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Preface 
 

Infinite series are a delightful, rich, and beautiful subject. From the "basic" concept that adding together 

infinitely many things can sometimes lead to a finite result, to the extremely powerful idea that functions 

can be represented by Taylor series – "infinomials," as one of my students once termed them – this corner 

of the calculus curriculum covers an assortment of topics that I have always found fascinating. This text is 

a complete, stand-alone chapter covering infinite sequences and series, Taylor polynomials, and power 

series that attempts to make these wonderful topics accessible and understandable for high school students 

in an introductory calculus course. It can be used to replace the chapter or chapters covering these 

materials in a standard introductory calculus text book, or it can be used as a secondary resource for 

students who would like an alternate narrative explaining how these topics are connected. 

 There are countless calculus textbooks on the market, and it is the good fortune of calculus students 

and teachers that many of them are quite good. You almost have to go out of your way to pick a bad 

introductory calculus text. Why then am I adding to an already-glutted market my own chapter on Taylor 

polynomials and Taylor series? For my tastes, none of the available excellent texts organize or present 

these topics quite the way I would like. Not without reason, many calculus students (and not a small 

number of their teachers) find infinite series very challenging. They deserve a text that highlights the big 

ideas and focuses their attention on the key themes and concepts. 

 The organization of this chapter differs from that of standard texts. Rather than progress linearly 

from a starting point of infinite sequences, pass through infinite series and convergence tests, and 

conclude with power series generally and Taylor series specifically, my approach is almost the opposite. 

The reason for the standard approach is both simple and clear; it is the only presentation that makes sense 

if the goal is to develop the ideas with mathematical rigor. The danger, however, is that by the time the 

students have slogged through a dozen different convergence tests to arrive at Taylor series they may 

have lost sight of what is important: that functions can be approximated by polynomials and represented 

exactly by "infinitely long polynomials." 

 So I start with the important stuff first, at least as much of it as I can get away with. After an 

obligatory and light-weight section reviewing sequences and series topics from precalculus, I proceed 

directly to Taylor polynomials. Taylor polynomials are an extension of linearization functions, and they 

are a concrete way to frame the topics that are to come in the rest of the chapter. The first half of the 

chapter explores Taylor polynomials—how to build them, under what conditions they provide good 

estimates, error approximation—always with an eye to the Taylor series that are coming down the road. 

The second half of the chapter extends naturally from polynomials to power series, with convergence tests 

entering the scene on an as-needed basis. The hope is that this organizational structure will keep students 

thinking about the big picture. Along the way, the book is short on proofs and long on ideas. There is no 

attempt to assemble a rigorous development of the theory; there are plenty of excellent textbooks on the 

market that already do that. Furthermore, if we are to be honest with each other, students who want to 

study these topics with complete mathematical precision will need to take an additional course in 

advanced calculus anyway. 

 A good text is a resource, both for the students and the teacher. For the students, I have given this 

chapter a conversational tone which I hope makes it readable. Those of us who have been teaching a 

while know that students don't always read their textbooks as much as we'd like. (They certainly don't 

read prefaces, at any rate. If you are a student reading this preface, then you are awesome.) Even so, the 

majority of the effort of this chapter was directed toward crafting an exposition that makes sense of the 

big ideas and how they fit together. I hope that your students will read it and find it helpful. For teachers, 

a good text provides a bank of problems. In addition to standard problem types, I have tried to include 

problems that get at the bigger concepts, that challenge students to think in accordance with the rule of 

four (working with mathematical concepts verbally, numerically, graphically, and analytically), and that 

provide good preparation for that big exam that occurs in early May. The final role a math text should fill 

if it is to be a good resource is to maintain a sense of the development of the subject, presenting essential 
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theorems in a logical order and supporting them with rigorous proofs. This chapter doesn't do that. 

Fortunately, students have their primary text, the one they have been using for the rest of their calculus 

course. While the sequencing of the topics in this chapter is very different from that of a typical text, 

hopefully the student interested in hunting down a formal proof for a particular theorem or convergence 

test will be able to find one in his or her other book. 

 Using this chapter ought to be fairly straightforward. As I have said, the focus of the writing was on 

making it user-friendly for students. The overall tone is less formal, but definitions and theorems are 

given precise, correct wording and are boxed for emphasis. There are numerous example problems 

throughout the sections. There are also practice problems. Practices are just like examples, except that 

their solutions are delayed until the end of the section. Practices often follow examples, and the hope is 

that students will work the practice problems as they read to ensure that they are picking up the essential 

ideas and skills. The end of the solution to an example problem (or to the proof of a theorem) is signaled 

by a ◊. Parts of the text have been labeled as "optional." The optional material is not covered on the AP 

test, nor is it addressed in the problem sets at the ends of the sections. This material can be omitted 

without sacrificing the coherence of the story being told by the rest of the chapter, though I would never 

pass up the opportunity to share with students the wildness of conditional convergence described in 

Section 9. 

 There are several people whose contributions to this chapter I would like to acknowledge. First to 

deserve thanks is a man who almost certainly does not remember me as well as I remember him. Robert 

Barefoot was the first person (though not the last!) to suggest to me that this part of the calculus 

curriculum should be taught with Taylor polynomials appearing first, leaving the library of convergence 

tests for later. Much of the organization of this chapter is influenced by the ideas he presented at a 

workshop I attended in 2006. As for the actual creation of this text, many people helped me by reading 

drafts, making comments, and discussing the presentation of topics in this chapter. I am very grateful to 

Doug Kühlmann, Melinda Certain, Phil Certain, and Scott Barcus for their thoughtful comments and 

feedback. Scott was also the first to field-test the chapter, sharing it with his students before I even had a 

chance to share it with mine. I am certainly in debt to my wife Laura who proof-read every word of the 

exposition and even worked several of the problems. Finally, I would be remiss if I did not take the time 

to thank Mary Lappan, Steve Viktora, and Garth Warner. Mary and Steve were my first calculus teachers, 

introducing me to a subject that I continue to find more beautiful and amazing with every year that I teach 

it myself. Prof. Warner was the real analysis professor who showed me how calculus can be made 

rigorous; much of my current understanding of series is thanks to him and his course. 

 The subject of infinite series can be counter-intuitive and even bizarre, but it is precisely this 

strangeness that has continued to captivate me since I first encountered it. Taylor series in particular I find 

to be nothing less than the most beautiful topic in the high school mathematics curriculum. Whether you 

are a student or a teacher, I hope that this chapter enables you to enjoy series as much as I do. 

 

 

  BENJAMIN GOLDSTEIN 
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Section 1 – Review of Sequences and Series 
 

This chapter is principally about two things: Taylor polynomials and Taylor series. Taylor polynomials 

are a logical extension of linearization (a.k.a. tangent line approximations), and they will provide you 

with a good opportunity to extend what you have already learned about calculus. Taylor series, in turn, 

extend the idea of Taylor polynomials. Taylor series have additional appeal in the way they tie together 

many different topics in mathematics in a surprising and, in my opinion, amazing way. 

 Before we can dive in to the beauty of Taylor polynomials and Taylor series, we need to review 

some fundamentals about sequences and series, topics you should have studied in your precalculus course. 

Most of this will (hopefully) look familiar to you, but a quick refresher is not a bad thing. One disclaimer: 

sequences and series are rich topics with many nuances and opportunities for exploration and further 

study. We won't do either subject justice in this section. Our goal now is just to make sure we have all the 

tools we need to hit the ground running. 

 

 

Sequences 
 

A sequence, simply put, is just a list of numbers where the numbers are counted by some index variable. 

We often use i, j, k, or n for the index variable. Here are a couple simple examples of sequences: 

1,2,3,4,5,
n

a = …  

3,8, 2,5,7,
k

b = − …  

 For the sequence { }
n

a , if we assume that the initial value of the index variable (n) is 1, then 2a  is 2, 

5a  is 5, and so on. We could guess that the pattern in 
n

a  will continue and that 
n

a n=  for any whole 

number n. So 24a  is probably 24. However, we often want to make the index variable start at 0 instead of 

1. If we do that for { }
n

a , then we have 0 1a = , 1 2a = , 2 3a = , 24 25a = , and so on. Now an expression 

for the general term of the sequence would have to be 1
n

a n= + . Most of the time we will want to start 

the index at 0, unless there is some reason why we can't. But if no initial value of the index is specified, 

then it is up to you to choose an initial value that makes sense to you. All of this is moot with the 

sequence { }
k

b ; there is no obvious pattern to the terms in this sequence (or at least none was intended), so 

we cannot come up with an expression to describe the general term. 

 (Side note: The difference between the symbols { }
n

a  and 
n

a  is similar to the difference between the 

symbols f and ( )f x  for regular functions. While f denotes the set of all ordered pairs making up the 

function, ( )f x  is the output value of f at some number x. Similarly, { }na  denotes the sequence as a 

whole; an is the value of the sequence at n.) 

 

A more technical definition of the word sequence is provided below. 

 

Definition: A sequence is a function whose domain is either the positive or the non-negative integers. 

 

 Go back and look at the sequences { }
n

a  and { }
k

b  (especially { }
n

a ). Do you see how they are in fact 

functions mapping the whole numbers to other numbers? We could have written ( )a n  and ( )b k , but for 

whatever reason we don't. 

 

Example 1 

Write the first 5 terms of the sequence 
2

( 1)n

n
a

n

−
= . 
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Solution 

We cannot use 0 for the initial value of n because then we would be dividing by 0. So let the first value 

for n be 1. Then the first five terms of the sequence are 
1 2 3 4 5

2 2 2 2 2

( 1) ( 1) ( 1) ( 1) ( 1)
, , , ,

1 2 3 4 5

− − − − −
. This simplifies 

to 
1 1 1 1

1, , , ,
4 9 16 25

− −
− . Notice how the factor ( 1)n

−  caused the terms of the sequence to alternate in sign. 

This will come up again and again and again for the rest of this chapter. So here is a question for you. 

How would we have needed to change the ( 1)n
−  if we wanted the terms to be positive, negative, positive, 

… instead of negative, positive, negative, …? ◊ 

 

Example 2 

Give an expression for the general term of the sequence 
2 3 4

1, , , ,
3 5 7

n
a = … . 

