Last Unit! Make notecards and memorize these:

General comment: Most of these integrals would be pretty intense to do by hand. If in a calculator active portion, **fnInt** is the operative term!

Polar Graphing:

Front	Back
In polar graphing, $x =$	$r\cos heta$
In polar graphing, $y=$	$r\sin heta$
$\frac{dy}{dx}$	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$
In polar graphing, slope (dy/dx) at point (r,θ)	$\frac{\frac{dr}{d\theta}\sin(\theta) + r\cos(\theta)}{\frac{dr}{d\theta}\cos(\theta) - r\sin(\theta)}$

Area on polar graph between $\theta = \alpha \; (alpha) \; and \; \theta = \beta \; (beta)$	$\int_{\alpha}^{\beta} \frac{1}{2} [r(\theta)]^2 d\theta$ Note: if asked for area between two curves, create two integrals and subtract.
hetain terms of x and y	arctan (y/x)
rin terms of x and y	$\sqrt{x^2 + y^2}$

Parametric Equations

Front	Back
Slope $(\frac{dy}{dx})$	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
Second derivative (concavity)	$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}$
Arc length (s)	$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$

Vectors and Vector Valued Functions

Front	Back
$ec{r}(t)$ (position vector)	$\langle x(t), y(t) \rangle$
$ec{r}$ ' (t) (velocity vector)	< x'(t), y'(t) >
$\dot{r}''(t)$ (acceleration vector)	$\langle x''(t), y''(t) \rangle$
Distance Traveled (arc length)	$\int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt$
Speed (magnitude of velocity)	$ v = \sqrt{x'(t)^2 + y'(t)^2}$