AP Calculus BC

Worksheet: Polar Coordinates

1. The area inside the polar curve $r=3+2 \cos \theta$ is

(A) 9.425
(B) 18.850
(C) 28.274
(D) 34.558
(E) 69.115
2. The area enclosed inside the polar curve $r^{2}=10 \cos (2 \theta)$ is
(A) 10
(B) 5π
(C) 20
(D) 10π
(E) 25π
3. The area enclosed by the polar curve $\mathrm{r} \cos \frac{1}{2} \theta=1$ in the interval $0 \leq \theta \leq \frac{\pi}{2}$ is
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) $\frac{\pi}{4}$
(D) 1
(E) 2
4. What is the area enclosed by the lemniscate $r^{2}=-25 \cos 2 \theta$?
(A) $\frac{25}{8}$
(B) $\frac{25}{4}$
(C) $\frac{25}{2}$
(D) 25
(E) 50
5. The area of the region inside the polar curve $r=4 \sin \theta$ and outside the polar curve $r=2$ is given by
(A) $\frac{1}{2} \int_{0}^{\pi}(4 \sin \theta-2)^{2} d \theta$
(B) $\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}}(4 \sin \theta-2)^{2} d \theta$
(C) $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}(4 \sin \theta-2)^{2} d \theta$
(D) $\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}\left(16 \sin ^{2} \theta-4\right) d \theta$
(E) $\frac{1}{2} \int_{0}^{\pi}\left(16 \sin ^{2} \theta-4\right) d \theta$
6. Which of the following is equal to the area of the region inside the polar curve $r=2 \cos \theta$ and outside the polar curve $\mathrm{r}=\cos \theta$?
(A) $3 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(B) $3 \int_{0}^{\pi} \cos ^{2} \theta d \theta$
(C) $\frac{3}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$
(D) $3 \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta$
(E) $3 \int_{0}^{\pi} \cos \theta d \theta$
7. The graphs of the polar curves $\mathrm{r}=2$ and $\mathrm{r}=3+2 \cos \theta$ are shown in the figure below. The curves intersect when $\theta=\frac{2 \pi}{3}$ and $\theta=\frac{4 \pi}{3}$.

(a) Let R be the region that is inside the graph of $\mathrm{r}=2$ and also inside the graph of $\mathrm{r}=3+2 \cos \theta$, as indicated above. Find the area of R.
(b) A particle moving with nonzero velocity along the polar curve given by $\mathrm{r}=3+2 \cos \theta$ has position ($\mathrm{x}(\mathrm{t})$, $\mathrm{y}(\mathrm{t})$) at time t , with $\theta=0$ when $\mathrm{t}=0$. This particle moves along the curve so that $\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{\mathrm{dr}}{\mathrm{d} \theta}$. Find the value of $\frac{\mathrm{dr}}{\mathrm{dt}}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
(c) For the particle described in part (b), $\frac{d y}{d t}=\frac{d y}{d \theta}$. Find the value of $\frac{d y}{d t}$ at $\theta=\frac{\pi}{3}$ and interpret your answer in terms of the motion of the particle.
8. Consider the polar curve $\mathrm{r}=2 \sin (3 \theta)$ for $0 \leq \theta \pi$.
(a) In the xy-plane provided below, sketch the curve.

(b) Find the area of the region inside the curve.
(c) Find the slope of the curve at the point where $\theta=\frac{\pi}{4}$.

Polar Curves Worksheet: Solutions (prepared by D. Shubleka)
problem (Multiple Choice)

$$
\begin{aligned}
& r=3+2 \cos \theta \\
& \theta=0 \longrightarrow r=5 \\
& \theta=\pi \longrightarrow r=-1
\end{aligned}
$$

Using Symmetry: Area $=2 \int_{0}^{\pi} \frac{1}{2}[r(\theta)]^{2} d \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi}[3+2 \cos \theta]^{2} d \theta \\
& =\int_{0}^{\pi} 9+12 \cos \theta+4 \cos ^{2} \theta d \theta \\
& =\int_{0}^{\pi} 9+12 \cos \theta+2 \cos (2 \theta)+2 d \theta \\
& =\left.(11 \theta+12 \sin \theta+\sin 2 \theta)\right|_{0} ^{\pi}=11 \pi \approx 34.558
\end{aligned}
$$