Solution 

We started with an initial index value of 1 in Example 1, so for variety let's use 0 this time. The terms of 

the sequence are fractions, so it makes sense to model the numerators and denominators separately. The 

numerators are just the whole numbers 1, 2, 3,…. It would be simplest to just say that the numerator of 

the n
th
 term is n, but since we chose to start n at 0, we have to account for that. The numerators are 0+1, 

1+1, 2+1, etc.; an expression for the numerators is 1n + . (It seems silly to have started n at 0 instead of 1, 

but wait for the denominator.) There are many ways to think about the denominators. For one, the 

denominators are increasing by 2 from one term to the next, so they can be modeled with a linear function 

whose slope is 2. The initial denominator is 1 (in 1/1), so we can simply write 2 1n +  for the denominator. 

Another approach is to recognize that the denominators are odd numbers. Odd numbers are numbers that 

leave a remainder of 1 when divided by 2; in other words, they are numbers that are one more than (or 

one less than) even numbers. Even numbers can be expressed by 2n, where n is an integer, so the odds 

can be expressed as 2 1n + . Coming up with expressions for even numbers and for odd numbers will be 

another recurring theme in the chapter. In any event, the general term can be expressed as 
1

2 1
n

n
a

n

+
=

+
. ◊ 

 

Practice 1 

Beginning with n = 0, write the first five terms of the  sequences 
1

!
n

a
n

= . (Recall that, by definition, 0! = 

1.)
∗
 

 

Practice 2 

Write an expression for the general term of the sequence 
1 8 27

, , ,
2 3 4

64
,

5
…  

Practice 3 
Revisit Example 2. Rewrite the general term of the sequence if the initial value of n is 1 instead of 0. 

 

 If lim n
n

a
→∞

 equals some number L, then we say that the sequence { }na  converges to L. Strictly 

speaking, this is a bad definition as it stands; we have not defined limits for sequences, and you have 

probably only seen limits defined for continuous functions. Sequences, by contrast, are definitely not 

continuous. But the idea is exactly the same. We want to know what happens to 
n

a  as n gets big. If the 

terms become arbitrarily close to a particular real number, then the sequence converges to that number. 

                                                 
∗
 The answers to practice problems can be found at the end of the section, just before the problems. 
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Otherwise, the sequence diverges, either because there is no one single number the terms approach or 

because the terms become unbounded. 

 

Example 3 

To what value, if any, does the sequence defined by ( 1)n

n
a = −  converge? 

Solution 

When in doubt, write out a few terms. The terms of this sequence are (with n starting at 0): 1, -1, 1, -1,…. 

The values of 
n

a  bounce between -1 and 1. Since the sequence oscillates between these two values, it 

does not approach either. This sequence diverges. ◊ 

 

Example 4 

To what value, if any, does the sequence defined by 
1

1

n

na
n

 
= + 
 

 converge? 

Solution 

You might recognize the limit of this sequence as the definition of the number e. If so, you are right to 

answer that the sequence converges to e. If you did not recognize this, you could go two ways. A 

mathematically rigorous approach would be to look at the analogous function ( )1( ) 1
x

x
f x = +  and take its 

limit as x → ∞ . This will involve using l'Hôpital's Rule as well as a few other tricks. It is a good exercise, 

and the replacement of a discrete object like a sequence with a corresponding continuous function will 

come up again in this chapter. However, we can also look at a table of values. 

 

n  1 10 100 1,000 10,000 100,000 

( )11
n

n
+  2 2.59374 2.70481 2.71692 2.71814 2.71828 

 

This provides pretty compelling evidence that the sequence converges to e. If you still do not recognize 

the number 2.71828… as being e, the best you can say is, "The sequence appears to converge to about 

2.718." In fact, this is often good enough for the work we will be doing. ◊ 

 

Practice 4 
Look back at the sequences in Examples 1 and 2 and Practices 1 and 2. Which of the sequences converge? 

To what values do they converge? 

 

 

Series 
 

For the purposes of this chapter, we actually don't care much about sequences. We care about infinite 

series (which we will usually abbreviate to just 'series'). However, as we will see in a moment, we need an 

understanding of sequence convergence to define series convergence. A series is a lot like a sequence, but 

instead of just listing the terms, we add them together. For example, the sequence 

1 1 1
1, , , ,

2 3 4
…  

has corresponding series 

 
1 1 1

1
2 3 4

+ + + +� . (1) 

 Writing the terms of a series can be cumbersome, so we often use sigma notation as a shorthand. In 

this way, series (1) can be written in the more concise form 
1

1

n n

∞

=

∑ . The Σ is the Greek letter S (for sum), 
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the subscript tells the index variable and its initial value. The superscript tells us what the "last" value of 

the index variable is (in the case of an infinite series, this will always be ∞). Finally, an expression for the 

general term of the series (equivalently, the parent sequence) follows the Σ. 

 What we really care about—in fact the major question driving the entire second half of this 

chapter—is whether or not a particular series converges. In other words, when we keep adding up all the 

terms in the series does that sum approach a particular value? This is a different kind of addition from 

what you have been doing since first grade. We are now adding together infinitely many things and 

asking whether it is possible to get a finite answer. If your intuition tells you that such a thing can never 

be possible, go back and review integration, particularly improper integration. (You'll probably need to 

review what you know about improper integrals for Section 7 anyway, so you can get a head start now if 

you like.) 

 There is no way we can actually add infinitely many terms together. It would take too long, among 

other technical difficulties. We need to get a sense of how a series behaves by some other method, and the 

way to do that is to examine the partial sums of the series. Going back to series (1), instead of adding all 

the terms, we can add the first few. For example, the 10
th
 partial sum of the series is obtained by adding 

together the first 10 terms: 
10

10

1

1

n n
s

=

=∑ . 

We often (though not always or exclusively) use 
n

s  to denote the n
th
 partial sum of a series. 

 

Example 5 

Evaluate the fifth, tenth, and twenty-fifth partial sums of the series 
0

1

2

n

n

∞

=

 
 
 

∑ . Make a conjecture about 

0

1
lim

2

nb

b
n

→∞
=

 
 
 

∑ . 

Solution 

We want to find 5s , 10s  and 25s . (The counting is a little strange here. 5s  is the fifth partial sum in the 

sense that it adds up the terms through 5a , and that's what we mean by 'fifth' in this context. However, it 

does not add up five terms because of the zeroth term. The partial sum that adds up just a single term—

the initial term—would be 0s .) Technology is a useful tool for computing partial sums. If you don't know 

how to make your calculator quickly compute these partial sums, ask your teacher for help. 

5 10 25

5 10 25

0 0 0

1 1 1
1.96875 1.9990 1.99999997

2 2 2

n n n

n n n

s s s
= = =

     
= = = ≈ = ≈     

     
∑ ∑ ∑  

 It would seem that the partial sums are approaching 2, so we conjecture that 

0

1
lim 2

2

nb

b
n

→∞
=

 
= 

 
∑ . 

 As we will see shortly, this conjecture is in fact correct. ◊ 

 

 The previous example shows the way to think about convergence of series. Look at the partial sums 

n
s . These partial sums form a sequence of their own, and we already know how to talk about 

convergence for sequences. Here is a short list of the partial sums for the series in Example 5, this time 

presented as a sequence. 
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0

1

2

3

4

5

6

1

1.5

1.75

1.875

1.9375

1.96875

1.984375

s

s

s

s

s

s

s

=

=

=

=

=

=

=

�

 

If { }ns , which is a sequence, converges (i.e., if lim n
n

s
→∞

 exists), then we say that the series Σan converges. 

This is summarized in the following definition. 

 

Definition  A series converges if the sequence of partial sums converges. That is, we say that 
1

n

n

a
∞

=

∑  

converges if lim n
n

s
→∞

 converges, where 1 2 3n n
s a a a a= + + + +� . If the sequence of partial 

sums does not converge, we say that the series diverges. If the series converges, the limit of 

n
s  is called the sum or value of the series. 

 

 Note, however, that the initial term of 
n

s  may be 0a  instead of 1a . Actually, it could be a-sub-

anything. It depends on how the series is defined. The important idea of series convergence—the question 

of what happens to the sequence of partial sums in the long run—is unaffected by where we start adding. 

The particular value of the series will certainly depend on where the index variable starts, of course, but 

the series will either converge or diverge independent of that initial index value. Sometimes we will 

simply write Σan  when we do not want to be distracted by the initial value of the index. 

 

Practice 5 

For the series 
1

1

3n
n

∞

=

∑ , list the first five terms of the series and the first five partial sums of the series. Does 

the series appear to converge? 

 

 The following theorem states three basic facts about working with convergent series. 

 

Theorem 1.1 

If 
1

n

n

a
∞

=

∑  converges to A and 
1

n

n

b
∞

=

∑  converges to B, then… 

 1. 
1 1

· ·n n

n n

c a c a cA
∞ ∞

= =

= =∑ ∑  

 2. ( )
1

n n

n

a b A B
∞

=

± = ±∑  

 3. for any positive integer k, n

n k

a
∞

=

∑  converges, though almost certainly not to A. 
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 The first part of Theorem 1.1 says that we can factor a common multiple out of all the addition, and 

the second says that we can split up a summation over addition. These are in keeping with our regular 

notions of how addition works since the Σ just denotes a lot of addition. The third statement tells us that 

the starting value of the index variable is irrelevant for determining whether a series converges. While the 

starting point does affect the value of the series, it will not affect the question of convergence. In other 

words, the first few terms (where 'few' can mean anywhere from 2 or 3 to several million) don't affect the 

convergence of the series. Only the long-term behavior of the series as n → ∞  matters. 

 

 

Practice 6 

Compute several partial sums for the series 
2

1

1

n n

∞

=

∑ . Does the series seem to converge? To what? 

 

Example 6 

Compute several partial sums for the series 
1n

n
∞

=

∑ . Does the series seem to converge? 

Solution 

Let's explore a few partial sums. 

n 1 2 3 4 5 

an 1 1.414 1.732 2 2.236 

sn 1 2.414 4.146 6.146 8.382 

 

It should not take long for you to convince yourself that this series will diverge. Not only do the partial 

sums get larger with every additional term, they do so at an increasing rate. If this behavior keeps up, then 

there is no way the partial sums can approach a finite number; they must diverge to infinity. And the 

reason for this is made clear by the values of an. The terms of the series are themselves increasing and, 

from what we know of the square root function, will continue to increase. The series must diverge. ◊ 

 

 Example 6 brings up an essential criterion for convergence of series. In order for a series to converge, 

the terms of the parent sequence have to decrease towards zero as n goes to infinity. If we continue adding 

together more and more terms, and if those terms do not go to zero, the partial sums will always grow (or 

shrink, if negative) out of control. Convergence is impossible in such a situation. We summarize this 

observation in the following theorem. 

