Firm Theory with Differential Calculus

Function	Description	
X	Quantity	Quantity supplied or demanded
p(x)	Price Function	Price at which x units are demanded
R(x) = xp(x)	Revenue	The product of price and quantity
F	Fixed Cost	Cost that does not vary with output
V(x)	Variable Cost	Cost that varies with the output level
C(x) = F + V(x)	Total Cost	Direct sum of fixed and variable costs
$A(x) = \frac{C(x)}{x}$	Average Cost	Total Cost divided by quantity
R'(x) = MR(x)	Marginal Revenue	The rate of revenue with respect to output
C'(x) = MC(x)	Marginal Cost	The rate of total cost with respect to output
$\prod(x) = R(x) - C(x)$	Profit Function	The difference between revenue and cost.

Interpretations:

R'(100) = the revenue brought in by the 101st unit.

R'(100) = the cost of producing the 101st unit

F =the y-intercept of the total cost function

Two types of firm behavior are discussed here: average-cost-minimization and profit-maximization.

I. Minimizing Average Cost

Objective Function:
$$A(x) = \frac{C(x)}{x}$$

$$\Rightarrow A'(x) = \frac{xC'(x) - C(x)}{x^2} \rightarrow x = 0 \lor xC'(x) - C(x) = 0$$

$$\Rightarrow xC'(x) - C(x) = 0$$

$$\Rightarrow C'(x) = \frac{C(x)}{x}$$

$$\Rightarrow C'(x) = A(x)$$

$$\Rightarrow MC = AC$$

Remark: One must justify a minimum average cost using one of the derivative tests.

II. Maximizing Profit

Objective Function: $\prod(x) = R(x) - C(x)$

$$\Rightarrow \prod '(x) = R'(x) - C'(x) = 0$$

$$\Rightarrow R'(x) = C'(x)$$

$$\Rightarrow MR = MC$$

Remark: One must justify a maximum profit using one of the derivative tests.