Calculus AB Summer Prep Worksheet

- * indicates that you should use a calculator; otherwise don't use one.
- 1. $\sin \frac{\pi}{3} = ?$
- 2. $\tan(-240^\circ) = ?$
- 3. $\sec \frac{7\pi}{4} = ?$
- 4. $\cos \frac{11\pi}{6} = ?$
- 5. $\csc(450^{\circ}) = ?$
- 6. $\cot \pi = ?$
- 7. $\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) = ?$
- 8. $\arccos\left(\frac{-\sqrt{2}}{2}\right) = ?$
- 9. Solve for x: $2\sin x 1 = 0$; $[0, 2\pi)$
- 10. Solve for x: $2\sin^2 x + 3\cos x 3 = 0$; $[0, 2\pi)$
- 11.* Solve for θ : $\sec^2 \theta 2 \tan \theta = 4$, $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Given
$$f(x) = x^2$$
, $g(x) = 3x - 2$, $h(x) = \frac{2}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}}$,

- 12. f(g(-2)) = ?
- 13. * g(f(g(f(g(2))))) = ?
- 14. $\frac{f(x+\Delta x)-f(x)}{\Delta x}=?$
- 15. h(4) h(1) = ?

Given
$$p(x) = x^3 - 4x^2 + 3x + 1, q(x) = x^2 - 2x - 4$$

- 16. * Find the coordinates of the intersection point of the two curves in QIII. What does this point represent with respect to the equations?
- 17. * Do you think the graphs intersect in QI? Why or why not?
- 18. * Find the coordinates of the local maximum of p(x).

- 19. Sketch, by hand, the graph of y = -(x+1)(x-3).
- 20. Sketch, by hand, the graph of $y = x^2(x^2 4)$.
- 21. Sketch, by hand, the graph of $y = \frac{2x-1}{x+1}$.
- 22. Sketch, by hand, the graph of $y = \frac{x^2 3}{x + 2}$.

- 23. Sketch, by hand, the graph of $y = -3\sin(\pi x)$.
- 24. Sketch, by hand, the graph of $y = \sec(x) 2$.

- 25. Solve for x (real and imaginary answers): $x^4 4x^3 + 8x^2 16x + 16 = 0$.
- 26. * Solve for x (only real answers): $h(x) = x^3 4x^2 + 5x 3$.

27. Solve for x and y: $\frac{2x - y = 6}{x + 3y = 10}.$

$$4x + y - 3z = 11$$

28. * Solve for x, y, and z: 2x-3y+2z=9.

$$x + y + z = -3$$

- 29. * How does the graph of $f(x) = -(x-2)^2$ differ from the graph of $f(x) = x^2$
- 30. How does the graph of f(x) = |x+3|-1 differ from the graph of f(x) = |x|?
- 31. How does the graph of $f(x) = \sqrt{-x}$ differ from the graph of $f(x) = \sqrt{x}$?

- Given $k(x) = \frac{1}{2}x^2$,
- 32. Find $\frac{k(2)-k(1)}{2-1}$, which is the slope of the secant line connecting $(1, \frac{1}{2})$ and (2, 2).
- 33. Find $\frac{k(3)-k(2)}{3-2}$. Why is your slope greater than the slope of the previous problem?

- 34. Rewrite $\frac{\sqrt[3]{x-1}}{(2x+1)^2}$ using rational exponents and no fractions.
- 35. Rewrite $\sqrt{\csc^3\left(\frac{x^2}{x+4}\right)}$ in terms of sine and/or cosine and using rational exponents and no fractions.

- 36. $\log_{16} 4 = ?$
- 37. Expand $\ln\left(\frac{x}{\sqrt{x^2+1}}\right)$ using laws of logarithms.
- 38. * Solve for x: $2\ln(3x) = 4$

39. As n approaches ∞ , what does $\frac{e^n}{n^5}$ approach?

40. As n approaches ∞, what does
$$\frac{2n^2-3n+1}{\frac{1}{3}n^2+4}$$
 approach?

ANSWER KEY

1.
$$\frac{\sqrt{3}}{2}$$

2.
$$-\sqrt{3}$$

3.
$$\sqrt{2}$$

4.
$$\frac{\sqrt{3}}{2}$$

7.
$$-\frac{\pi}{3}$$

8.
$$\frac{3\pi}{4}$$

9.
$$\frac{\pi}{6}, \frac{5\pi}{6}$$

10.
$$0, \frac{\pi}{3}, \frac{5\pi}{3}$$

14.
$$2x + \Delta x$$

16. (-.5987, -2.4442) is the solution of the two equations when set equal to each other

17. no – cubic rises faster than quadratic

29. flipped across x-axis, moved 2 right

33. 5/2, the curve gets steeper

34.
$$(x-1)^{\frac{1}{3}}(2x+1)^{-2}$$

35.
$$\sin^{-3/2} \left[x^2 (x+4)^{-1} \right]$$

37.
$$\ln x - \frac{1}{2} \ln (x^2 + 1)$$

39. ∞

40.6