 

Theorem 1.2 – The n
th

 Term Test 

In order for a series to converge, it is necessary that the parent sequence converges to zero. That is, given 

a series na∑ , if lim 0n
n

a
→∞

≠ , then the series diverges. 

 

 Hopefully, Theorem 1.2 makes intuitive sense. It may be surprising to you that the converse is not a 

true statement. That is, even if 0
n

a → , it may be the case that Σan diverges. The most famous example of 

this is the so-called harmonic series
∗
: 

1

1

n n

∞

=

∑ . 

                                                 
∗
 Where does the harmonic series get its name? If you pluck a string, it vibrates to produce a sound. The vibrations 

correspond to standing waves in the string. These waves must be such that half their wavelengths are equal to the 

length of the string, half the length of the string, a third the length of the string, etc. The tone produced from a 

standing wave whose wavelength is twice the length of the string is called the fundamental frequency. The 

additional tones are called overtones or, wait for it, harmonics. (Different instruments produce different harmonics 
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Example 7 

Show that the harmonic series 
1

1

n n

∞

=

∑  diverges. 

Solution 

Most textbooks present a proof for the divergence of the harmonic series based on grouping successive 

terms. This particular proof goes back to the 14
th
 century, so it is a true classic of mathematics. If it is in 

your primary textbook, you should read it. I prefer a different proof. Let 
1

1k

k

n

H
n=

=∑  and consider the 

quantity 2k k
H H− . 

2

1 1 1 1 1 1 1 1

1 2 1 2 1 2

1 1 1 1

1 2 3 2

k kH H
k k k k

k k k k

   
− = + + + + + + − + + +   +   

= + + + +
+ + +

� � �

�

 

But in each of the terms 
1

somethingk +
 the denominator is no more than 2k. That means each fraction 

must be at least as large as 
1

2k
. Hence we have 

2

terms

1 1 1 1

1 2 3 2

1 1 1 1 1

2 2 2 2 2 2

k k

k

H H
k k k k

k

k k k k k

− = + + + +
+ + +

≥ + + + + = =

�

�
�����������

 

 

Rearranging, 2

1

2
k k

H H≥ + . This means that no matter what the partial sum 
k

H  is, if we go twice as far 

in the sequence of partial sums, we are guaranteed to add at least another 0.5. The series cannot possibly 

converge, because we can always find a way to increase any partial sum by at least 0.5. We conclude that 

the harmonic series diverges. ◊ 

 

To summarize: If the terms of a series do not go to zero as n → ∞ , then the series diverges. But if the 

terms do go to zero, that does not necessarily mean that the series will converge. The n
th
 term test cannot 

show convergence of a series. Most students incorrectly use the n
th
 term test to conclude that a series 

converges at least once in their career with series. If I were you, I would do that soon to get it over with so 

that you do not make the mistake again somewhere down the line. 

 

 

Geometric Series 
 

A very important class of series that you probably saw in precalculus is the geometric series. A 

geometric series is one in which successive terms always have the same ratio. This ratio is called the 

common ratio, and it is typically denoted r. For example, the following series are geometric with r equal 

to 2/3, 2, 1, and -1/2, respectively: 

                                                                                                                                                             
for the same fundamental frequency. This is why a violin, for example, sounds different from a tuba even when 

playing the same note.) Mathematicians appropriated the term harmonic from acoustics and use it to describe things 

in which we see the fractions one, one half, one third, and so on. 
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8 16 32
6 4 1 2 4 8 16

3 9 27

5 5 5
7 7 7 7 7 10 5

2 4 8

+ + + + + + + + +

+ + + + + − + − + +

� �

� �

 

In general, the terms of a geometric series can be expressed as n
a r⋅  where a is the initial term of the 

series and r is the common ratio. In the example of 1 2 4+ + +�  with a = 1 and r = 2, every term has the 

form 1 2n
⋅ . n is the index of the term (starting at 0 in this example). 

 There are several reasons why geometric series are an important example to consider. 

1. It is comparatively easy to determine whether they converge or diverge. 

2. We can actually determine the value to which the series converges. (This is often a much harder 

task than just figuring out whether or not the series converges.) 

3. They are good standards for comparison for many other series that are not geometric. This is 

one of the ways that geometric series will come up again and again during this chapter. 

 

Practice 7 

Look at partial sums for the series 

0 0

1
16·4 and 16·

4

n

n

n n

∞ ∞

= =

  
     

   
∑ ∑ . 

Which seems to converge? To what? 

 

 You should have found that the first series in Practice 6 diverges, while the second one converges. 

The divergence of the first series should not have been a surprise; it doesn't pass the n
th
 term test. In fact, 

any geometric series with 1r ≥  or 1r ≤ −  will have to diverge for this reason. (We will typically group 

both inequalities of this form together and say something like: If 1r ≥ , then the geometric series 

diverges by the n
th
 term test.) It is our good fortune with geometric series that if 1r <  the series will 

converge. Even more, as the next theorem tells us, we can compute the sum to which the series converges. 

 

Theorem 1.3 – The Geometric Series Test 

If 1r < , then the geometric series 
0

n

n

ar
∞

=

∑  converges. In addition, the sum of the series is 
1

a

r−
. If 1r ≥  

then the geometric series diverges. Note that a is the initial term of the series. 

 

We won't give formal proofs for many of the theorems and convergence tests in this chapter. But since 

geometric series are so fundamental, it is worth taking a moment to give a proof. 

 

Proof 

We have already argued that a geometric series with 1r ≥  will diverge based on the n
th
 term test. All that 

remains is to show that when 1r <  the series converges and its sum is as given in the theorem. 

The partial sums of the series 
0

n

n

ar
∞

=

∑  have the form 2 n

n
s a ar ar ar= + + + +� . It turns out that we can 

actually write an explicit formula for 
n

s . We often cannot do such a thing, so we might as well take 

advantage of the opportunity. 

 
1

2 1

1

n
n r

a ar ar ar a
r

+
−

+ + + + =
−

�  (2) 
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To verify that equation (2) is valid, simply multiply both sides by (1 )r− . After distributing and 

simplifying, you will find that the equality holds. 

 Now that we have an expression for the partial sum 
n

s , all we need to do is see if the sequence it 

generates converges. In other words, we examine lim n
n

s
→∞

. If 1r <  as hypothesized, then 1lim 0n

n
r

+

→∞
= .  

2

1

1

1

1

1
lim lim

1

1
lim

1

n

n

n

n

n

n
n n

n
n

s a ar ar ar

r
s a

r

r
s a

r

s a
r

+

+

→∞ →∞

→∞

= + + + +

−
=

−

−
=

−

=
−

�

 

 We see that the sequence of partial sums converges, so the series converges. Moreover, the sequence 

of partial sums converges to a particular value, 
1

a

r−
, so this is the sum of the series. ◊ 

 

Example 8 
Determine if the following series converge. If they do, find their sums. 

  a.  
0

4

3n
n

∞

=

∑  b. 
0

3·2n

n

∞

=

∑  c. 
4

2
3·

3

n

n

∞

=

  
  
   

∑  d. 
1

0

3

5

n

n
n

+∞

=

∑  

Solution 

a. The general term 
n

a  can be rewritten as 
1

4·
3n

 or even 
1

4·
3

n

 
 
 

. This makes it clear that the series is 

geometric with r = 1/3. Hence, the series converges to 
2
3

1
3

4 4
6

1
= =

−
. 

 

b. Here, r = 2 > 1. So the series diverges. 

 

c. The third series is clearly geometry with r = 2/3, so it converges. It is tempting to say that the sum is 

2
3

3

1−
 or 9. However, note the initial value of the index variable. In this case, I think it is useful to write 

out a few terms: ( ) ( ) ( )
4 5 6

2 2 2
3 3 3

3 3 3+ + +� . This helps clarify that the initial term is not 3, but ( )
4

2
3

3  or 

16/27. The a in a/(1 – r) stands for this initial term, so the sum should be 
16
27

2
3

16

1 9
=

−
. Experimenting with 

partial sums should show you the reasonableness of this answer. Technically, though, this is not what 

Theorem 1.3 says we can do. A more rigorous approach is the following: 

( ) ( ) ( ) ( )

( ) ( )

( )

4 5 6
2 2 2 2
3 3 3 3

4

4 2
2 2 2
3 3 3

4
2
3

0

3 3 3 3

3 1

2
3

3

n

n

n

n

∞

=

∞

=

⋅ = + + +

 = + + +
 

 
= ⋅  

 

∑

∑

�

�  
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Theorem 1.3 does legitimately allow us to evaluate the sum in this last expression. When we do so and 

multiply by the ( )
4

2
3

3  coefficient, we arrive at the same answer of 16/9. 

d. At first glance, this doesn't look like a geometric series. Do not despair! We want the powers to be n, so 

let's use exponent properties to make that happen. 

( )
1

3
5

0 0 0

3 3 3
3

5 5

n n
n

n n
n n n

+∞ ∞ ∞

= = =

⋅
= = ⋅∑ ∑ ∑  

And now we see that we have a geometric series after all. Its sum is 
3
5

3
2.4

1
=

−
 If this did not occur to 

you, then try writing out some terms. 
1

0

3 3 9 27 81

5 1 5 25 125

n

n
n

+∞

=

= + + + +∑ �  

Now we see the initial term is indeed 3, while the common ratio is 3/5. ◊ 

 

 There are two morals to take away from Example 8. First, when in doubt, write out a few terms. 

Often seeing the terms written in "expanded form" will help clarify your thinking about the series. The 

converse is also good advice. If you have a series in expanded form and you are unsure how to proceed, 

try writing it with sigma notation. The second moral is that we can apply Theorem 1.3 a little more 

broadly than indicated by the statement of the theorem. As long as a geometric series converges, its sum 

is given by 
initial term

1 common ratio−
. You can prove this if you like; it will be a corollary to Theorem 1.3. 

 

Example 9 
Write 0.2323232323… as a fraction. 

 

Solution 

0.2323232323 0.23 0.0023 0.000023 0.00000023= + + + +… �  

This is a geometric series with initial term 0.23 and common ratio 1/100. Therefore its sum is 

1
100

0.23 0.23 23

1 0.99 99
= =

−
. And there you have it. In the same way, any repeating decimal can be turned into a 

fraction of integers. ◊ 

 

 

Closing Thoughts 
 

Conceptually, when we are trying to decide the convergence of a series we are looking at how quickly 

0
n

a → . The n
th
 term test tells us that we need to have lim 0n

n
a

→∞
=  in order to have any hope of 

convergence, but the example of the harmonic series shows us that just having an tend to zero is 

insufficient. Yes, the terms of the harmonic series get small, but they do not do so fast enough for the sum 

of all of them to be finite. There's too much being added together. For a geometric series with 1r < , on 

the other hand, the terms go to zero fast. They quickly become so small as to be insignificant, and that is 

what allows a geometric series to converge. (Compare these ideas to what you studied with improper 

integrals.) As we continue to study criteria for the convergence of series later in this chapter, this idea of 

how quickly the terms go to zero will be a good perspective to keep in mind. 

 I will close this section with one more series: 

 1 1 1 1 1 1 1 1− + − + − + − +� . (3) 

The question, as always, is does series (3) converge or diverge? Answer this question before reading on. 
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 It turns out that this is a tough question for students beginning their study of infinite series because 

our intuition often gives us an answer that is at odds with the "right" answer. Some students say that 

successive terms will clearly cancel, so the series should converge to 0. Other students will look at the 

partial sums. Convince yourself that sn is equal to either 0 or 1, depending on the parity (oddness or 

evenness) of n. Some therefore say that the series converges to 0 and 1. Others suggest splitting the 

difference, saying that the series converges to 1/2. None of these answers is correct, and none takes into 

account the definition of series convergence. Since the partial sums do not approach a single number, the 

series diverges. Or, if you prefer, this is a geometric series with r = -1, and |-1| is not less than 1. This 

series diverges by the geometric series test. In fact, like all divergent geometric series, it can be shown to 

diverge by the n
th
 term test; lim n

n
a

→∞
 does not exist since the terms oscillate between 1 and -1. If the limit 

does not exist, it is definitely not zero. 

 If you arrived at one of these incorrect answers, don't feel too bad. When series were a relatively new 

concept in the 17
th
 and 18

th
 centuries, many famous mathematicians came to these incorrect answers as 

well. Here is a more sophisticated argument for the sum being 1/2. 

 Suppose that the series converges and call its sum S. 

1 1 1 1 1 1S = − + − + − +�  

Now let us group all the terms but the first. 

1 1 1 1 1 1

1 (1 1 1 1 )

1

S

S

= − + − + − +

= − − + − +

= −

�

�  

Since S = 1 – S, some quick algebra shows us that S must equal 1/2. 

 The problem with this argument is that we have assumed that the series converges when in fact it 

does not. Once we make this initial flawed assumption, all bets are off; everything that follows is a fallacy. 

This is a cautionary tale against rashly applying simple algebra to divergent series. This theme will be 

picked up and expanded in Section 9. 

 Leibniz, one of the inventors of calculus, also believed that the series should be considered as 

converging to 1/2, but for different reasons. His argument was probabilistic. Pick a partial sum at random. 

Since you have an equally likely change of picking a partial sum equal to 0 or 1, he thought the average of 

1/2 should be considered the sum. 

 I lied. One more series. The series 

1 2 4 8 16+ + + + +�  

is geometric with r = 2. Euler, one of the greatest mathematicians of all time, said that the series therefore 

converges to 
1

1 2−
: the initial term over 1 minus the common ratio. Now it was well known to Euler that 

1 2 3 4+ + + + = ∞� . He made the following string of arguments. 

First,  

1
1 2 4 8 16

1 2
= + + + + +

−
�  

because that's the formula for geometric series. Second, 

1 2 4 8 1 2 3 4+ + + + > + + + +� �  

because each term of the left-hand series is at least as large as the corresponding term of the right-hand 

series. Third, since 1 2 3 4+ + + + = ∞� , 

1

1 2
> ∞

−
. 

In other words, 1− > ∞ . 

 Now Euler was no fool; in addition to making huge advances in the development of existing 

mathematics, he created entirely new fields of math as well. But in his time this issue of convergence was 

not well-understood by the mathematical community. (Neither were negative numbers, actually, as Euler's 
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argument shows. Does it surprise you that as late as the 18
th
 century mathematicians did not have a 

complete handle on negative numbers and sometimes viewed them with suspicion?) 

 My point with these last couple series is not to try to convince you that series (3) converges (it 

doesn't) or that 1− > ∞  (it isn't). My point is that historically when mathematicians were first starting to 

wrestle with some of the concepts that we have seen in this section and will continue to see for the rest of 

the chapter, they made mistakes. They got stuff wrong sometimes. Much of what we will be studying may 

strike you as counterintuitive or bizarre. Some of it will be hard. But keep at it. If the likes of Leibniz and 

Euler were allowed to make mistakes, then surely you can be permitted to as well. But give it your best 

shot. Some of the stuff you will learn is pretty amazing, so it is well worth the struggle. 

 

 

Answers to Practice Problems 

1. 
1 1 1 1 1 1 1 1

, , , ,  or 1,1, , ,
0! 1! 2! 3! 4! 2 6 24

 

 

2. If we start with n = 1, then we have 
3

1
n

n
a

n
=

+
. 

 

3. 
2 1

n

n
a

n
=

−
 

 

4. 
2

( 1)n

n
a

n

−
=  converges to 0 because the denominator blows up. 

2 1
n

n
a

n
=

−
 converges to 1/2. If you 

need convincing of this, consider lim
2 1x

x

x→∞ −
. 

1

!
n

a
n

=  converges to 0. 
3

1
n

n
a

n
=

+
 diverges. 

 

5. In the series 
1

1

3n
n

∞

=

∑ , we have 1

3nna = . The first five terms of the series are therefore 1 2 3 4

1 1 1 1

3 3 3 3
, , , ,  and 5

1

3
. 

(If you prefer: 1 1 1 1 1
3 9 27 81 243
, , , , .) The first five partial sums are as follows. 

1 1
1 3 3

1 1 4
2 3 9 9

131 1 1
3 3 9 27 27

401 1 1 1
4 3 9 27 81 81

1 1 1 1 1 121
5 3 9 27 81 243 243

s

s

s

s

s

= =

= + =

= + + =

= + + + =

= + + + + =

 

It appears that these partial sums are converging to 1/2, so the series seems to converge. 

 

6. Some sample partial sums: 10 1.5498s ≈ , 50 1.6251s ≈ , 100 1.6350s ≈ . The series appears to converge to 

roughly 1.64. In fact, the series converges to π 
2
/6, something proved by Euler. 

 

7.  
0

16·4n

n

∞

=

  ∑  definitely diverges. It does not pass the n
th
 term test since lim16 4n

n→∞
⋅  does not exist. 

 
0

1
16·

4

n

n

∞

=

  
  

   
∑  converges. 10 21.333328s ≈  and 50s  agrees with 1

3
21  to all decimal places displayed 

by my calculator. In fact, this is the value of the sum of the series. 
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Section 1 Problems 
 

1. Write out the first 5 terms of the sequences 

defined as follows. Let the initial value of n 

be zero unless there is a reason why it 

cannot be. Simplify as much as possible. 

a. 
( 1)!

!
n

n
a

n

+
=  d. ( )ln lnna n=  

b. 
( )cos

n

n
a

n

π
=  e. 

1

3

4

n

n n
a

+
=  

c. n

n
a n=  

2. Give an expression for the general term of 

the following sequences. 

a. 2, 4, 6, 8, …  c. 1, 4, 27, 256, …  

b. 
1 1 1 1

1,1, , , , ,
2 6 24 120

− −
− �  

3. Which of the sequences in Problems 1 and 2 

converge? To what value do they converge? 

4. For what values of x does the sequence 

defined by 
!

n

n

x
a

n
=  converge? What value 

does it converge to? 

5. Evaluate s5 and s10 for the following series. 

If you can, make a conjecture for the sum of 

the series. 

a. 
0

1

!n n

∞

=

∑  c. 
0

( 1)

!

n

n n

∞

=

−
∑  

b. 1 1
3 9

3 1− + − +�  

In problems 6-15, determine whether the given 

series definitely converges, definitely diverges, 

or its convergence cannot be determined based 

on information from this section. Give a reason 

to support your answer. 

6. 
1 1 1

1
2 3 4

+ + + +�  

7. 2 4 8 16 32− + − + −�  

8. 
1 2 3 4

2 3 4 5
+ + + +�  

9. ( )1

1

cos
n

n

∞

=

∑  

10. ( )1

1

sin
n

n

∞

=

∑  

11. 
0

n

n

e

π

∞

=

 
 
 

∑  

12. 
0

n

n e

π∞

=

 
 
 

∑  

13. 
1

sin( )
n

n
∞

=

∑  

14. 
0

3

3

n

n
n n

∞

= +
∑  

15. 
1

ln

n

n

n

∞

=

∑  

In problems 16-23, find the sum of the 

convergent series. 

16. ( )2
5

0

n

n

∞

=

∑  

17. ( )1
8

0

2
n

n

∞

=

⋅∑  

18. 
2

0

3

8

n

n
n

∞

+
=

∑  

19. 
1

0

4

5

n

n
n

+∞

=

∑  

20. 
1

0

2

3

n

n
n

−∞

=

∑  

21. ( )3
4

10

n

n

∞

=

∑  

22. 5

3
1

n

n

∞

=

∑  

23. 
0

5 3

4

n

n
n

∞

=

+
∑  

24. Represent the following repeating decimals 

as fractions of integers. 

a. 0.7777  c. 0.317317  
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b. 0.82  d. 2.43838  

25. Prove that 0.9 1= . 

26. A superball is dropped from a height of 6 ft 

and allowed to bounce until coming to rest. 

On each bounce, the ball rebounds to 4/5 of 

its previous height. Find the total up-and-

down distance traveled by the ball. 

27. Repeat exercise 26 for a tennis ball that 

rebounds to 1/3 of its previous height after 

every bounce. This time suppose the ball is 

dropped from an initial height of 1 meter. 

28. Repeat exercise 26 for a bowling ball that 

rebounds to only 1/100 of its previous height 

after every bounce. 

