Name:				
SHOW YOUR WORK F	OR CREDIT! No Calcu	lators		
1) $\lim_{x \to 2} -x^2 + 4x$				
a) 0	b) 12	c) 4	d) -12	e) None of these
2) $\lim_{x \to 3} \frac{\sqrt{5x+10}}{x-3}$				
a) indeterminate	b) does not exist	c) 25	d) 1	e) None of these
3) $\lim_{x \to 0} \frac{x}{\tan x}$				
4) $\lim_{x \to 0^{-}} 1 + \frac{1}{x}$				
a) 1	b) -∞ ∴ does not exist		c) ∞ \therefore does not exist	d) 1 e) None of these
5) $\lim_{\mathbf{x} \to 1} \sin \pi \mathbf{x}$				

- 6) True or False: If f is undefined at x = c, then the limit of f(x) as x approaches c does not exist.
- 7) True of False: If the $\lim_{x\to c} f(x) = L$ then f(c) = L.

8) $\lim_{x \to 2} f(x) \text{ when } f(x) = \begin{cases} x^2 - 3x + 6 & \text{when } x < 2 \\ -x^2 + 3x + 2 & \text{when } x \ge 2 \end{cases}$

9) Find a *c* such that f(x) is continuous on the entire real line. $f(x) = \begin{cases} x^2 & \text{when } x \le 4 \\ \frac{c}{x} & \text{when } x > 4 \end{cases}$

Use the graph at the right to answer questions 10 - 13.

- 10) $\lim_{\mathbf{x} \to 2} \mathbf{f}(\mathbf{x}) =$
- 11) $\lim_{\mathbf{x} \to \mathbf{4}^+} \mathbf{f}(\mathbf{x}) =$
- 12) $\lim_{x \to 4^{--}} f(x) =$
- 13) $\lim_{x \to 0} f(x) =$

14) Find the x-values (if any) at which f is discontinuous. Label as removable or non-removable.

$$f(x) = \frac{2x+6}{2x^2-18}$$

- a) x = 3 only....Non-removable
- b) x = -3 only...Non-removable
- c) x = 3 and x = -3...Both non-removable
- d) x = -3...Removable, x = 3...Non-removable
- e) There are no discontinuities

15) Determine all of the vertical asymptotes of f(x):

$$f(x) = \frac{x+2}{x^2-4}$$

17) AP TEST QUESTION: If the function f is continuous on the closed interval [0, 2] and has values that are given in the table below, then the equation $f(x) = \frac{1}{2}$ must have at least TWO solutions in the interval [0, 2] if k = ? Hint! Draw a picture!

х	0	1	2
f(x)	1	k	2

a) 0

b) $\frac{1}{2}$

c) 1 d) 2

e) 3

18) AP TEST QUESTION: The graph of the function f is shown to the right.

Which of the following statements is false?

- a) x = a is in the domain of f.
- b) $\lim_{x\to a^+} f(x)$ is equal to $\lim_{x\to a^-} f(x)$
- c) $\lim_{x \to a} f(x)$ exists
- d) $\lim_{x \to a}$ is not equal to f(a)
- e) f is continuous at x = a

 AP Calculus AB
 Name:

 Chapter One Test
 Period:

 SHOW YOUR WORK FOR CREDIT!
 Calculators are okay!

 1)
 Mr. Cook drops his calculus book off of the top of a 220-meter building.

 a)
 Write a position function.

 b)
 When will the book hit the ground? (Round to three decimal places)

 c)
 Using the velocity function below, find the velocity of the book when t = 2.

Velocity function: $\lim_{t \to a} \frac{s(a) - s(t)}{a - t}$

2) Approximate the limit *numerically* by completing the table:

X	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)							

3) Find a function f(x) such that f(x) has a gap at x = 7 and a vertical asymptote at x = -4.

4) On the graph to the right, draw a function that has the following properties:

- A step (or jump) discontinuity at x = 5
- f(5) = 6.

5) Find the limit:
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - 2(x + \Delta x) + 1 - (x^2 - 2x + 1)}{\Delta x}$$

- 6) Find the limit: $\lim_{x \to 0} \cos \frac{1}{x}$
- 7) On the graph below, draw the function $y = 4 x^2$ in the first quadrant. Then draw four *circumscribed* rectangles of equal width. Use these four rectangles to approximate the area of the region bounded by the function, the x-axis, and the y-axis.

8) Create a function such that the $\lim_{x\to 5}$ does not exist because it is approaching $+\infty$ from both the left and the right. Show both the function and the graph.