1)	Identify the symmetry: $f(x) = x^2 + x - 4$ a. Symmetrical to the x-axis b. Symmetrical to the origin	c. Symmetrical to the y-axisd. Not symmetrical
2)	Identify the symmetry: $f(x) = x^3 - 6x$ a. Symmetrical to the x-axis b. Symmetrical to the origin	c. Symmetrical to the y-axisd. Not symmetrical
3)	Identify the symmetry: $f(x) = x^4 + 8$ a. Symmetrical to the x-axis b. Symmetrical to the origin	c. Symmetrical to the y-axis d. Not symmetrical
True or f	alse:	

4) A function can be symmetrical to an axis AND the origin at the same time.

- 5) A function can be symmetrical to the x-axis.
- 6) A function can be symmetrical to the y-axis AND have a y-intercept.
- 7) If (3, -2) is a point on a graph that is symmetric with respect to the x-axis, then (-3, -2) is also a point on the graph.

8) Find <u>all</u> intercepts of the function $f(x) = x^2 + 8x - 20$. MORE THAN ONE ANSWER IS POSSIBLE! a. (0, -20) d. (-10, 0)

- b. (10, 0) e. (-2, 0)
- c. (2, 0) f. (-20, 0)

9) Find <u>all</u> intercepts of the function $f(x) = x\sqrt{16 - x^2}$. MORE THAN ONE ANSWER IS POSSIBLE!

- a. (16, 0) d. (-4, 0)
- b. (4, 0) e. (0, 0)
- c. (0, 4) f. (0, 16)
- 10) Find the points of intersection of the graphs of the following equations: MORE THAN ONE ANSWER IS POSSIBLE!

$$\begin{array}{l} x - y = 1 \\ x^2 + y^2 = 5 \end{array}$$

a. (3, 2)	d. (0, -1)
b. (-1, -2)	e. (2, 1)
c. (√5,0)	f. None of these

11) Find the line that is perpendicular to y - 2x = 4 that passes through the point (2, 7) a. y = 2x + 3 d. $y = -\frac{1}{2}x + 8$ b. y = -2x + 11 e. y = 2x + 4c. $y = \frac{1}{2}x + 6$ f. None of these

12) Find the line that is parallel to y - 2x = 4 that passes through the point (2, 7) a. y = 2x + 3 d. $y = -\frac{1}{2}x + 8$ b. y = -2x + 11 e. y = 2x + 4c. $y = \frac{1}{2}x + 6$ f. None of these

Match:			
13) 14) 15) 16) 17)	General Forma. $y = mx + b$ Vertical lineb. $y - b = mx$ Horizontal linec. $y = b$ Point-slope formd. $y - y_1 = m(x - x_1)$ Slope-intercept forme. $x = a$ f. $Ax = By$ g. $Ax + By + C = 0$		
18)	Find the slope of the line passing through the points (3, - 1), (-2, -6)		
19)	Find the y-intercept of the line that passes through the points (3, - 1), (-2, -6)		
20)	True or false: The following points are collinear (2, -2), (-2, 1) (-1, 0)		
21)	True or false: It is possible for two lines with negative slopes to be perpendicular.		
22)	Given $f(x) = x^2 - 3$, find $f(8)$		
23)	Given $f(x) = x^2 - 3$, find $\frac{f(x + \Delta x) - f(x)}{\Delta x}$		
	a. Δx b. $\frac{x^2 + \Delta x^2 - 3}{\Delta x}$ c. $2x + \Delta x$ d. None of these		

Water runs into a vase of height 30 centimeters at a constant rate. The vase is full after 5 seconds. Use this information and the shape of the vase shown to answer questions 24 - 28 if d is the depth of the water in centimeters and t is the time in seconds.

30 cm

ł

d

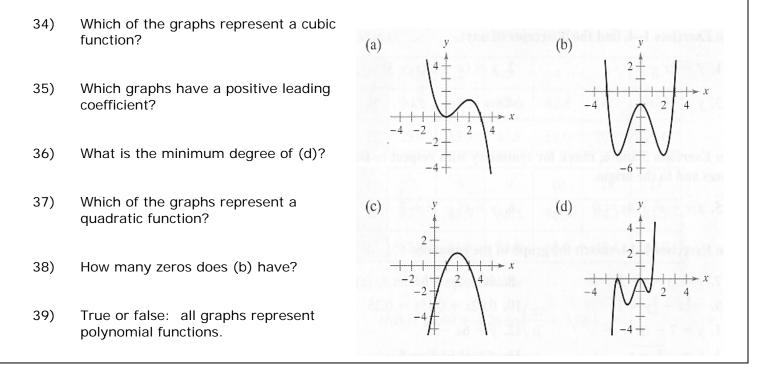
ł

- 24) True or false: d is a function of t.
- 25) True or false: t is a function of d.
- 26) Determine the domain of the function.
 - a. (0, 5) d. [0, 5]
 - b. [0, 5) e. None of these
 - c. [5, 30)

28)

- 27) Determine the range of the function.
 - a. (0, 30) d. [0, 30]
 - b. [0, 30) e. None of these
 - c. [5, 30)

Which of the following graphs could be a model of the function?



Determine 29)	e whether the function is even, $f(x) = x^2 + 2x + 2$	odd or neither	
	a. Even	b. Odd	c. Neither
30)	g(x) = 1 + sinx		
	a. Even	b. Odd	c. Neither
31)	$h(x) = x^4 - x^2$		
	a. Even	b. Odd	c. Neither
32)	m(x) = xcosx		
	a. Even	b. Odd	c. Neither

33) An open box is to be made from a rectangular piece of material 9 inches by 12 inches by cutting equal squares from each corner and turning up the sides. Let x be the length of each side of the square cut out of each corner. Write the volume V of the box as a function of x.

a)	$V = x^3$	b)	V = 108x
c)	V = x(9 - x)(12 - x)	d)	V = x(9 - 2x)(12 - 2x)
e)	None of these		

Use the graphs to the right to answer questions 34 – 39. MORE THAN ONE ANSWER IS POSSIBLE FOR EACH QUESTION. GRAPHS MAY BE USED MORE THAN ONCE.

40) Find the equation of the vertical line that passes through the point (-1, 4)a. x = -1 b. x = 4 c. y = 4 d. y = -1 e. None of these Calculus Pre-Test No Calculators

- Identify the symmetry: $f(x) = x^2 + x 4$ 1) d. Not symmetrical 2) Identify the symmetry: $f(x) = x^3 - 6x$ b. Symmetrical to the origin
- 3) Identify the symmetry: $f(x) = x^4 + 8$

True or false:

- 4) A function can be symmetrical to an axis AND the origin at the same time. False
- A function can be symmetrical to the x-axis. False 5)
- 6) A function can be symmetrical to the y-axis AND have a y-intercept.
- 7) If (3, -2) is a point on a graph that is symmetric with respect to the x-axis, then (-3, -2) is also a point on the graph. False

Find **all** intercepts of the function $f(x) = x^2 + 8x - 20$. MORE THAN ONE ANSWER IS POSSIBLE! 8) d. (-10, 0) a. (0, -20)

- e. (-2, 0) b. (10, 0)
- c. <mark>(2, 0)</mark> f. (-20, 0)

Find <u>all</u> intercepts of the function $f(x) = x\sqrt{16 - x^2}$. MORE THAN ONE ANSWER IS POSSIBLE! 9)

- a. (16, 0) d. (-4, 0)
- b. <mark>(4, 0)</mark> e. (0, 0)
- c. (0, 4) f. (0, 16)
- 10) Find the points of intersection of the graphs of the following equations: MORE THAN ONE ANSWER IS POSSIBLE!

$$\begin{array}{l} x - y = 1 \\ x^2 + y^2 = 5 \end{array}$$

а.	(3, 2)	d. <u>(0, -</u> 1)
b.	<mark>(-1, -2)</mark>	e. <mark>(2, 1</mark>)
C.	(f. None of these

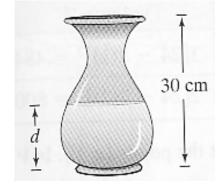
Find the line that is perpendicular to y - 2x = 4 that passes through the point (2, 7) 11)

- a. y = 2x + 3 d. $y = -\frac{1}{2}x + 8$ e. y = 2x + 4b. y = -2x + 11
- f. None of these C. $y = \frac{1}{2}x + 6$

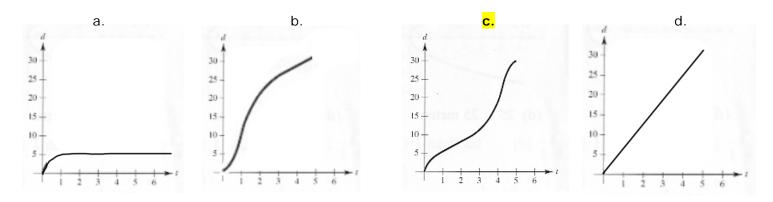
Find the line that is parallel to y - 2x = 4 that passes through the point (2, 7) 12) d. $y = -\frac{1}{2}x + 8$

