| Solve neatly on separate paper. | Solve | neatly | on | se | parate | pa | per. |
|---------------------------------|-------|--------|----|----|--------|----|------|
|---------------------------------|-------|--------|----|----|--------|----|------|

| Name    |  |  |
|---------|--|--|
| INGILIC |  |  |

## Exercises

- Find the volume of the solid of revolution generated when the area described is rotated about the x-axis.
- (a) The area between the curve y = x and the ordinates x = 0 and x = 4.
- (b) The area between the curve  $y = x^{3/2}$  and the ordinates x = 1 and x = 3.
- (c) The area between the curve  $x^2 + y^2 = 16$  and the ordinates x = -1 and x = 1.
- (d) The area between the curve  $x^2 y^2 = 9$  and the ordinates x = -4 and x = -3.
- (e) The area between the curve  $y = (2 + x)^2$  and the ordinates x = 0 and x = 1.
- 2. The area between the curve y = 1/x, the y-axis and the lines y = 1 and y = 2 is rotated about the y-axis. Find the volume of the solid of revolution formed.
- 3. The area between the curve  $y = x^2$ , the y-axis and the lines y = 0 and y = 2 is rotated about the y-axis. Find the volume of the solid of revolution formed.
- 4. The area cut off by the x-axis and the curve  $y = x^2 3x$  is rotated about the x-axis. Find the volume of the solid of revolution formed.
- 5. Sketch the curve  $y^2 = x(x-4)^2$  and find the volume of the solid of revolution formed when the closed loop of the curve is rotated about the x-axis.
- 6. A conical funnel is formed by rotating the curve  $y = \frac{1}{3}x$  about the y-axis. The radius of the rim of the funnel is to 6 cm. Find the depth of the funnel and its volume.