[∗]
\n
$$
\frac{\text{Integration by Parts}}{\text{Aut}(x)} = \frac{\text{Integrate of Log}}{\text{Int. } x} = \frac{\text{Int the image of Log
$$

 $\sqrt{3}/2$

 $\,1\,$

 $1/2\,$

 $\boldsymbol{0}$

 $\sqrt{3}$

 $\ ^\omega$ ∞ "

 $\pi/3,60^\circ$

 $\pi/2,90^\circ$

* means this is primarily for the BC exam

Curve sketching and analysis $y = f(x)$ must be continuous at each: critical point: $\frac{dy}{dx} = 0$ or <u>undefined</u>.
local minimum : **or <u>endpoints</u>** $\frac{dy}{dx} \text{ goes } (-0, +) \text{ or } (-, \text{und}, +)$
or $\frac{d^2y}{dx^2} > 0$.
local maximum : focal maximum :
 $\frac{dy}{dx}$ goes (+,0,-) or (+,und,-)

or $\frac{d^2y}{dx^2} < 0$.

pt of inflection : concavity changes.
 $\frac{d^2y}{dx^2}$ goes (+,0,-),(-,0,+), $(+, \text{und}, -), \text{ or } (-, \text{und}, +)$

Basic Derivatives
\n
$$
\frac{d}{dx}(x^n) = nx^{n-1}
$$
\n
$$
\frac{d}{dx}(\sin x) = \cos x
$$
\n
$$
\frac{d}{dx}(\cos x) = -\sin x
$$
\n
$$
\frac{d}{dx}(\tan x) = \sec^2 x
$$
\n
$$
\frac{d}{dx}(\cot x) = -\csc^2 x
$$
\n
$$
\frac{d}{dx}(\sec x) = \sec x \tan x
$$
\n
$$
\frac{d}{dx}(\csc x) = -\csc x \cot x
$$
\n
$$
\frac{d}{dx}(\ln x) = \frac{1}{x}
$$
\n
$$
\frac{d}{dx}(e^x) = e^x
$$

More Derivatives

$$
\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}
$$
\n
$$
\frac{d}{dx} \left(\cos^{-1} x \right) = \frac{-1}{\sqrt{1 - x^2}}
$$
\n
$$
\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}
$$
\n
$$
\frac{d}{dx} \left(\cot^{-1} x \right) = \frac{-1}{1 + x^2}
$$
\n
$$
\frac{d}{dx} \left(\sec^{-1} x \right) = \frac{1}{|x| \sqrt{x^2 - 1}}
$$
\n
$$
\frac{d}{dx} \left(\csc^{-1} x \right) = \frac{-1}{|x| \sqrt{x^2 - 1}}
$$
\n
$$
\frac{d}{dx} \left(a^x \right) = a^x \ln a
$$
\n
$$
\frac{d}{dx} \left(\log_a x \right) = \frac{1}{x \ln a}
$$

Stuff you MUST Know Cold Differentiation Rules

AP CALCULUS

Chain Rule
 $\frac{d}{dx} [f(u)] = f'(u) \frac{du}{dx}$
 $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Product Rule

$$
\frac{d}{dx}(uv) = u\frac{dv}{dx} + \frac{du}{dx}
$$

Quotient Rule $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$

"PLUS A CONSTANT"

The Fundamental Theorem of Calculus $\int_a^b f(x)dx = F(b) - F(a)$
where $F'(x) = f(x)$.

Corollary to FTC $\frac{d}{dx} \int_{a(x)}^{b(x)} f(t) dt =$ $f(b(x))b'(x) - f(a(x))a'(x)$

Intermediate Value Theorem If the function $f(x)$ is continuous on $[a, b]$, then for any number c between $f(a)$ and $f(b)$, there exists a number d in the open interval (a, b) such that $f(d)=c.$

Rolle's Theorem

If the function $f(x)$ is continuous on $[a, b]$, the first derivative exist on the interval (a, b) , and $f(a) = f(b)$; then there exists a number $x = c$ on (a, b) such that

 $f'(c) = 0.$

Mean Value Theorem

If the function $f(x)$ is continuous on $[a, b]$, and the first derivative exists on the interval (a, b) , then there exists a number $x = c$ on (a, b) such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}.
$$

Theorem of the Mean Value
If the function $f(x)$ is continuous on $[a, b]$ and the first derivative exist on the interval (a, b) , then there exists a number $x = c$ on (a, b) such that

$$
f(c) = \frac{\int_a^b f(x)dx}{(b-a)}.
$$

This value $f(c)$ is the "average value" of the function on the interval $[a, b]$.

Trapezoidal Rule

$$
\int_{a}^{b} f(x)dx = \frac{b-a}{2n} [f(x_0)
$$

$$
+ 2f(x_1) + \cdots
$$

$$
+ 2f(x_{n-1}) + f(x_n)]
$$

Solids of Revolution and friends
\nDisk Method
\n
$$
V = \pi \int_{a}^{b} [R(x)]^{2} dx
$$
\nWasher Method
\n
$$
V = \pi \int_{a}^{b} ((R(x))^{2} - [r(x)]^{2}) dx
$$
\nShell Method(no longer on AP)
\n
$$
V = 2\pi \int_{a}^{b} r(x)h(x) dx
$$
\nArcLength
\n
$$
L = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx
$$
\nSurface of revolution (No longer on AP)
\n
$$
S = 2\pi \int_{a}^{b} r(x) \sqrt{1 + [f'(x)]^{2}} dx
$$

Distance, velocity and acceleration velocity = $\frac{d}{dt}$ (position). $\begin{aligned} \text{acceleration} & = \frac{d}{dt} \text{ (position)}: \\ \text{acceleration} & = \frac{d}{dt} \text{ (velocity)}. \\ \text{velocity vector} & = \left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle. \\ \text{speed} & = |v| = \sqrt{(x')^2 + (y')^2}. \end{aligned}$ $\text{Distance} = \int_{\text{initial time}}^{\text{final time}} |v| dt$ $= \int_{t_*}^{t_f} \sqrt{(x')^2 + (y')^2} dt$ average velocity $=$ $final$ position $-$ initial position total time