29. The St. Ives nursery rhyme goes as follows: 

 "As I was walking to St. Ives / I met a man 

with 7 wives / Each wife had seven sacks / 

Each sack had seven cats / Each cat had 

seven kits / Kits, cats, sacks, wives / How 

many were going to St. Ives?" 

 Use sigma notation to express the number of 

people and things (kits, cats, etc.) that the 

narrator encountered. Evaluate the sum. 

30. Evaluate the following sum: 

 
 is divisible

only by 2 or 3

1 1 1 1 1 1 1 1

2 3 4 6 8 9 12k k

∞

= + + + + + +∑ �  

(Hint: This series can be regrouped as an 

infinite series of geometric series.) 

31. Evaluate the sum 
1 2n

n

n∞

=

∑ . 

(Hint: Rewrite all the fractions as unit 

fractions. For example, rewrite the term 3

3

2
 

as 1 1 1
8 8 8

+ + . Then regroup to form an 

infinite series of geometric series.) 

32. Generalize the result of Problem 31 to give 

the sum of 
1

n
n

n

r

∞

=

∑ , where 1r < . 

Another type of series is the so-called 

"telescoping" series. An example is 

1

1 1 1 1 1 1 1 1

1 1 2 2 3 3 4

1 1

1 2

n n n

∞

=

       
− = − + − + − +       

+       

= −

∑ �

1

2

 
+ 

 

1

3
−

1

3

 
+ 

 

1

4
−

 
+ 

 
�

The series is called a "telescoping" series 

because it collapses on itself like a mariner's 

telescope. 

33. a. Find an expression for the partial sum sn 

of the telescoping series shown above. 

 b. Compute the sum of the example 

telescoping series. 

In problems 34-37, find the sums of the 

telescoping series. You may have to use some 

algebraic tricks to express the series as 

telescoping. 

34. 
1

1 1

2n n n

∞

=

 
− 

+ 
∑  

35. 
2

1

1

n n n

∞

= +
∑  

36. 
2

ln
1n

n

n

∞

=

 
 

+ 
∑  

37. ( )
0

arctan( 1) arctan( )
n

n n
∞

=

+ −∑  

38. Give an example of two divergent series 

1

n

n

a
∞

=

∑  and 
1

n

n

b
∞

=

∑  such that 
1

n

n n

a

b

∞

=

∑  converges. 

For problems 39-44 indicate whether the 

statement is True or False. Support your answer 

with reasons and/or counterexamples. 

39. If lim 0n
n

a
→∞

= , then 
1

n

n

a
∞

=

∑  converges. 

40. If 
1

n

n

a
∞

=

∑  converges, then lim 0n
n

a
→∞

= . 

41. If 
1

n

n

a
∞

=

∑  converges, then lim 0n
n

s
→∞

= . 

42. If 
1

n

n

a
∞

=

∑  converges, then 
0

1

n n
a

∞

=

∑  converges. 
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43. If 
0

1

n n
a

∞

=

∑  diverges, then 
1

n

n

a
∞

=

∑  converges. 

44. If a telescoping series of the form 

( )
1

n n

n

a b
∞

=

−∑  converges, then lim 0n
n

b
→∞

= . 

The Koch Snowflake, named for Helge von 

Koch (1870-1924) is formed by starting with an 

equilateral triangle. On the middle third of each 

side, build a new equilateral triangle, pointing 

outwards, and erase the base that was contained 

in the previous triangle. Continue this process 

forever. The first few "stages" of the Koch 

Snowflake are shown in Figure 1.1. 

 

Figure 1.1: Stages of the Koch Snowflake 

 
45. Call the equilateral triangle "stage 0," and 

assume that the sides each have length 1. 

a. Express the perimeter of the snowflake 

at stage n as a geometric sequence. Does 

this sequence converge or diverge? If it 

converges, to what? 

b. Express the area bounded by the 

snowflake as a geometric series. Does 

this series converge or diverge? If it 

converges, to what? (Hint: The common 

ratio is only constant after stage 0. So 

you will need to take that into account in 

summing your series.) 

In the third century BCE, Archimedes developed 

a method for finding the area of a parabolic 

sector  like the one shown in Figure 1.2. 

 

Figure 1.2: Region R is the parabolic sector 

bounded by parabola p and line AB
����

. 

 

 Archimedes' method was as follows. First, he 

found the point at which the line tangent to the 

parabola was parallel to the secant line. (This 

was millennia before the MVT was articulated.) 

In the figures to follow, this point is called M. 

 He then connected point M to the points at 

the end of the segment. This produced a triangle, 

whose area we will call T, as well as two new 

parabolic sectors: one cut by MC  and the other 

cut by MD . (See Figure 1.3.) 

 He repeated the process with these new 

parabolic sectors to obtain points U and V. 

Archimedes then showed that the new triangles 

each had 1/8 the area of the original triangle. 

That is, each one had area T/8. 

 Now Archimedes simply repeated. Every 

parabolic sector was replaced with a triangle and 

two new sectors, and each triangle had 1/8 the 

area of the triangle that preceded it. He 

continued the process forever to fill the original 

parabolic sector with triangles (Figures 1.4 and 

1.5). This is known as the method of exhaustion. 

 

46. Use an infinite geometric series to find the 

area of the original parabolic sector in 

Figures 1.3-1.5. Your answer will be in 

terms of T. This was the result Archimedes 

derived in his "Quadrature of the Parabola." 

Figure 1.3: The first triangle Figure 1.4: New triangles 1/8
 
the 

area of the original triangle 

Figure 1.5: More and more 

triangles to fill the region 
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Section 2 – An Introduction to Taylor Polynomials 
 

In this and the following few sections we will be exploring the topic of Taylor polynomials. The basic 

idea is that polynomials are easy functions to work with. They have simple domains, and it is easy to find 

their derivatives and antiderivatives. Perhaps most important, they are easy to evaluate. In order to 

evaluate a polynomial function like 2 31
7

( ) 3 2f x x x x= + − +  at some particular x-value, all we have to do 

is several additions and multiplications. I guess there's some subtraction and division as well, but you can 

view subtraction and division as being special cases of addition and multiplication. The point is that these 

are basic operations that we have all been doing since third grade. If we want to evaluate the function f 

above at x = 2.3, it will be a little tedious to do it by hand, but we can do it by hand if we choose. Another 

way to think about this is to say that we really know what (2.3)f  means; anything we can compute by 

hand is something that we understand fairly well. 

 Compare evaluating a polynomial to trying to evaluate cos(8) , 7.3
e , or even 10 . Without a 

calculator, these are difficult expressions to approximate; we don't know how to compute these things. 

The functions ( ) cos( )g x x= , ( ) x
h x e= , and ( )k x x=  are not functions that we can evaluate easily or 

accurately, except perhaps at a few special x-values. This is where Taylor polynomials come in. A Taylor 

polynomial is a polynomial function that we use in place of the "hard" functions like g, h, and k. Building, 

analyzing, and using these polynomials will occupy us for the next three sections. 

 

 We begin with a question: What function is graphed below? 

 
If you said the graph is of y = x, you said exactly what you were supposed to say. However, you might 

have found the lack of a scale suspicious. In fact, if we zoom out a bit… 

 
… we see that we've been tricked by local linearity. Initially we were looking at the part of the graph in 

the box, and at that small scale it appeared to be a line. In this larger view, we see that this is actually the 

graph of a cubic polynomial. Or is it? Zoom out some more… 
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… and we see that actually this was the graph of our old friend the sine function all along. Again, the box 

shows what our viewing window was in the previous figure. 

 The point of this exercise was not actually to trick you, but to discover something new about 

differentiable functions. We already knew that y = x approximates the sine function near the origin. (If 

you are not comfortable with this statement, go back and review linearization.) We also know that this 

approximation breaks down as we move away from x = 0. What the graphs above suggest is that there 

might be a cubic function that does a better job of modeling the sine function on a wider interval. Put 

down this book for a minute and play around with your graphing calculator. Can you find a cubic function 

that works well for approximating sin(x)? 

 

 

Modeling the Sine Function 
 

I will present a rough method for building a polynomial model of the sine function one term at a time. We 

already know that sin( )x x≈  for small values of x. So let's hang on to that and tack on a cubic term. The 

cubic term will have to be of the form 3
kx− . For one thing, near the origin the graph of the sine function 

looks like a "negative cubic," not a positive. For another, we can see from graphing the sine function 

along with y = x that sin( )x x>  for positive x-values. Thus we need to subtract something from our 

starting model of y = x. (And for negative x-values, we have the opposite: sin( )x x< . This means we need 

to add to x, and 3
kx−  will do that for 0x < .) 

 So let's start simple and take on a 3
x−  term. Unfortunately, Figure 2.1 (next page) shows that 

3
y x x= −  is no good. The graph is too cubic; the bend takes over at x-values that are too close to zero, 

and we end up with a graph that approximates the sine graph worse than our initial linear model. So we 

need to reduce the influence of the cubic term by using a coefficient closer to zero. At random and 

because 10 is a nice round number, let's try 31
10

y x x= − . In Figure 2.2 we see that we have overdone it. 

Now the cubic character of the curve takes over too late, and we still haven't gained much over the linear 

estimate. Try adjusting the coefficient of the cubic term until you get a polynomial that seems to fit well. 
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Figure 2.1: y = sin(x), y = x, and y = x – x

3
 Figure 2.2: y = sin(x), y = x, and 

31

10
y x x= −= −= −= −  

   

 After some trial-and-error, I think that 31
6

y x x= −  does 

a pretty good job of capturing the cubic character of the sine 

function near the origin. Graphically, this function seems to 

match the sine function pretty well on a larger interval than 

the linear approximation of y = x (Figure 2.3). A table of 

values concurs. (Negative values have been omitted not 

because they are unimportant but because all the functions 

under consideration are odd; the y-values for corresponding 

negative x are just the opposite of the positive values shown.) 

We see that, while the values of x alone approximate the 

values of the sine function reasonably well for 0.4x < , the 

cubic expression approximates the values of the sine function 

very well until starting to break down around 1x = . 

