/(3π)

9.6.7. x̄ = 1/2, ȳ = 2/5

9.6.8. x̄ = 0, ȳ = 8/5

9.6.9. x̄ = 4/7, ȳ = 2/5

9.6.10. x̄ = ȳ = 1/5

9.6.11. x̄ = 0, ȳ = 28/(9π)

9.6.12. x̄ = ȳ = 28/(9π)

9.6.13. x̄ = 0, ȳ = 244/(27π) ≈ 2.88

9.7.1. ∞
9.7.2. 1/2

9.7.3. diverges

9.7.4. diverges

9.7.5. 1

9.7.6. diverges

9.7.7. 2

9.7.8. diverges

9.7.9. π/6
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9.7.10. diverges, 0

9.7.11. diverges, 0

9.7.12. diverges, no CPV

9.7.13. π

9.7.14. 80 mph: 90.8 to 95.3 N

90 mph: 114.9 to 120.6 N

100.9 mph: 144.5 to 151.6 N

9.8.2. µ = 1/c, σ = 1/c

9.8.3. µ = (a+ b)/2, σ =
(b− a)

2
√
3

9.8.4. 7/2

9.8.5. 21/2

9.8.9. r = 6

9.9.1. (22
√
22− 8)/27

9.9.2. ln(2) + 3/8

9.9.3. a+ a3/3

9.9.4. ln((
√
2 + 1)/

√
3)

9.9.6. 3/4

9.9.7. ≈ 3.82

9.9.8. ≈ 1.01

9.9.9.
√
1 + e2 −

√
2 +

1

2
ln

(√
1 + e2 − 1√
1 + e2 + 1

)
+
1

2
ln(3+2

√
2)

9.10.1. 8π
√
3− 16π

√
2

3

9.10.3.
730π

√
730

27
− 10π

√
10

27

9.10.4. π + 2πe+
1

4
πe2 − π

4e2
− 2π

e

9.10.6. 8π2

9.10.7. 2π +
8π2

3
√
3

9.10.8. a > b: 2πb2+
2πa2b√
a2 − b2

arcsin(
√
a2 − b2/a),

a < b: 2πb2+

2πa2b√
b2 − a2

ln

(
b

a
+

√
b2 − a2

a

)
10.1.2. θ = arctan(3)

10.1.3. r = −4 csc θ

10.1.4. r3 cos θ sin2 θ = 1

10.1.5. r =
√
5

10.1.6. r2 = sin θ sec3 θ

10.1.7. r sin θ = sin(r cos θ)

10.1.8. r = 2/(sin θ − 5 cos θ)

10.1.9. r = 2 sec θ

10.1.10. 0 = r2 cos2 θ − r sin θ + 1

10.1.11. 0 = 3r2 cos2 θ − 2r cos θ − r sin θ

10.1.12. r = sin θ

10.1.21. (x2 + y2)2 = 4x2y − (x2 + y2)y

10.1.22. (x2 + y2)3/2 = y2

10.1.23. x2 + y2 = x2y2

10.1.24. x4 + x2y2 = y2

10.2.1. (θ cos θ + sin θ)/(−θ sin θ + cos θ),

(θ2 + 2)/(−θ sin θ + cos θ)3

10.2.2.
cos θ + 2 sin θ cos θ

cos2 θ − sin2 θ − sin θ
,

3(1 + sin θ)

(cos2 θ − sin2 θ − sin θ)3

10.2.3. (sin2 θ − cos2 θ)/(2 sin θ cos θ),

−1/(4 sin3 θ cos3 θ)

10.2.4.
2 sin θ cos θ

cos2 θ − sin2 θ
,

2

(cos2 θ − sin2 θ)3

10.2.5. undefined

10.2.6.
2 sin θ − 3 sin3 θ

3 cos3 θ − 2 cos θ
,

3 cos4 θ − 3 cos2 θ + 2

2 cos3 θ(3 cos2 θ − 2)3
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10.3.1. 1

10.3.2. 9π/2

10.3.3.
√
3/3

10.3.4. π/12 +
√
3/16

10.3.5. πa2

10.3.6. 41π/2

10.3.7. 2− π/2

10.3.8. π/12

10.3.9. 3π/16

10.3.10. π/4− 3
√
3/8

10.3.11. π/2 + 3
√
3/8

10.3.12. 1/2

10.3.13. 3/2− π/4

10.3.14. π/3 +
√
3/2

10.3.15. π/3−
√
3/4

10.3.16. 4π3/3

10.3.17. π2

10.3.18. 5π/24−
√
3/4

10.3.19. 7π/12−
√
3

10.3.20. 4π −
√
15/2− 7 arccos(1/4)

10.3.21. 3π3

10.4.6. x = t− sin(t)

2
, y = 1− cos(t)

2

10.4.7. x = 4 cos t− cos(4t),

y = 4 sin t− sin(4t)

10.4.8. x = 2 cos t+ cos(2t),

y = 2 sin t− sin(2t)

10.4.9. x = cos t+ t sin t,

y = sin t− t cos t

10.5.1. There is a horizontal tangent at all

multiples of π.

10.5.2. 9π/4

10.5.3.

∫ 2π

0

1

2

√
5− 4 cos t dt

10.5.4. Four points:−3− 3
√
5

4
,±

√
5−

√
5

8

,

−3 + 3
√
5

4
,±

√
5 +

√
5

8


10.5.5. 11π/3

10.5.6. 32/3

10.5.7. 2π

10.5.8. 16/3

10.5.9. (π/2, 1)

10.5.10. 5π3/6

10.5.11. 2π2

10.5.12. (2π
√
4π2 + 1 + ln(2π +√

4π2 + 1))/2

11.1.1. 1

11.1.3. 0

11.1.4. 1

11.1.5. 1

11.1.6. 0

11.2.1. lim
n→∞

n2/(2n2 + 1) = 1/2

11.2.2. lim
n→∞

5/(21/n + 14) = 1/3

11.2.3.
∑∞

n=1
1
n diverges, so

∞∑
n=1

3
1

n
di-

verges

11.2.4. −3/2

11.2.5. 11

11.2.6. 20

11.2.7. 3/4

11.2.8. 3/2

11.2.9. 3/10



Appendix A Selected Answers 311

11.3.1. diverges

11.3.2. diverges

11.3.3. converges

11.3.4. converges

11.3.5. converges

11.3.6. converges

11.3.7. diverges

11.3.8. converges

11.3.9. N = 5

11.3.10. N = 10

11.3.11. N = 1687

11.3.12. any integer greater than e200

11.4.1. converges

11.4.2. converges

11.4.3. diverges

11.4.4. converges

11.4.5. 0.90

11.4.6. 0.95

11.5.1. converges

11.5.2. converges

11.5.3. converges

11.5.4. diverges

11.5.5. diverges

11.5.6. diverges

11.5.7. converges

11.5.8. diverges

11.5.9. converges

11.5.10. diverges

11.6.1. converges absolutely

11.6.2. diverges

11.6.3. converges conditionally

11.6.4. converges absolutely

11.6.5. converges conditionally

11.6.6. converges absolutely

11.6.7. diverges

11.6.8. converges conditionally

11.7.5. converges

11.7.6. converges

11.7.7. converges

11.7.8. diverges

11.8.1. R = 1, I = (−1, 1)

11.8.2. R = ∞, I = (−∞,∞)

11.8.3. R = e, I = (−e, e)

11.8.4. R = e, I = (2− e, 2 + e)

11.8.5. R = 0, converges only when x = 2

11.8.6. R = 1, I = [−6,−4]

11.9.1. the alternating harmonic series

11.9.2.
∞∑

n=0

(n+ 1)xn

11.9.3.

∞∑
n=0

(n+ 1)(n+ 2)xn

11.9.4.
∞∑

n=0

(n+ 1)(n+ 2)

2
xn, R = 1

11.9.5. C +

∞∑
n=0

−1

(n+ 1)(n+ 2)
xn+2

11.10.1.
∞∑

n=0

(−1)nx2n/(2n)!, R = ∞

11.10.2.
∞∑

n=0

xn/n!, R = ∞

11.10.3.
∞∑

n=0

(−1)n
(x− 5)n

5n+1
, R = 5

11.10.4.
∞∑

n=1

(−1)n−1
(x− 1)n

n
, R = 1
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11.10.5. ln(2) +
∞∑

n=1

(−1)n−1
(x− 2)n

n2n
, R = 2

11.10.6.

∞∑
n=0

(−1)n(n+ 1)(x− 1)n, R = 1

11.10.7. 1 +

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

n!2n
xn =

1 +

∞∑
n=1

(2n− 1)!

22n−1(n− 1)!n!
xn, R = 1

11.10.8. x+ x3/3

11.10.9.

∞∑
n=0

(−1)nx4n+1/(2n)!

11.10.10.

∞∑
n=0

(−1)nxn+1/n!

11.11.1. 1− x2

2
+

x4

24
− x6

720
+ · · ·+ x12

12!

11.11.2. 1000; 8

11.11.3. x+
x3

3
+

2x5

15
, error ±1.27.

