KEY/SHUBLERA

The beam hits a wall 8 m away, producing a dot of light that moves horizontally along the wall. Let θ be the angle between the beam and the line through the searchlight

perpendicular to the wall. How fast is this dot moving when $\theta = \frac{\pi}{4}$?

Your work:

Name KEY SHUBLENG
No calculators. Present neatly. Score_____.

Two parallel paths 15 m apart run east-west through the woods. Genie jogs east on one path at 10 km/h, while Joshua walks west on the other path at 6 km/h. If they pass each other at time t = 0, how far apart are they 3 s later, and how fast is the distance between them changing at that moment?

Your work:

$$(x+y)^{2} + (0.015)^{2} = z^{2}$$

$$X\left(\frac{1}{1200}\right) = 10 \cdot \frac{1}{1200} = \frac{1}{120} \text{ km}$$

$$Y\left(\frac{1}{1200}\right) = 6 \cdot \frac{1}{1200} = \frac{1}{200} \text{ km}$$

$$y\left(\frac{1}{1200}\right) = 6 \cdot \frac{1}{1200} = \frac{1}{200} \text{ km}$$

$$Z = \left(\frac{1}{120} + \frac{1}{200} \right)^2 + (0.015)^2 \approx$$

$$2(X+y)\left(\frac{dx}{dt} + \frac{dy}{dt}\right) = 2z\frac{dz}{dt}$$

$$\frac{d^{2}}{dt} = \left(\frac{1}{120} + \frac{1}{200}\right) \left(10 + 6\right) \cdot \frac{1}{0.0200693} \approx 10.6298$$

$$\frac{km}{h}$$

Three seconds later, the distance between Genie and Joshua is increasing at a rate of 2.953 m/s.