 

x  0 0.2 0.4 0.6 0.8 1.0 1.2 

sin( )y x=  0 0.1987 0.3894 0.5646 0.7174 0.8415 0.9320 

31
6

y x x= −  0 0.1987 0.3983 0.5640 0.7147 0.8333 0.9120 

 

 Can we do even better? The additional "bumpiness" of the sine function suggests that there is 

something to be gained from adding yet higher-order terms to our polynomial model. See if you can find 

an even better model. Really. Put down this book, pick up your calculator, and try to get a higher-order 

polynomial approximation for the sine function. I will wait. 

Figure 2.3: y = sin(x), y = x, 
31

6
y x x= −= −= −= −  
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 Okay. Good work. Unfortunately, you can't tell me what 

you came up with, but I will share with you what I found. I 

started with what we had so far and then skipped right to a 

quintic term. It looked like adding in 51
50

x  was too much 

quintic while 51
200

x  seemed like too little. I think somewhere 

around 51
120

x  seems to be a good approximation as shown 

graphically and numerically (Figure 2.4). The exact value of 

the coefficient doesn't matter too much at present. We will 

worry about getting the number right in Section 3. For now, it 

is the idea that we can find some polynomial function that 

approximates the sine curve that is important. In any event, 

look at the graph and the values in the table. The 

polynomial 3 51 1
6 120

y x x x= − +  matches the sine 

function to four decimal places for x in the interval 

0.7 0.7x− < < . To two decimal places, this quintic is 

good on the interval 1.6 1.6x− < < . It is a tremendous match for a relatively simple function. 

 
x  0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 

sin( )y x=  0.6442 0.7833 0.8912 0.9636 0.9975 0.9917 0.9463 0.8632 

3 51 1
6 120

y x x x= − +  0.6442 0.7834 0.8916 0.9648 1.0008 0.9995 0.9632 0.8968 

 

 Of course, there's no real reason to stop at the fifth-degree 

term. I'll leave the guessing-and-checking to you, but here's 

my seventh-degree polynomial approximation of the sine 

function: 
3 5 7

sin
6 120 5040

x x x
x x≈ − + − . This is graphed in Figure 2.5. As 

you can see, we now have a high quality approximation on 

what looks like the interval 3 3x− < < . (If you look at a table 

of values, the quality of the fit isn't actually all that great at 

3x = . But definitely in, say, 2.6 2.6x− < <  this seventh-

degree polynomial is an excellent approximation for the sine 

function.) One question worth asking, though, is what are the 

criteria for calling the approximation "good"? We will revisit 

this question in Section 4. 

 Another question you might be asking is where the denominator of 5040 came from. It seems more 

than a little arbitrary. If you are asking whether it is really any better than using 4900, 5116, or some other 

random number in that neighborhood, then you are asking an excellent question. It turns out, though, that 

5040 has a nice, relatively simple relationship to 7, the power of that term in the polynomial. Furthermore, 

it is the same relationship that 120 (the denominator of the fifth-degree term) has to 5, that 6 has to 3, and 

even that 1 (the denominator of the linear term) has to 1. The denominators I have chosen are the 

factorials of the corresponding powers; they are just (power)!. (I'm very excited about this, so I would like 

to end the sentence with an exclamation point. But then it would read "… (power)!!" which is too 

confusing. Later on, we will meet the double factorial function that actually is notated with two 

exclamation points.) In the next section we'll see why using the factorials is almost inevitable, but for now 

let's capitalize on the happenstance and see if we can generalize the pattern. 

Figure 2.4: y = sin(x), 
31

6
y x x= −= −= −= − , and 

3 51 1

6 120
y x x x= − −= − −= − −= − −  

 

Figure 2.5: The sine function with quintic  

and seventh-degree polynomial approximations 
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 It seems that we have terms that alternate in sign, use odd powers, and have coefficients of the form 

1/(power!). In other words, 

 
3 5 2 1

sin ( 1)
3! 5! (2 1)!

n
nx x x

x x
n

+

≈ − + − + −
+

� . (1) 

Graphs of these polynomials for several values of n are shown in Figure 2.6 along with the graph of 

siny x= . (Note: These are values of n, not values of the highest power in the polynomial. The degree of 

the polynomial, based on Equation (1), is 2n + 1. This means that n = 8 corresponds to a th(2 8 1)⋅ + = 17
th
-

degree polynomial.) 

 

n = 0 

 

n = 1 

 

n = 2 

 
 

n = 3 

 

n = 4 

 

n = 5 

 
 

n = 6 

 

n = 7 

 

n = 8 

 
Figure 2.6: Various Maclaurin polynomials for the sine function. 

 
 Time for some housekeeping. The polynomials that we have been developing and graphing are 

called Taylor Polynomials after English mathematician Brook Taylor (1685-1731). Every Taylor 

polynomial has a center which in the case of our example has been x = 0. When a Taylor polynomial is 

centered at (or expanded about) x = 0, we sometimes call it a Maclaurin Polynomial after Scottish 

mathematician Colin Maclaurin (1698-1746). Neither of these men were the first people to study 

modeling functions with polynomials, but it is their names that we use. Using this vocabulary, we would 

say that 3 51 1
5 3! 5!
( )P x x x x= − +  is the fifth-degree Taylor polynomial centered at x = 0 for the sine 

function. Alternately, we could call this the fifth-degree Maclaurin polynomial for the sine function. In 
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this chapter, we will use P (for polynomial) to name Taylor and Maclaurin polynomials, and the subscript 

will indicate the order of the polynomial. (For now we will use the terms degree and order as synonyms, 

as you probably did in other math courses. We will say more about the slight difference between these 

terms in Section 3. In most cases they are the same thing.) 

 We care about Taylor polynomials chiefly because they allow us to approximate functions that 

would otherwise be difficult to estimate with much accuracy. If, for example, we want to know the value 

of sin(2), a unit circle-based approach to the sine function will not be terribly helpful. However, using, for 

example, the fifth-degree Maclaurin polynomial for the sine function, we see that 
3 52 2

3! 5!
sin(2) 2≈ − + , or 

about 0.933. The calculator value for sin(2) is 0.909297…. Too much error? Use a higher-degree Taylor 

polynomial. 
3 5 7 92 2 2 2

9 3! 5! 7! 9!
(2) 2 0.90935P = − + − + ≈ . However, if we had wanted to approximate sin(0.5) , 

the fifth-degree polynomial gives 
3 50.5 0.5

5 3! 5!
(0.5) 0.5 0.479427P = − + = , differing from the calculator's 

value only in the sixth decimal place. We summarize these observations, largely inspired by Figure 2.6, as 

follows: 

 

 

Observation: Taylor Polynomials... 

1. … match the function being modeled perfectly at the center of the polynomial. 

2. … lose accuracy as we move away from the center. 

3. … gain accuracy as we add more terms. 

 

 

 Numbers 1 and 2 in the list above should look familiar to you. They say that Taylor polynomials 

work a lot like linearization functions. In fact, linearization functions are a special case of Taylor 

polynomials: first-degree polynomials. You might think there should be a fourth comment in the 

observation. It seems that as we add more terms, the interval on which the Taylor polynomial is a good 

approximation increases, gradually expanding without bound. This is certainly what appears to be 

happening with the sine function. We will have to revisit this idea. 

 

 

New Polynomials from Old 
 

Suppose we also want a Maclaurin polynomial for the cosine function. We could start over from scratch. 

That would involve starting with the linearization function y = 1 and adding terms, one at a time, hoping 

to hit upon something that looks good. But this seems like a lot of work. After all, the cosine function is 

the derivative of the sine function. Maybe we can just differentiate the Maclaurin polynomials. Let's see if 

it works. 
3 5

2 4 2 4 2 4
?

sin
6 120

3 5
cos 1 1 1

6 120 2 24 2! 4!

x x
x x

x x x x x x
x

≈ − +

≈ − + = − + = − +
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Figure 2.7: y = cos(x) and 

21

2

41

24
1y x x= −= −= −= − ++++  

 

It appears from Figure 2.7 that indeed this polynomial is a good model for the cosine function, at least in 

the interval 1.5 1.5x− < < . If we differentiate all the Maclaurin polynomials of various degrees for the 

sine function, we can see some general trends in the cosine Maclaurin polynomials: the terms still 

alternate in sign, the powers are all even (because the terms are derivatives of odd-powered terms), and 

because of the way that factorials cancel, the denominators are still factorials. It appears that 

 
2 4 6 2

cos 1 ( 1)
2! 4! 6! (2 )!

n
nx x x x

x
n

≈ − + − + + −� . (2) 

 Figure 2.8 (next page) shows Maclaurin polynomials for various n. (Again, n is not the degree. In 

this case, the degree of the polynomial is 2n.) The table of values that follows the figure also shows 

numerically how a few of the selected polynomials approximate the cosine function. 

 The graphs and table demonstrate, once again, that the Maclaurin polynomials match the function 

being modeled perfectly at the center, that the quality of the approximation decreases as we move from 

the center, and that the quality of the approximation increases as we add more terms to the polynomial. 

These big three features of a Taylor polynomial will always be true. We also see that the interval on 

which the polynomials provide a good approximation of the function being modeled seems to keep 

growing as we add more terms, just as it did with the sine function. 

 Here's a random thought. Somewhere (in Algebra 2 or Precalculus) you learned about even and odd 

functions. Even functions have reflectional symmetry across the y-axis and odd functions have rotational 

symmetry about the origin. Doubtless, you were shown simple power functions like 4( )f x x=  and 
3( ) 2g x x= −  as examples of even and odd functions, respectively. At this point, the terminology of even 

and odd probably made some sense; it derived from the parity of the exponent. But then you learned that 

the sine function is odd and the cosine function is even. Where are there odd numbers in the sine 

function? Where are there even numbers in the cosine function? Perhaps the Maclaurin polynomials shed 

some light on this question. 
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n = 0 

 
 

n = 1 

 

n = 2 

 

n = 3 

 

n = 4 

 

n = 5 

 
 

n = 6 

 

n = 7 

 

n = 8 

 
Figure 2.8: Various Maclaurin polynomials for the cosine function 

 

 
x  0 0.3 0.6 0.9 1.2 1.5 1.8 

2

2 2
( ) 1 xP x = −  1 0.955 0.82 0.595 0.28 -0.125 -0.62 

2 4

4 2 24
( ) 1 x xP x = − +  1 0.9553 0.8254 0.6223 0.3664 0.0859 -0.1826 

2 4 6 8

8 2 4! 6! 8!
( ) 1 x x x xP x = − + − +  1 0.9553 0.8253 0.6216 0.3624 0.0708 -0.2271 

( ) cos( )f x x=  1 0.9553 0.8253 0.6216 0.3624 0.0707 -0.2272 

 

 Differentiation isn't the only way that we can turn the Taylor polynomial from one function into the 

Taylor polynomial for another. We can also substitute or do simple algebraic operations. 

