Present neatly on separate paper. Justify for full credit. No Calculators.

Name ______ 8 minutes / A

1)

Suppose that the position functions of two particles, P_1 and P_2 , in motion along the same line are

$$s_1 = \frac{1}{2}t^2 - t + 3$$
 and $s_2 = -\frac{1}{4}t^2 + t + 1$

respectively, for $t \ge 0$.

- (a) Prove that P_1 and P_2 do not collide.
- (b) How close do P_1 and P_2 get to each other?
- (c) During what intervals of time are they moving in opposite directions?
- (a) $s_1 = s_2$ if they collide, so $\frac{1}{2}t^2 t + 3 = -\frac{1}{4}t^2 + t + 1$, $\frac{3}{4}t^2 2t + 2 = 0$ which has no real solution.
- (b) Find the minimum value of $D=|s_1-s_2|=\left|\frac{3}{4}t^2-2t+2\right|$. From part (a), $\frac{3}{4}t^2-2t+2$ is never zero, and for t=0 it is positive, hence it is always positive, so $D=\frac{3}{4}t^2-2t+2$. $\frac{dD}{dt}=\frac{3}{2}t-2=0$ when $t=\frac{4}{3}$. $\frac{d^2D}{dt^2}>0$ so D is minimum when $t=\frac{4}{3}$, $D=\frac{2}{3}$.
- (c) $v_1 = t 1$, $v_2 = -\frac{1}{2}t + 1$. $v_1 < 0$ if $0 \le t < 1$, $v_1 > 0$ if t > 1; $v_2 < 0$ if t > 2, $v_2 > 0$ if $0 \le t < 2$. They are moving in opposite directions during the intervals $0 \le t < 1$ and t > 2.

Present neatly on separate paper. Justify for full credit. No Calculators.

Name ______ 8 minutes / F

Let $s_A = 15t^2 + 10t + 20$ and $s_B = 5t^2 + 40t$, $t \ge 0$, be the position functions of cars A and B that are moving along parallel straight lanes of a highway.

- (a) How far is car A ahead of car B when t = 0?
- (b) At what instants of time are the cars next to each other?
- (c) At what instant of time do they have the same velocity? Which car is ahead at this instant?
- (a) $s_A s_B = 20 0 = 20$.
- **(b)** $s_A = s_B$, $15t^2 + 10t + 20 = 5t^2 + 40t$, $10t^2 30t + 20 = 0$, (t 2)(t 1) = 0, t = 1 or t = 2.
- (c) $v_A = v_B$, 30t + 10 = 10t + 40, 20t = 30, t = 3/2. When t = 3/2, $s_A = 275/4$ and $s_B = 285/4$ so car B is ahead of car A.