11.12.1. diverges

11.12.2. converges

11.12.3. converges

11.12.4. diverges

11.12.5. diverges

11.12.6. diverges

11.12.7. converges

11.12.8. converges

11.12.9. converges

11.12.10. converges

11.12.11. converges

11.12.12. converges

11.12.13. converges

11.12.14. converges

11.12.15. converges

11.12.16. converges

11.12.17. diverges

11.12.18. (−∞,∞)

11.12.19. (−3, 3)

11.12.20. (−3, 3)

11.12.21. (−1, 1)

11.12.22. radius is 0—it converges only when

x = 0

11.12.23. (−
√
3,
√
3)

11.12.24. (−∞,∞)

11.12.25.
∞∑

n=0

(ln(2))n

n!
xn

11.12.26.
∞∑

n=0

(−1)n

n+ 1
xn+1

11.12.27.

∞∑
n=0

2

2n+ 1
x2n+1

11.12.28. 1 + x/2 +
∞∑

n=2

(−1)n+1 1 · 3 · 5 · · · (2n− 3)

2nn!
xn

11.12.29.

∞∑
n=0

(−1)nx2n

11.12.30.
∞∑

n=0

(−1)n

2n+ 1
x2n+1

11.12.31. π =

∞∑
n=0

(−1)n
4

2n+ 1



B
Useful Formulas

Algebra

Remember that the common algebraic operations have precedences relative to each other:

for example, multiplication and division take precedence over addition and subtraction, but

are “tied” with each other. In the case of ties, work left to right. This means, for example,

that 1/2x means (1/2)x: do the division, then the multiplication in left to right order. It

sometimes is a good idea to use more parentheses than strictly necessary, for clarity, but

it is also a bad idea to use too many parentheses.

Completing the square: x2 + bx+ c = (x+ b
2 )

2 − b2

4 + c.

Quadratic formula: the roots of ax2 + bx+ c are
−b±

√
b2 − 4ac

2a
.

Exponent rules:

ab · ac = ab+c

ab

ac
= ab−c

(ab)c = abc

a1/b = b
√
a

Geometry

Circle: circumference = 2πr, area = πr2.

Ellipse: area = πab, where 2a and 2b are the lengths of the axes of the ellipse.
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Sphere: vol = 4πr3/3, surface area = 4πr2.

Cylinder: vol = πr2h, lateral area = 2πrh, total surface area = 2πrh+ 2πr2.

Cone: vol = πr2h/3, lateral area = πr
√
r2 + h2, total surface area = πr

√
r2 + h2 +

πr2.

Analytic geometry

Point-slope formula for straight line through the point (x0, y0) with slope m: y =

y0 +m(x− x0).

Circle with radius r centered at (h, k): (x− h)2 + (y − k)2 = r2.

Ellipse with axes on the x-axis and y-axis:
x2

a2
+

y2

b2
= 1.

Trigonometry

sin(θ) = opposite/hypotenuse

cos(θ) = adjacent/hypotenuse

tan(θ) = opposite/adjacent

sec(θ) = 1/ cos(θ)

csc(θ) = 1/ sin(θ)

cot(θ) = 1/ tan(θ)

tan(θ) = sin(θ)/ cos(θ)

cot(θ) = cos(θ)/ sin(θ)

sin(θ) = cos
(
π
2 − θ

)
cos(θ) = sin

(
π
2 − θ

)
sin(θ + π) = − sin(θ)

cos(θ + π) = − cos(θ)

Law of cosines: a2 = b2 + c2 − 2bc cosA

Law of sines:
a

sinA
=

b

sinB
=

c

sinC

Sine of sum of angles: sin(x+ y) = sinx cos y + cosx sin y

Sine of double angle: sin(2x) = 2 sinx cosx

Sine of difference of angles: sin(x− y) = sinx cos y − cosx sin y
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Cosine of sum of angles: cos(x+ y) = cosx cos y − sinx sin y

Cosine of double angle: cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

Cosine of difference of angles: cos(x− y) = cosx cos y + sinx sin y

Tangent of sum of angles: tan(x+ y) =
tanx+ tan y

1− tanx tan y

sin2(θ) and cos2(θ) formulas:

sin2(θ) + cos2(θ) = 1

tan2(θ) + 1 = sec2(θ)

sin2(θ) =
1− cos(2θ)

2

cos2(θ) =
1 + cos(2θ)

