Name:

Math Teacher Last Year: AP Calculus Summer Review

This packet is a review of the entering objectives for AP Calculus and is due the day of your first math class of the year. Have a great summer.

I. Simplify. Show the work that leads to your answer.

1.
$$\frac{3x^2 + 10x + 8}{6x^2 + 17x + 10}$$
 2. $\frac{x^3 - 8}{x - 2}$

3.
$$\frac{5-x}{x^2-25}$$
 4. $\frac{2x^2+x-12}{x^2-16}$

II. Fill in the blanks with the following identities.

1. Pythagorean:		
2. Double Angles: $\cos 2x =$	$\sin 2x =$	
$\cos 2x =$		
$\cos 2x =$	$\tan 2x =$	

III. Simplify each expression.

1.
$$\frac{1}{x+h} - \frac{1}{x}$$
2.
$$\frac{\left(\frac{2}{x^2}\right)}{\left(\frac{10}{x^5}\right)}$$

3.
$$\frac{\frac{1}{3+x}-\frac{1}{3}}{x}$$

4. $\frac{2x}{x^2-6x+9}-\frac{1}{x+1}-\frac{8}{x^2-2x-3}$

IV. Solve each equation below for z.

1.
$$4x + 10yz = 0$$

2. $y^2 + 3yz - 8z - 4x = 0$

- V. If $f(x) = \{(3,5), (2,4), (1,7)\}$ $g(x) = \sqrt{x-3}$ $h(x) = \{(3,2), (4,3), (1,6)\}$ $k(x) = x^2 + 5$ determine each of the following:
- 1. (f + h)(1) 2. (k g)(5)

3.
$$(f \circ h)(3)$$
 4. $(g \circ k)(7)$

5.
$$f^{-1}(x)$$
 6. $k^{-1}(x)$

7.
$$\frac{1}{f(x)}$$
 8. $(kg)(x)$

VI. Miscellaneous: Follow the directions for each problem.. 1. Evaluate $\frac{f(x+h)-f(x)}{h}$ and simplify if $f(x) = x^2 - 2x$

2. Expand $(x + y)^3$

3. Simplify:
$$x^{\frac{3}{2}}\left(x+x^{\frac{5}{2}}-x^2\right)$$

4. Eliminate the parameter, t, and write a rectangular equation for $x = t^2 + 3$ y = 2t

VII. Expand and simplify.

1.
$$\sum_{n=0}^{4} \frac{n^2}{2}$$
 2. $\sum_{n=1}^{3} \frac{1}{n!}$

VIII. Simplify

1. $\frac{\sqrt{x}}{x}$ 3. $e^{1+\ln x}$ 5. $\ln e^7$ 7. $\log_{\frac{1}{2}} 8$ 2. $e^{\ln 3}$ 4. $\ln 1$ 6. $\log_3(\frac{1}{3})$ 8. $\ln(\frac{1}{2})$

9.
$$e^{3\ln x}$$

10. $\frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$
11. $27^{\frac{2}{3}}$
12. $\left(5a^{\frac{2}{3}}\right)\left(4a^{\frac{2}{3}}\right)$
13. $\left(4a^{\frac{5}{3}}\right)^{\frac{3}{2}}$
14. $\frac{3(n+1)!}{5n!}$

IX. Using the point slope form $[y - y_1 = m(x - x_1)]$, write an equation for the line 1. with slope -2, containing the point (3,4)

2. containing the points (1, -3) and (-5, 2)

3. with slope 0, containing the point (4,2)

4. perpendicular to the line in problem #1, containing the point (3, 4)

X. Given the vectors $\vec{a} = -2\vec{i} + 5\vec{j}$ and $\vec{b} = 3\vec{i} + 4\vec{j}$, determine

1.
$$\frac{1}{2}\overline{a}$$
 2. $\overline{b}-\overline{a}$

3.
$$\left| \vec{b} \right|$$
 4. $\vec{a} \cdot \vec{b}$

 ${\bf XI.}\,$ Without a calculator, determine the exact value of each expression.

