LIMITS

The limit of a function $f(x)$ as *x* approaches a finite or infinite amount $x = a$ is the answer to the question: what happens to the y -values as x tends towards a ? If the answer is an amount L , finite or infinite, we write:

$$
\lim_{x \to a} f(x) = L
$$

Or equivalently:

 $y \rightarrow L$ as $x \rightarrow a$

Note that $x \rightarrow a$ means that *x* need not equal but gets infinitely close to *a*.

One-Sided Limits

Left-Sided Limit $\lim_{x \to a^{-}} f(x)$

Geometrically, we trace along the portion of the graph to the left of $x = a$ and observe the trend in *y*-values. For beginners, it helps to draw tiny arrows on the graph.
Numerically, we construct a list (L1) of numbers getting close to $x = a$ from the left,

and then populate a second list $(L2)$ using the function rule. For example, if *x* is to approach 2 from the left, we compute the *y*-values at numbers such as: 1.9, 1.99, 1.9999 etc.

 $\frac{\text{Right-Sided Limit}}{x \rightarrow a^+} f(x)$

Geometrically, we trace along the portion of the graph to the right of *x* = *a* and

observe the trend in y -values.
Numerically, we can apply the same graphing calculator steps as above. In this case we would compute the *y*-values at numbers such as: 2.1, 2.01, 2.001, 2.0001 etc.

Overall Limit – A definition

 $\lim_{x \to a} f(x)$ exists if an only if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$

CONTINUITY

Definition: A function $f(x)$ is continuous at a point $x = a$ if and only if $\lim_{x\to a} f(x) = f(a)$.

The above definition can be broken down into three true statements:

- \checkmark *f*(*x*) exists at *x* = *a*, so let us set *f*(*a*) = *M*
- \checkmark The one sided limits must be equal to some number *L*, so that the overall limit exists.
- \checkmark To satisfy continuity, we must have $M = L$.

Remarks:

- \checkmark A function cannot be continuous at a point if the *x* value is not in the domain. (There would be no $f(a)$.)
- \checkmark A function cannot be continuous at a point if the overall limit fails to exist at that point.

The function is discontinuous at $x = x_0$ because the overall limit does not exist. The one-sided limits exist but do not coincide. We say that the function is continuous from the right side only.

One-Sided Continuities

Definition: A function $f(x)$ is continuous from the left at $x = a$ if and only if $\lim_{x \to a^{-}} f(x) = f(a)$. $x \rightarrow a^-$

Definition: A function $f(x)$ is continuous from the right at $x = a$ if and only if $\lim_{x \to a^+} f(x) = f(a)$. $x \rightarrow a$ ^{$\rightarrow a$}

Remark: If a function is continuous from both sides of $x = a$, then it is continuous at $x = a$. (We cannot satisfy both one-sided continuities without the two sides of the graph connecting, as it would result in two distinct y -values at $x = a$, hence failing to be a function.)

Definition: A function $f(x)$ is called continuous if and only if it is continuous at every point in its domain. Examples: polynomial, trigonometric, and rational functions are continuous throughout their domains.

Important Limits

$$
\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \quad \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \lim_{x \to \infty} (1 + \frac{1}{x})^x = e = 2.71828...
$$

Intermediate Value Theorem

Let $f(x)$ be a continuous function on [a, b] always defined on a closed interval [a, b], and let $[L, N]$ be the image of $[a, b]$ under f . For every number $M \in (L, N)$, there exists at least one number $c \in (a, b)$ such that $f(c) = M$.

Continuity guarantees the existence of at least one value $x = c$ such that $f(c) = M$.