(* Quiz 11 | AP Calculus BC | Problem 1| Shubleka *)
$$g[x_{-}] := x^3 - 9 x^2 - 16 x$$
;

The slope at the point of tangency can be measured in two ways: as the derivative of the given function and as a rise over run from (0,0) to (a,g(a)).

$$ln[13]:=$$
 Solve[g'[x] == g[x]/x, x]

Out[13]=
$$\left\{\left\{x \to 0\right\}, \left\{x \to \frac{9}{2}\right\}\right\}$$

We find the slopes:

$$Out[14] = -16$$

Out[15]=
$$-\frac{145}{4}$$

Next, we find the y-values by evaluating:

Out[17]=
$$-\frac{1305}{8}$$

Below we plot the two tangent lines and the original curve in the same window:

$$ln[21] := Plot[\{g[x], g[0] + g'[0] (x - 0), g[9/2] + g'[9/2] (x - (9/2))\},$$

$$\{x, -1, 8\}, AspectRatio \rightarrow 1]$$

Use the limit definition of the derivative, and the conjugate technique to evaluate the derivative.

In[22]:=
$$D[1/Sqrt[x-3], x]$$
Out[22]= $-\frac{1}{2(-3+x)^{3/2}}$

(* Quiz 11 | AP Calculus BC | Problem 1 | Shubleka *)
$$ln[25] := f[x_{-}] := 2 x^3 - x^2;$$

If perpendicular to the line x + 4y = 10, then the slope must be the negative reciprocal of -1/4, which is 4.

In[26]:= Solve[f'[x] == 4, x]

Out[26]=
$$\left\{\left\{x \rightarrow -\frac{2}{3}\right\}, \left\{x \rightarrow 1\right\}\right\}$$

These are the x-values at which the tangent lines are perpendicular to the given line.

Use the limit definition of the derivative, and the conjugate technique to evaluate the derivative.

$$ln[23] := D[(x - Pi) / (x + m), x]$$

Out[23]=
$$\frac{1}{\mathbf{m} + \mathbf{x}} - \frac{-\pi + \mathbf{x}}{(\mathbf{m} + \mathbf{x})^2}$$

Out[24]=
$$\frac{\mathbf{m} + \pi}{(\mathbf{m} + \mathbf{x})^2}$$