 

Example 1 

Find the eighth-degree Maclaurin polynomial for ( )2( ) cosf x x= . 

Solution 

( )f x  is a composition of the cosine function with 2
y x= . So let us just compose the Maclaurin 

polynomial for the cosine function with 2
y x= . 
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( )
( ) ( ) ( )

2 4 6

2 4 6
2 2 2 4 8 12

2

cos( ) 1
2! 4! 6!

cos 1 1
2! 4! 6! 2 24 720

x x x
x

x x x x x x
x

≈ − + −

≈ − + − = − + −

 

We are asked for only the eighth-degree polynomial, so we simply drop the last term. 
4 8

8 ( ) 1
2 24

x x
P x = − +  

A graph of ( )f x  and 8 ( )P x  is shown in Figure 2.9. ◊ 

 

 
Figure 2.9: (((( ))))2

( ) cosf x x====  and 
8
( )P x  

 

Example 2 

Use Taylor polynomials to evaluate 
0

sin
lim
x

x

x→
. 

Solution 

This question takes us a little ahead of ourselves, but that's okay. This whole section is about laying the 

groundwork for what is to come. In any event, the first step is to model 
sin

( )
x

f x
x

=  with a polynomial. 

We can do that by starting with a sine polynomial and just dividing through by x. 
3 51 1

6 120

3 51 1
2 46 120 1 1

6 120

sin

sin
1

x x x x

x x xx
x x

x x

≈ − +

− +
≈ = − +

 

Now we claim that ( )2 41 1
6 120

0 0

sin
lim lim 1
x x

x
x x

x→ →
= − + . This limit is a cinch to evaluate; it's just 1. And this 

agrees with what you learned at the beginning of your calculus career to be true. ◊ 

 

 Actually, Example 2 takes us really far ahead. The important idea—that we can use Taylor 

polynomials to simplify the computation of limits—is very powerful. However, there are a lot of ideas 

being glossed over. Is it really true that the limit of the function will be the same as the limit of its Taylor 

polynomial? We will dodge this question in Section 10 by looking at Taylor series instead of Taylor 

polynomials. And what about the removable discontinuity at x = 0 in Example 2? This is actually a pretty 

serious issue since x = 0 is the center of this particular Taylor polynomial. We will explore some of these 

technical details later, but for now let's agree to look the other way and be impressed by how the Taylor 

polynomial made the limit simpler. 
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Some Surprising Maclaurin Polynomials 
 

I would now like to change gears and come up with a Maclaurin polynomial for 
1

( )
1

f x
x

=
−

. This 

actually seems like a silly thing to do. We want Taylor polynomials because they give us a way 

approximate functions that we cannot evaluate directly. But f is a simple algebraic function; it consists of 

one subtraction and one division. We can evaluate ( )f x  for any x-value we choose (other than 1x = ) 

without much difficulty, so a Taylor polynomial for this function seems unnecessary. We will see, though, 

that such a polynomial will be very useful. 

 There are several ways to proceed. We could do the same thing we did with the sine function, though 

that involves a fair amount of labor and a lot of guessing. We could actually do the long division 

suggested by the function. That is, we can divide 1 (1 )x÷ −  using polynomial long division. 

2

2

2

2

2

1

1 1 0 0

1

0

x x

x x x

x

x x

x x

x

+ + +

− + + +

−

+

−

�

�

 

This works and is pretty quick, but it is kind of a gimmick since it only applies to a small class of 

functions. You can play with long division more in the problems at the end of this section. 

 My preferred approach is to view 
1

1 x−
 as having the form 

1

a

r−
 where a = 1 and r = x. That means, 

that 
1

1 x−
 represents the sum of a geometric series with initial term 1 and common ratio x. 

 2 3 41
1

1
x x x x

x
= + + + + +

−
�  (3) 

So to obtain a Maclaurin polynomial, we just have to lop off the series at some point. For example 

2 3

3 ( ) 1P x x x x= + + + . Graphs of several Maclaurin polynomials for 
1

( )
1

f x
x

=
−

 are shown in Figure 

2.10 (next page). This time, n really does represent the degree of the polynomial approximator. 

 As you look at the graphs, a few things should strike you. They are nothing new. All the polynomials 

appear to match the parent function ( )f x  perfectly at the center. As you move away from the center, the 

quality of the approximation decreases, as seen by the green graphs of the polynomials splitting away 

from the black graph of f. Finally, adding more terms seems to improve the quality of the approximation; 

the higher-order polynomials "hug" the graph of f more tightly. The big three features continue to hold. 

However, we do not appear to be able to extend the interval indefinitely as we did with the earlier 

examples. Even if you graph the 100
th
-degree Maclaurin polynomial, you will not see a significantly 

wider interval on which it matches the graph of f. It will take us some time to figure out what is going on 

here. Let's delay this issue until a later section. 
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n = 1 

 

n = 2 

 
 

n = 3 

 

n = 4 

 

n = 5 

 

n = 6 

 

Figure 2.10: Various Maclaurin polynomials for ( )
1

1
f x

x

====
−−−−

 

 

Practice 1 
Find third-order Maclaurin polynomials for the following functions: 

 a. 
3

( )
1 2

f x
x

=
−

 b. ( )
1

x
g x

x
=

+
 c. 

4
( )

2
h x

x
=

−
 

 

 Now we must turn to the question of why a Taylor polynomial for 
1

( )
1

f x
x

=
−

 is interesting. Well, 

it isn't. But we can integrate it, and that will be interesting. If we know, for example, that  

2 31
1

1
t t t

t
≈ + + +

−
, 

then it should follow that 

( )2 3

0 0

1
1

1

x x

dt t t t dt
t

≈ + + +
−∫ ∫ . 

Carrying out the integration gives the following. 

2 3 4

0

0

2 3 41 1 1
2 3 4

2 3 41 1 1
2 3 4

ln(1 )
2 3 4

ln(1 )

ln(1 )

x

x t t t
t t

x x x x x

x x x x x

 
− − ≈ + + + 

 

− − ≈ + + +

− ≈ − − − −

 

From here he we generalize. 

 2 31 1 1
2 3

ln(1 ) n

n
x x x x x− ≈ − − − − −�  (4) 

And now we have Maclaurin polynomials for a natural logarithm function. If you want to know the value 

of, say, natural logarithm of 0.3, you can approximate it with a Maclaurin polynomial. Let's use the third-

degree Maclaurin polynomial. 
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2 31 1
2 3

ln(0.3) ln(1 0.7) 0.7 (0.7) (0.7) 1.0593= − ≈ − − − = −  

My calculator says the value of ln(0.3) is about -1.2. So I suppose we should have used a higher-order 

Taylor polynomial. For you to explore: How many terms do you need to include in the polynomial before 

the polynomial approximation agrees with the calculator value to two decimal places? 

 

 

Summary… and a look ahead 

 

In this section, we saw several important ideas, so let us summarize them. 

• Many functions can be approximated by polynomials. Depending on the complexity of the 

original function, this polynomial approximators may be significantly easier to evaluate, and this 

gives us a way of approximating the values of even the thorniest functions. 

• In particular, we found general formulas for Maclaurin polynomials of arbitrary degree for 

( ) sin( )f x x= , ( ) cos( )f x x= , 
1

( )
1

f x
x

=
−

, and ( ) ln(1 )f x x= − . 

• We have identified three major characteristics of these polynomial approximators: 

o They are perfect at the center. 

o Their quality decreases as you move away from the center. 

o Their quality improves as you include more terms. 

• Finally, we saw that there are several ways to generate new Taylor polynomials from known ones. 

o We can differentiate or integrate, term by term (as we did to find the cosine and 

logarithm polynomials). 

o We can substitute more complicated expressions for x (as we did to find the polynomial 

for ( )2( ) cosf x x= ). 

o We can manipulate the polynomials algebraically (as we did to find the polynomial for 

sin
( )

x
f x

x
= ). 

Not bad for an overview section. 

 However, I also feel like we have raised more questions than we have answered. Here are a few 

questions that I think are natural to be thinking about at this point. 

 

1. Is there a systematic way to come up with the coefficients of a Taylor polynomial for a given 

function? We guessed at the sine function and resorted to some tricks for other functions, but it 

would be nice to be able to take a given function and a given center and automatically come up 

with a polynomial that is guaranteed to model the given function well near the center. We will 

answer this question in Section 3. 

2. Can we know how big the error will be from using a Taylor polynomial? As the tables in this 

section show, Taylor polynomials are not perfect representations for functions; they are only 

approximations. Whenever we use an approximation or estimation technique, it is important to 

have a sense for how accurate our approximations are. Section 4 will look into estimating error, 

and this will be revisited in Section 8. 

3. When can we extend the interval on which the Taylor polynomial is a good fit indefinitely? It 

seems like adding more and more terms to the sine and cosine polynomials make better and better 

approximations on wider and wider intervals. But for 
1

( )
1

f x
x

=
−

, the interval did not get 

appreciably bigger after the inclusion of a few terms. Why not? Can we predict which functions 

can be approximated well for arbitrary x-values and which ones can only be approximated well 
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for certain x-values? This is a tough question, and answering it will occupy most the rest of this 

chapter. 

4. Can we match a function perfectly if we use infinitely many terms? Would that be meaningful? 

This has not come up in the section yet, but you might have wondered whether you could just 

tack on a " +� " the end of equations (1), (2), or (4). Can we just keep adding terms forever? Can 

we make meaning of that? Section 1 suggests that maybe we can, and in fact this is what we are 

really after in this chapter. It will take us some time to answer this question fully, with most of 

the work coming in Sections 6, 7, 8, and 10, but I think the payoff will have been worth it. 

 

These four questions frame the rest of the chapter, and we will be returning to them frequently. While 

there were very few mathematical procedures in this section, there were a lot of big ideas, and the 

lingering questions are as important as any of the things we think we have learned. In the remaining 8 

sections, we will see where answering these questions takes us. 

