AP Calculus AB

Name:_____

1) What are the three ways for a function to fail to be differentiable at a particular point P(c, f(c)):

Use the graph to determine all x-values at which 2) the function is not differentiable. Explain each answer.

3) Use the graph to determine all x-values at which the function is not Explain each answer.

4) Let f(x) be the function whose graph is shown in the figure.

- (a) Determine: f'(1) =______, f'(2) =______, f'(4) =______, f'(7) =_____.
- (b) Estimate: $f'(6) = ____, f'(8) = ____.$
- (c) Does f'(3) exist?_____ Explain.

5) Use the given graph to estimate the value of each derivative. sketch the graph of f'.

(c)
$$f'(-1) =$$
 (d) $f'(0) =$

(e)
$$f'(1) = (f) f'(2) =$$

(g)
$$f'(3) =$$

Then

Use the given graph to estimate the value of each derivative. Then 6) sketch the graph of f'.

(a)
$$f'(-3) =$$
 (b) $f'(-2) =$

(c)
$$f'(1) =$$
 (d) $f'(0) =$

(g)
$$f'(3) =$$

7) Use the given graph to estimate the value of each derivative. Then sketch the graph of f'.

(a)
$$f'(-3) =$$
 _____(b) $f'(-2) =$ _____

(c)
$$f'(-1) =$$
____(d) $f'(0) =$ ____

(e)
$$f'(1) = ____(f) f'(2) = _____$$

(g)
$$f'(3) =$$

- 8) Use the given graph to estimate the value of each derivative. Then sketch the graph of f'.

(a)
$$f'(-2) =$$

(b)
$$f'(-1) =$$

(c)
$$f'(0) =$$

(d)
$$f'(1) =$$

- 9) Let $f(x) = \sqrt[3]{x}$.
 - (a) Sketch the graph of f(x).
 - (b) Find f'(x)
 - (c) Show that f'(0) does not exist.

Definition of derivative

The derivative of f(x) with respect to x is $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ provided the limit exists. The process of calculating a derivative is called differentiation.

10) Find the derivative of the function using the definition of derivative: $f(x) = x^2 - x$

- **11)** For $f(x) = \sqrt{x}$
 - (a) Find f'(x) using the definition of derivative.

- (b) State the domain of
 - i) f(x).
- ii) f'(x).

- (c) Sketch the graph of
 - i) f(x)
 - ii) f'(x)
- 12) Use the Power Rule to compute the derivative.

(a)
$$f(x) = x^3 + 4x^2 - 3x + 56$$

(b)
$$f(x) = \frac{1}{x^3}$$

(c)
$$f(x) = \sqrt[4]{x}$$

- 13) Find $\frac{dy}{dx}$: $y = 6\cos(x) 2\sin(x)$
- 14) Find the point on the curve $f(x) = x^2 + 3x 7$ at which the slope of the tangent line is horizontal.
- 15) Find the point on the curve $f(x) = x^2 + 3x 7$ at which the slope of the tangent line is equal to 4.
- 16) Given $f(x) = 4x x^2$.
- (a) Find the slope of the tangent line to the parabola $f(x) = 4x x^2$ at the point (1, 3).
- (b) Find the equation of the tangent line in part (a).

Worksheet: Differentiation | AP Calculus AB | ap-calc.github.io

17) If f(2) = 6 and f'(x) = -3, find an equation of the tangent line when x = 2. Solve the equation for y.

18) If a ball is thrown into the air with a velocity of 40ft/sec, its height (in feet) after t seconds is given by $y = 40t - 16t^2$. Find the velocity when t = 2.