- Course: AP Calculus AB | Quiz: 23 | Instructor: D. Shubleka -

Name______ No Calculators. Present neatly. Score_____.

1

Suppose that we have two resistors connected in parallel with resistances R_1 and R_2 measured in ohms (Ω). The total resistance, R, is then given by, $\frac{1}{R} = \frac{1}{R} + \frac{1}{R}$

Suppose that R_1 is increasing at a rate of 0.4 Ω /min and R_2 is decreasing at a rate of 0.7 Ω /min. At what rate is R changing when $R_1 = 80 \Omega$ and $R_2 = 105 \Omega$? Your Work:

$$\frac{1}{R} = \frac{1}{80} + \frac{1}{105} = \frac{37}{1680}$$
 \Rightarrow $R = \frac{1680}{37} = 45.4054\Omega$

$$-\frac{1}{R^2}R' = -\frac{1}{\left(R_1\right)^2}R'_1 - \frac{1}{\left(R_2\right)^2}R'_2$$

$$R' = R^2 \left(\frac{1}{\left(R_1\right)^2}R'_1 + \frac{1}{\left(R_2\right)^2}R'_2\right)$$

Finally, all we need to do is plug into this and do some quick computations.

$$R' = (45.4054)^{2} \left(\frac{1}{80^{2}} (0.4) + \frac{1}{105^{2}} (-0.7) \right) = -0.002045$$

So, it looks like R is decreasing at a rate of 0.002045 Ω /min.