- a. <mark>y = 2x + 3</mark> e. y = 2x + 4b. y = -2x + 11
- C. $y = \frac{1}{2}x + 6$ f. None of these
- General Form G 13) a. y = mx + bΕ 14) Vertical line b. y - b = mxС 15) Horizontal line c. y = bPoint-slope form **D** d. $y - y_1 = m(x - x_1)$ 16) 17) Slope-intercept form e. x = a A f. Ax = Byg. Ax + By + C = 0

True


c. Symmetrical to the y-axis

18) Find the slope of the line passing through the points (3, -1), (-2, -6)1 19) Find the y-intercept of the line that passes through the points (3, -1), (-2, -6)-4 20) True or false: The following points are collinear (2, -2), (-2, 1) (-1, 0) False 21) True or false: It is possible for two lines with negative slopes to be perpendicular. False Given $f(x) = x^2 - 3$, find f(8)22) <mark>61</mark> Given $f(x) = x^2 - 3$, find $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ 23) c. **2x** + ∆x a. Δx b. $\frac{x^2 + \Delta x^2 - 3}{\Delta x}$ d. None of these

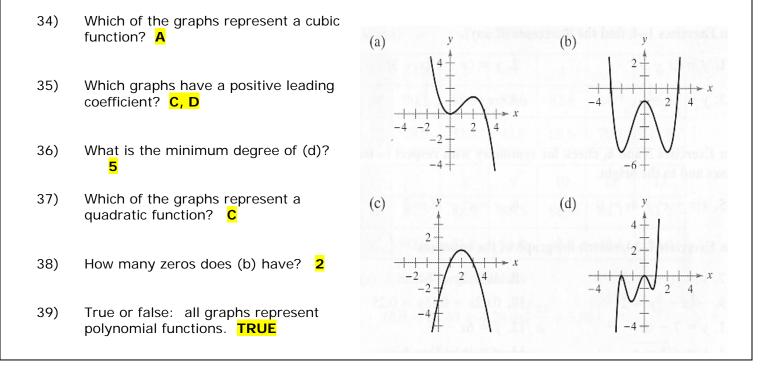

Water runs into a vase of height 30 centimeters at a constant rate. The vase is full after 5 seconds. Use this information and the shape of the vase shown to answer questions 24 - 28 if d is the depth of the water in centimeters and t is the time in seconds.

24)	True or false: d is a fund	ction of t.	True
25)	True or false: t is a func	tion of d.	False
26)	Determine the domain o a. (0, 5) b. [0, 5) c. [5, 30)	f the function. d. <mark>[0, 5]</mark> e. None of th	lese
27)	Determine the range of a. (0, 30) b. [0, 30)	the function. d. <mark>[0, 30]</mark> e. None of th	lese

c. [5, 30)

28) Which of the following graphs could be a model of the function?

Determine whether the function is even, odd or neither 29) $f(x) = x^2 + 2x + 2$


	a. Even	b. Odd	c. <mark>Neither</mark>
30)	g(x) = 1 + sinx		
	a. Even	b. Odd	c. <mark>Neither</mark>

31)	$h(x) = x^4 - x^2$		
	a. <mark>Even</mark>	b. Odd	c. Neither
32)	m(x) = xcosx		
	a. Even	b. <mark>Odd</mark>	c. Neither

33) An open box is to be made from a rectangular piece of material 9 inches by 12 inches by cutting equal squares from each corner and turning up the sides. Let x be the length of each side of the square cut out of each corner. Write the volume V of the box as a function of x.

a)	$V = x^3$	b)	V = 108x
c)	V = x(9 - x)(12 - x)	d)	V = x(9 - 2x)(12 - 2x)
e)	None of these		

Use the graphs to the right to answer questions 34 – 39. MORE THAN ONE ANSWER IS POSSIBLE FOR EACH QUESTION. GRAPHS MAY BE USED MORE THAN ONCE.

40)	Find the equat	tion of the vertical I	ine that passes throug	gh the poir	ıt (-1, 4)	
	a. <mark>x = -1</mark>	b. x = 4	c. y = 4	d.	y = -1	e. None of these