Problem 2
Find the area enclosed inside the curve

$$
\theta=\frac{\pi}{4} \text { or }-\frac{\pi}{4}
$$

$$
\begin{aligned}
& A_{1}=2 \cdot \int_{0}^{\pi / 4} \frac{r^{2}}{2} d \theta=\int_{0}^{\pi / 4} 10 \cos 2 \theta d \theta \\
& =\left.5 \sin 2 \theta\right|_{0} ^{\pi / 4}=5 \\
& \quad \text { Total Ares }=5+5=10 \quad \text { A }
\end{aligned}
$$

Problem 3 (Multiple Choice)
The area enclosed by the polar curve $r=\frac{1}{\cos \left[\frac{1}{2} \theta\right]}$ in the internal $\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& r(\theta)=\sec \left[\frac{\theta}{2}\right] \\
& A=\int_{0}^{\pi / 2} \frac{r^{2}(\theta)}{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2} \sec ^{2}\left(\frac{\theta}{2}\right) d \theta= \\
& =\left.\tan \left(\frac{\theta}{2}\right)\right|_{0} ^{\pi / 2}=\tan (\pi / 4)-\tan (0)
\end{aligned}
$$

$$
D
$$

Problem 4 (Multiple Choice)
What is the enclosed area by the lemniscate

$$
\begin{aligned}
& r^{2}=-25 \cos 2 \theta \text { ? } \\
& r=0 \Rightarrow \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{-\pi}{4}, \frac{-3 \pi}{4} \text { etc. } \\
& \int_{\ddots}^{2}=\int_{-25}^{\frac{3 \pi}{4}, ~ \int_{\pi / 4}^{25} \frac{\pi}{4}} A=2 \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} r^{2} d \theta=
\end{aligned}
$$

$$
=-\frac{25}{2}(-1-1)=25
$$

Problem 5 Multiple Choice

$$
\begin{aligned}
& r=4 \sin \theta z \Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& r=2 \\
& A=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(4 \sin \theta)^{2}-2^{2} d \theta
\end{aligned}
$$

\square
\square

Problemn 6 Multhple Choice
Inside $r=2 \cos \theta$. $\} \Rightarrow \cos \theta=0$
$A=2 \int_{0}^{\pi / 2} \frac{(2 \cos \theta)^{2}}{2}-\frac{\cos ^{2} \theta}{2} d \theta$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} 4 \cos ^{2} \theta-\cos ^{2} \theta d \theta \\
& =3 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta
\end{aligned}
$$

A

Problem 7 Free Response.
a)

$$
\begin{aligned}
R & =\left.\pi r^{2}\right|_{r=2}-2 \cdot[\text { purple }] \\
& =4 \pi-2[\text { purple }] .
\end{aligned}
$$

\qquad
$2[$ purple $]=\left[\frac{1}{2} \int_{\frac{2 \pi}{3}}^{\pi} 2^{2}-[3+2 \cos \theta]^{2} d \theta\right] \cdot 2$

$$
=\int_{\frac{2}{3}}^{\pi}-5-12 \cos \theta-4 \cos ^{2} \theta d \theta=(-5 \theta-12 \sin \theta) \int_{\frac{2 \pi}{3}}^{\pi}-\int_{\frac{2 \pi}{3}}^{\pi} 2 \cos 2 \theta+2 d \theta
$$

$$
=7 \theta+12 \sin \theta+\left.\sin 2 \theta\right|_{\pi} ^{2 \pi / 3}=\frac{14 \pi}{3}+6 \sqrt{3}-\frac{\sqrt{3}}{3}-7 \pi=
$$

$$
=\frac{-7 \pi}{3}+\frac{11 \sqrt{3}}{2}
$$

$$
\begin{aligned}
R & =4 \pi-\left[-\frac{7 \pi}{3}+\frac{11 \sqrt{3}}{2}\right] \\
& =\left[\frac{19 \pi}{3}-\frac{11 \sqrt{3}}{2}\right]^{2}
\end{aligned}
$$

