2.8 | **F** LABORATORY PROJECT: TAYLOR POLYNOMIALS

The tangent line approximation $L(x)$ is the best first-degree (linear) approximation to $f(x)$ near $x = a$ because $f(x)$ and $L(x)$ have the same rate of change (derivative) at a. For a better approximation than a linear one, let's try a second-degree (quadratic) approximation $P(x)$. In other words, we approximate a curve by a parabola instead of by a straight line. To make sure that the approximation is a good one, we stipulate the following:

- (i) $P(a) = f(a)$ *(P and f should have the same value at a.)*
- (ii) $P'(a) = f'(a)$ *(P and f should have the same rate of change at a.)*
- (iii) $P''(a) = f''(a)$ (The slopes of P and f should change at the same rate at a.)
- **1.** Find the quadratic approximation $P(x) = A + Bx + Cx^2$ to the function $f(x) = \cos x$ that satisfies conditions (i), (ii), and (iii) with $a = 0$. Graph P, f, and the linear approximation $L(x) = 1$ on a common screen. Comment on how well the functions P and L approximate f .
- **2.** Determine the values of x for which the quadratic approximation $f(x) = P(x)$ in Problem 1 is accurate to within 0.1. [*Hint*: Graph $y = P(x)$, $y = \cos x - 0.1$, and $y = \cos x + 0.1$ on a common screen.]
- **3.** To approximate a function f by a quadratic function P near a number a , it is best to write P in the form

$$
P(x) = A + B(x - a) + C(x - a)^2
$$

Show that the quadratic function that satisfies conditions (i), (ii), and (iii) is

$$
P(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2
$$

- **4.** Find the quadratic approximation to $f(x) = \sqrt{x} + 3$ near $a = 1$. Graph f, the quadratic approximation, and the linear approximation from Example 2 in Section 2.8 on a common screen. What do you conclude?
- **5.** Instead of being satisfied with a linear or quadratic approximation to $f(x)$ near $x = a$, let's try to find better approximations with higher-degree polynomials. We look for an th-degree polynomial *n*

$$
T_n(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + c_3(x - a)^3 + \cdots + c_n(x - a)^n
$$

such that T_n and its first *n* derivatives have the same values at $x = a$ as f and its first *n* derivatives. By differentiating repeatedly and setting $x = a$, show that these conditions are satisfied if $c_0 = f(a)$, $c_1 = f'(a)$, $c_2 = \frac{1}{2}f''(a)$, and in general

$$
c_k = \frac{f^{(k)}(a)}{k!}
$$

where $k! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot k$. The resulting polynomial

$$
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n
$$

is called the *n*th-degree Taylor polynomial of f centered at a .

6. Find the 8th-degree Taylor polynomial centered at $a = 0$ for the function $f(x) = \cos x$. Graph f together with the Taylor polynomials T_2 , T_4 , T_6 , T_8 in the viewing rectangle $[-5, 5]$ by $[-1.4, 1.4]$ and comment on how well they approximate f.