1.
$$\sin 0$$

2. $\sin \frac{\pi}{2}$
3. $\sin \frac{7\pi}{4}$
4. $\cos \pi$
5. $\cos \frac{7\pi}{6}$
6. $\cos \frac{\pi}{3}$
7. $\tan \frac{5\pi}{4}$
8. $\tan \frac{\pi}{6}$
9. $\tan \frac{2\pi}{3}$
10. $Sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
11. $Cos^{-1}\left(-\frac{1}{2}\right)$
12. $Arc \tan(-1)$
13. $\cos\left(Sin^{-1}\left(\frac{1}{2}\right)\right)$
14. $Cos^{-1}\left(\tan\left(\frac{\pi}{4}\right)\right)$
15. $\sin\left(Arc \tan\left(-\frac{3}{4}\right)\right)$

XII. For each function, determine its domain and range.

$1. f(x) = \sqrt{x-4}$	$2. g(x) = \sqrt{x^2 - 4}$
Domain:	Domain:
Range:	Range:
$3. h(x) = \sqrt{4 - x^2}$	$4. k(x) = \sqrt{x^2 + 44}$
Domain:	Domain:
Range:	Range:

XIII. Determine the coordinates of all points of intersection of:

1. $y = x^2 + 3x - 4$ and y = 5x + 112. $y = \cos x$ and $y = \sin x$ in the first quadrant.

XIV. Solve all the equations below for x, where x is a real number.

1.
$$x^2 + 3x - 4 = 14$$

2. $\frac{x^4 - 1}{x^3} = 0$

3.
$$(x-5)^2 - 9 = 0$$

4. $2x^2 + 5x = 8$

5.
$$x^2 - 2x - 15 < 0$$

6. $\frac{x - 3}{x - 1} \le \frac{4}{x + 8}$

7. $12x^2 = 3x$ 8. $\sin 2x = \cos x$

9.
$$|x-3| < 7$$

10. $(x+1)^2(x-2) + (x+1)(x-2)^2 = 0$

11. $27^{2x} = 9^{x-3}$ 12. $\log x + \log(x-3) = 1$ **XV.** Graph each equation. Give its domain and range. Scale all graphs by one unless a scale is provided.

1. $y = \sin x$ Domain: _____ 2. $y = \csc x$ Domain:

Range: _____

Kange:				
		3		
		2•		
		1•		
-2π	-π		π	2π
<u>-2</u> π	-π -π	-1•	7	2π
-2 <i>π</i>	-π	-2•		2π
		-1• -2• -3•		

3. $y = \cos x$

Domain: _____

Domain: _____

Range:

Range: _____

5. $y = \tan x$ Domain: _____ 6. $y = \cot x$

Domain: _____

Range: _____ 4 3-2. 1 -2π π π 2π -1--2--3-

7. $y = \sqrt{x}$ Domain: _____

8.
$$y = \sqrt[3]{x}$$

Domain: _____

Range:

9. y = |x+3| - 2

Domain:

10. $y = e^x$

Domain: _____

Range: _____

11. $y = \ln x$ Domain: _____

12.
$$x^2 + y^2 = 25$$

Domain:

Range:

13.
$$y = \frac{1}{x}$$

14.
$$y = \begin{cases} x^2 & x < 0 \\ x + 2 & 0 \le x \le 3 \\ 4 & x > 3 \end{cases}$$

Domain:

Range:

Range: _____

Domain: _____

XVI. Decompose into partial fractions.

1.
$$\frac{4x+34}{x^2-5x-24}$$

2.
$$\frac{5x^3 - x^2 + 8x - 55}{x^4 + 5x^3 + 11x^2}$$

XVII. Solve for x and y in the triangles below.

XVIII. Find the area of the figures below.

XIX. Find the volume of the solids below.

12*in*