Name_____ No Calculators. Present neatly. Score_____. 1)

Let
$$r(x) = f(g(h(x)))$$
, where $h(1) = 2$, $g(2) = 3$, $h'(1) = 4$,

If the equation of motion of a particle is given by $s = A\cos(\omega t + \delta)$, the particle is said to undergo *simple harmonic motion*.

- (a) Find the velocity of the particle at time t.
- (b) When is the velocity 0?

g'(2) = 5, and f'(3) = 6. Find r'(1).

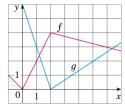
3)

If f and g are the functions whose graphs are shown, let u(x)=f(g(x)), v(x)=g(f(x)), and w(x)=g(g(x)). Find each derivative, if it exists. If it does not exist, explain why.

(a) u'(1)

(b) v'(1)

(c) w'(1)



Your work:

_____ No Calculators. Present neatly. Score_____. Name___

1)

Suppose f is differentiable on \mathbb{R} and α is a real number. Let $F(x) = f(x^{\alpha})$ and $G(x) = [f(x)]^{\alpha}$. Find expressions for (a) F'(x) and (b) G'(x).

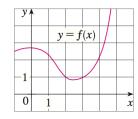
2)

The displacement of a particle on a vibrating string is given by the equation $s(t) = 10 + \frac{1}{4}\sin(10\pi t)$ where s is measured in centimeters and t in seconds. Find the velocity of the particle after t seconds.

3)

If f is the function whose graph is shown, let h(x) = f(f(x))and $g(x) = f(x^2)$. Use the graph of f to estimate the value of each derivative.

(a) h'(2)(b) g'(2)



Your work: