## Name\_\_\_\_\_\_ No calculators. Present neatly. Score\_\_\_\_\_.

1.

Let 
$$g(x) = \frac{x^2 + x - 6}{|x - 2|}$$
.

- (a) Find
  - (i)  $\lim_{x\to 2^+} g(x)$  (ii)  $\lim_{x\to 2^-} g(x)$
- (b) Does  $\lim_{x\to 2} g(x)$  exist?
- (c) Sketch the graph of g.
- 2.

Show by means of an example that  $\lim_{x\to a} [f(x) + g(x)]$  may exist even though neither  $\lim_{x\to a} f(x)$  nor  $\lim_{x\to a} g(x)$  exists.

3.

Evaluate 
$$\lim_{x\to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$$
.

Your work:

Name\_\_\_\_\_\_ No calculators. Present neatly. Score\_\_\_\_\_.

1.

Let

$$g(x) = \begin{cases} x & \text{if } x < 1\\ 3 & \text{if } x = 1\\ 2 - x^2 & \text{if } 1 < x \le 2\\ x - 3 & \text{if } x > 2 \end{cases}$$

- (a) Evaluate each of the following, if it exists.

- (i)  $\lim_{x \to 1^{-}} g(x)$  (ii)  $\lim_{x \to 1} g(x)$  (iii) g(1) (iv)  $\lim_{x \to 2^{-}} g(x)$  (v)  $\lim_{x \to 2^{+}} g(x)$  (vi)  $\lim_{x \to 2} g(x)$
- (b) Sketch the graph of g.
- 2.

Show by means of an example that  $\lim_{x\to a} [f(x)g(x)]$  may exist even though neither  $\lim_{x\to a} f(x)$  nor  $\lim_{x\to a} g(x)$  exists.

3.

Is there a number a such that

$$\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x - 2}$$

exists? If so, find the value of a and the value of the limit.

Your work: