Derivatives of Inverse Functions Discovery Activity

- 1. Given f(x) = 2x + 5.
- (a) Graph f(x). Is f a one-to-one function?(Why does it matter?)
- (b) The point (1, 7) lies on *f*. Write this point in function notation: f() =
- (c) Find f'(x).
- (d) Evaluate f'(x) at the point (1, 7).
- (e) Find $f^{-1}(x)$ and graph it.
- (f) Is f^{-1} a one-to-one function?

How would you know without graphing it?

(g) Find $(f^{-1})'(x)$.

- (h) What point on f^{-1} corresponds to the point (1, 7) that lies on f? Write this point in function notation: $f^{-1}() =$
- (i) Evaluate $(f^{-1})'(x)$ at the point on $f^{-1}(x)$ that you found in (h).

(j) What do you notice about your answers to (d) and (i)?

- 2. Given $f(x) = x^2$ for $x \ge 0$.
- (a) Graph f(x). Is f a one-to-one function?
- (b) There is a point on the graph of f where the x-coordinate is 3. What is the y-coordinate of this point?Write this point in function notation: f() =
- (c) Find f'(x).
- (d) Evaluate f'(x) at the point (3, 9).
- (e) Find $f^{-1}(x)$, restricting it if necessary, and graph it.
- (f) Is f^{-1} a one-to-one function?
- (g) Find $(f^{-1})'(x)$.
- (h) What point on f^{-1} corresponds to the point (3, 9) that lies on f? Write this point in function notation: $f^{-1}() =$
- (i) Evaluate $(f^{-1})'(x)$ at the point on $f^{-1}(x)$ that you found in (h).
- (j) What do you notice about your answers to (d) and (i)?

3. Given $f(x) = \sqrt[3]{x}$.

- (a) Graph f(x). Is f a one-to-one function?
- (b) There is a point on the graph of f where the y-coordinate is 2. What is the x-coordinate of this point?Write this point in function notation: f() =

(c) Find f'(x).

(d) Evaluate f'(x) at the point (8, 2).

(e) Find $f^{-1}(x)$, restricting it if necessary, and graph it.

(f) Is f^{-1} a one-to-one function?

How would you know without graphing it?

(g) Find $(f^{-1})'(x)$.

- (h) What point on f^{-1} corresponds to the point (8, 2) that lies on f? Write this point in function notation: $f^{-1}() =$
- (i) Evaluate $(f^{-1})'(x)$ at the point on $f^{-1}(x)$ that you found in (h).

- 4. Given $f(x) = x^3 + 3x 5$.
- (a) Is f a one-to-one function?

```
How can you tell without graphing it?
```

- (b) There is a point on f in which the y-coordinate is 9. What is the x-coordinate at this point? Write this point in function notation: f() =
- (c) What point on f^{-1} corresponds to the point you found in (b) that lies on f?

Write this point in function notation: $f^{-1}() =$

(d) Find $(f^{-1})'(9)$ without finding a function for f^{-1} . Do this below, and list the steps you used.

Can you write a rule for finding the derivative of the inverse of a function without actually finding the inverse?