2
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A

absolute extremum, 117
algebraic precedence, 313
alternating harmonic series, 271
antiderivative, 153
arc length, 230
arccosine, 94
arcsine, 92
area
between curves, 189
under curve, 149

asymptote, 21, 113

B

bell curve, 224
bounded function, 52

C

cardioid, 240
Cartesian coordinates, 239
Cauchy Principal Value, 218
center of mass, 213
centroid, 214
chain rule, 65
chord, 30
circle
area, 313
circumference, 313
equation of, 19, 314
unit, 19

completing the square, 313
composition of functions, 25, 43, 65
concave down, 112
concave up, 112
cone
lateral area, 314
surface area, 314
volume, 314

continuous, 53
convergent sequence, 257
convergent series, 262
coordinates
Cartesian, 239
converting rectangular to polar, 240
polar, 239
rectangular, 239

cosines
law of, 314

critical value, 106
cumulative distribution function, 224
curve sketching, 105
cycloid, 249
cylinder
lateral area, 314
surface area, 314
volume, 314

D

definite integral, 157
dependent variable, 22
derivative, 32, 46
dot notation, 130
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Leibniz notation, 47
second, 111

difference quotient, 30
differentiable, 53
differential, 142
discrete probability, 221
divergence test, 264
divergent sequence, 257
divergent series, 262
domain, 21
dot notation, 130

E

ellipse
area, 313
equation of, 314

ellipsoid, 237
error estimate, 183
escape velocity, 220
exp function, 83
expected value, 222
exponential distribution, 225
exponential function, 80
Extreme Value Theorem, 119

F

Fermat’s Theorem, 106
frustum, 233
function, 20
bounded, 52
differentiable, 53
implicit, 88
linear, 20
rational, 178
unbounded, 52

function composition, 25
Fundamental Theorem of Algebra, 109
Fundamental Theorem of Calculus, 151

G

Gabriel’s horn, 221, 236
geometric series, 262
global extremum, 117
greatest integer, 108

H

harmonic series, 265
alternating, 271

Hooke’s Law, 209
hyperbolic cosine, 100
hyperbolic sine, 100
hypercycloid, 250
hypocycloid, 250

I

implicit differentiation, 87
implicit function, 88
improper integral, 217
convergent, 217
diverges, 217

indefinite integral, 157
independent variable, 22
inflection point, 112
integral
improper, 217
indefinite, 157
of secx, 173
of sec3 x, 173
properties of, 161

integral sign, 153
integral test, 268
integration
by parts, 174

Intermediate Value Theorem, 53
interval of convergence, 282
inverse function, 80
inverse sine, 92
involute, 250

K

kinetic energy, 219

L

L’Hôpital’s Rule, 96
lateral area of a cone, 128
law of cosines, 314
law of sines, 314
Leibniz notation, 47
limit, 39
limit at infinity, 96
limit of a sequence, 257
linear approximation, 141
linearity of the derivative, 58
local extremum, 105
local maximum, 105
local minimum, 105
logarithm, 80
logarithmic function, 80



Index 319

long division of polynomials, 180

M

Maclaurin series, 286
mean, 222, 225
Mean Value Theorem, 144
moment, 213

N

Newton, 208
Newton’s method, 137–139
normal distribution, 230

O

one sided limit, 44
optimization, 117

P

p-series, 268
parametric equations, 249
partial fractions, 178
physicists, 130
point-slope formula, 314
polar coordinates, 239
power function, 55
power rule, 55, 87, 90
precedence
of algebraic operations, 313

probability density function, 223
product rule, 60, 61
generalized, 62

properties of integrals, 161

Q

quadratic formula, 313
quotient rule, 62

R

radian measure, 71
radius of convergence, 282
random variable, 222
rational function, 64, 178
rectangular coordinates, 239
related rates, 129
Rolle’s Theorem, 144

S

second derivative, 110, 111
sequence, 256
bounded, 260
bounded above, 260
bounded below, 260
convergent, 257
decreasing, 260
divergent, 257
increasing, 260
monotonic, 260
non-decreasing, 260
non-increasing, 260
of partial sums, 262

series, 256
p-series, 268
absolute convergence, 276
alternating harmonic, 271
conditional convergence, 276
convergent, 262
divergent, 262
geometric, 262
harmonic, 265
integral test, 268
interval of convergence, 282
Maclaurin, 286
radius of convergence, 282
Taylor, 288

Simpson’s Rule, 185
sines
law of, 314

sphere
surface area, 314
volume, 314

spiral of Archimedes, 241
squeeze theorem, 75
standard deviation, 227
standard normal distribution, 225
standard normal probability density

function, 224
subtend, 72
sum rule, 59

T

tangent line, 30
Taylor series, 288
Toricelli’s trumpet, 221, 236
torque, 211
torus, 236
transcendental function, 71
Trapezoid Rule, 183
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triangle inequality, 41
trigonometric identities, 314

U

unbounded function, 52
uniform distribution, 224
uniform probability density function, 224
unit circle, 19

V

variance, 227
velocity, 35

W

witch of Agnesi, 64
work, 207
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