Problem 7 Port b)

$$
r=3+2 \cos \theta \quad \frac{d r}{d t}=\frac{d r}{d \theta}
$$

$\frac{d r}{d \theta}=-2 \sin \theta=\frac{d r}{d t}$ @ $\frac{\pi}{3}$ we here:

$$
\left.\left.\frac{d r}{d t t}\right|_{\theta=\frac{\pi}{3}} \frac{d r}{d \theta}\right|_{\theta=\frac{\pi}{3}}=-2 \cdot \frac{\sqrt{3}}{2}=-\sqrt{3}<0
$$

The particle is heading towards the pele when $\theta=\frac{\pi}{3}$. (note $r\left(\frac{\pi}{3}\right)>0$)

Problem 7 Part C

$$
\begin{aligned}
& y=r \cdot \sin \theta=(3+2 \cos \theta) \sin \theta \\
& =3 \sin \theta+2 \sin \theta \cos \theta=3 \sin \theta+\sin 2 \theta \\
& \left.\frac{d y}{d t}\right|_{\frac{\pi}{3}}=\left.\frac{d y}{d \theta}\right|_{\frac{\pi}{3}}=3 \cos \theta+\left.(\cos 2 \theta) \cdot 2\right|_{\theta=\frac{\pi}{3}}= \\
& =3 \cdot \frac{1}{2}+2 \cdot \cos \left(\frac{2 \pi}{3}\right)=\frac{3}{2}-1=\frac{1}{2}
\end{aligned}
$$

The partide's y-coordinate is increasing. It is going up when $\theta=\frac{\pi}{3}$.

Problem 8

$$
\text { (a) In the xy-plane provided below, sketch the curve. } \begin{aligned}
& r=2 \sin (3 \theta) \\
& 0 \leq \theta \leq \pi \\
& r=0 \\
& 3 \theta=0, \pi, 2 \pi \\
& \theta=0, \frac{\pi}{3}, \frac{2 \pi}{3}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& A=3 \frac{1}{2} \int_{0}^{\pi / 3}(2 \sin 3 \theta)^{2} d \theta= \\
&= \int_{0}^{\pi / 3} 6 \sin ^{2}(3 \theta) d \theta \\
&= \int_{0}^{\pi / 3} 6 \frac{1-\cos 6 \theta}{2} d \theta=\left.\frac{1}{2}(6 \theta-\sin 6 \theta)\right|_{0} ^{\pi / 3} \\
& 0=\frac{1}{2}(2 \pi)=\pi \quad \text { Each petal has }
\end{aligned}
$$

c) Find slope $\frac{d y}{d x}$ (e) $\theta=\frac{\pi}{4}$

$$
\begin{aligned}
\begin{aligned}
& \frac{d y}{d \theta}=\frac{d}{d \theta}(2 \sin 3 \theta \cdot \sin \theta)=6 \cos 3 \theta \sin \theta+\left.2 \sin 3 \theta \cos \theta\right|_{\pi / 4} \\
&=6\left(\frac{-\sqrt{2}}{2}\right) \frac{\sqrt{2}}{2}+2 \cdot \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}=-2 \\
& \begin{aligned}
\frac{d x}{d \theta}=\frac{d}{d \theta}(2 \sin 3 \theta \cos \theta) & =6 \cos 3 \theta \cos \theta+2 \sin 3 \theta(-\sin \theta) \mid \\
& =6\left(\frac{-\sqrt{2}}{2}\right)\left(\frac{1 \sqrt{2}}{2}\right)+2 \cdot \frac{\sqrt{2}}{2}\left(\frac{-\sqrt{2}}{2}\right)
\end{aligned} \\
&=-3-1=-4 \\
& \frac{d y}{1,}=\frac{d y / d \theta}{1.11}=\frac{-2}{11}=1=\text { slope. }
\end{aligned}
\end{aligned}
$$