 

 

Answers to Practice Problems 

1.  a. 
3

( )
1 2

f x
x

=
−

 is of the form 
1

a

r−
 with a = 3 and r = 2x. So we can expand this function as the 

geometric series 2 3 43 6 12 24 48x x x x+ + + + � . For the third-order Macluarin polynomial, we simply lop 

off all terms after the cubic. 2 3

3 ( ) 3 6 12 24P x x x x= + + +  

 b. ( )
1

x
g x

x
=

+
 is not quite of the form 

1

a

r−
 because there is addition in the denominator instead of 

subtraction. That is easy to fix, though. Rewrite g as ( )
1 ( )

x
g x

x
=

− −
. Now the initial term is x and the 

common ratio is –x. Keeping terms up to the third degree, we get 2 3( )g x x x x≈ − +  

 c. 
4

( )
2

h x
x

=
−

 doesn't have a 1 in the denominator where we would like it. There are two ways to 

turn that 2 into a 1. The first is to break it up through addition. 

4 4

2 1 1

4

1 ( 1)

x x

x

=
− + −

=
− −

 

This now looks like the sum of a geometric series with a = 4 and ( 1)r x= − . Therefore, we suppose that 
2 3

3 ( ) 4 4( 1) 4( 1) 4( 1)P x x x x= + − + − + − . However, this is the wrong answer. To see why, graph 3 ( )P x  in 

the same window as h(x). You should see that the polynomial is not centered at x = 0; it does not match h 

perfectly there. 3 ( )P x  still does a good job of approximating h(x), just not where we want it to. It is a 

Taylor polynomial, but not a Maclaurin polynomial. 

Let's try another strategy to turn the 2 into a 1: dividing. 

2

4 4 / 2

2 (2 ) / 2

2

1 x

x x
=

− −

=
−

 

Now it looks like a = 2 and r = x/2. Indeed, 2 31 1
3 2 4
( ) 2P x x x x= + + +  does approximate h(x) near x = 0; 

this is the third-order Maclaurin polynomial for h(x). 
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Section 2 Problems 
 

1. Find a fifth-degree polynomial that 

approximates the function ( ) x
f x e=  near 

the origin. (There are many reasonable 

answers to this question. You don't need to 

worry about getting the "right" Maclaurin 

polynomial just yet, just try to find a fifth-

degree function that "looks like" f near 

0x = .) 

2. In this section, we found a polynomial for 

the cosine function by differentiating the 

polynomial for the sine function. But the 

opposite of the cosine function is also the 

antiderivative of the sine function. Find a 

polynomial for the cosine function by 

integrating the sine function's polynomial 

and verify that it matches what we obtained 

in Equation 2. Where does the constant term 

of the cosine polynomial come from? 

3. Find the fifth-degree Maclaurin polynomial 

for 
1

( )
1

f x
x

=
+

 by treating this function 

like the sum of a geometric series. 

4. Find the fifth-degree Maclaurin polynomial 

for the function ( ) ln(1 )f x x= + . Do this 

two ways. 

a. Integrate your answer from Problem 3. 

b. Start with the Macluarin polynomial for 

ln(1 )x−  (see Equation 2.4) and 

substitute x−  for x. 

c. Do your answers to (a) and (b) agree? 

d. Graph f and your polynomial in the 

same window. On what interval 

(roughly) does your polynomial do a 

good job approximating ( )f x ? 

e. Use your Macluarin polynomial to 

approximate the value of ln(0.8), ln(1.8) 

and ln(5). Compare with your 

calculator's values for these numbers. 

Which are close? Which are 

unreasonable? 

5. In this problem, you will find and use a 

Maclaurin polynomial for ( ) arctan( )f x x= . 

a. Find the sixth-degree Maclaurin 

polynomial for 
2

1
( )

1
f x

x
=

+
 by 

substituting into the polynomial for 

1

1 x−
. 

b. Use your answer to part (a) to find the 

fifth-degree Maclaurin polynomial for 

( ) arctan( )f x x= . 

c. Graph f and your polynomial in the 

same window. On what interval 

(roughly) does your polynomial do a 

good job approximating ( )f x ? 

d. Use your answer to part (b) to 

approximate the value of arctan(0.2), 

arctan(-0.6), and arctan(3). Compare 

with your calculator's values for these 

numbers. Which are close? Which are 

unreasonable? 

6. In this problem, you will approach 

trigonometric identities from a new 

perspective. If you have access to a CAS, 

that will make the algebra go faster. 

a. Find the fifth-degree Maclaurin 

polynomial for sin(2 )x  by substituting 

into the polynomial for sin( )x . 

b. Multiply the second-degree Maclaurin 

polynomial for the cos( )x  and the third-

degree Macluarin polynomial for sin( )x , 

to find a fifth-degree Maclaurin 

polynomial for 2sin( )cos( )x x . (You'll 

need to multiply by an extra factor of 2, 

of course.) 

c. Compare your answers to parts (a) and 

(b). What do you observe? If you like, 

use higher-degree Macluarin 

polynomials to see if you can improve 

the fit. 

d. Find the sixth-degree Maclaurin 

polynomial for 2( ) sinf x x=  by 

squaring the third-degree Maclaurin 

polynomial. 

e. Find the eighth-degree Maclaurin 

polynomial for 2( ) cosf x x=  by 
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squaring the fourth-degree Maclaurin 

polynomial. 

f. Add your answers to parts (d) and (e). 

That is, find an eighth-degree Maclaurin 

polynomial for 2 2( ) sin cosf x x x= + . 

Evaluate your polynomial for x-values 

near zero. What do you observe? If you 

like, use higher-degree polynomials to 

improve the approximation. 

7. Find third-degree Maclaurin polynomials for 

the following functions. Do this first by 

treating the functions as sums of a geometric 

series and second by using polynomial long 

division. Do the two methods give the same 

answer? 

a. 
5

( )
2

f x
x

=
−

 

b. 
2

3
( )

1
f x

x
=

+
 

c. 
2

2
( )

1

x
f x

x
=

+
 

d. ( )
2

x
f x

x
=

−
 

8. Find the third-degree Maclaurin polynomial 

for 
2

1
( )

(1 )
f x

x
=

−
. 

 (Hint: 
2

1 1

1 (1 )

d

dx x x

 
= 

− − 
.) 

9. Find the third-degree Maclaurin polynomial 

for the following functions. Then graph the 

function and the polynomial in the same 

window. 

a. ( )2( ) ln 1f x x= +  

b. ( )3( ) sinf x x=  

10. Shown below (Figure 2.11) are the graphs of 
2

( ) x
f x e

−
= and its second-, fourth-, and 

sixth-degree Maclaurin polynomials. 

Determine which graph (A, B, and C) 

corresponds to which degree Maclaurin 

polynomial. 

11. Shown below (Figure 2.12) are the graphs of 

( ) arccos( )f x x=  and its third- and seventh-

degree Maclaurin polynomials. Determine 

which graph corresponds to which degree 

Maclaurin polynomial. 

 

 

   
  Figure 2.11      Figure 2.12 
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Section 3 – A Systematic Approach to Taylor Polynomials 
 

 

Polynomials 

 

Before getting to Taylor polynomials specifically, we are going to work through several examples just 

involving polynomials and their derivatives. 

 

Example 1 

Find linear functions f and g such that (0) 5f = , (0) 3f ′ = − , (2) 4g = − , and 1
3

(2)g′ =  

Solution 

For both these functions, we are given the slope and a point on the line, so it makes sense to use point-

slope form, as we almost always do in calculus. For f we have ( ) 5 3f x x= −  and for g we have 
1
3

( ) 4 ( 2)g x x= − + − . ◊ 

 

 You have seen problems like Example 1 before. On the one hand, they are basically initial value 

problems. You are given dy/dx as well as a point (the initial condition), and asked to come up with the 

function that matches. Procedurally, it is more similar to the tangent line or linearization problem. We are 

building a line to conform to a particular slope and point. For that matter, this is really more of an algebra 

problem than a calculus one; you have been doing problems like this for years. Before moving on to our 

next example, notice how it was useful to keep the (x – 2) in ( )g x  rather than simplifying. Again, this is 

nothing new, but will be even more helpful now. 

 

Example 2 

Find a quadratic function f such that (0) 3f = , (0) 2f ′ = −  and (0) 4f ′′ = . 

Also find a quadratic function g such that ( 3) 4g − = , ( 3) 0g′ − = , and ( 3) 6g′′ − = . 

Solution 

Instead of giving the right answer, let's give the most common wrong answer first. Many people 

generalize the results of Example 1 in a pretty straightforward way. 

 2( ) 3 2 4f x x x= − +  

Similarly, for g the common wrong answer is 
2( ) 4 0( 3) 6( 3)g x x x= + + + + . 

But check it! It should be clear that (0) 3f =  and ( 3) 4g − = , as desired. We also need to compute the 

derivatives to see if their values match at x = 0. 

 

2 2( ) 3 2 4 ( ) 4 0( 3) 6( 3)

( ) 2 8 ( ) 0 12( 3)

( ) 8 4 ( ) 12 6

f x x x g x x x

f x x g x x

f x g x

= − + = + + + +

′ ′= − + = + +

′′ ′′= ≠ = ≠

 

While both (0)f ′  and ( 3)g′ −  give the desired values, we are off by a factor of 2 in both cases when it 

comes to the second derivative. Where did this extra 2 come from? It was the power in the quadratic term 

that "came down" upon differentiating. To get the correct answer, we need to anticipate that this will 

happen and divide our quadratic coefficient by two. Thus the correct answers are 

2 24 6
( ) 3 2 ( ) 4 0( 3) ( 3)

2 2
f x x x g x x x= − + = + + + + . 

I leave it to you to check that the values of the functions and their first derivatives are unaffected by this 

change and that the values of the second derivatives are now what we want them to be. ◊ 
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Practice 1 

Find a quadratic function f such that (2) 8f = , (2) 1f ′ = − , and (2) 3f ′′ = . 

 

Example 3 

Find a cubic function f such that (0) 1f = − , (0) 5f ′ = , 1
5

(0)f ′′ = , and (0) 12f ′′′ = − . 

Solution 

Try it before you read on.  

Now that you've tried a bit, I'll give you one hint. The cubic term is not 34x− . If that's what you had, 

differentiate three times. Your third derivative will not be -12. Try to fix the error before reading further. 

 The common misconception that leads to 34x−  is simple. In Example 2, we needed to make sure that 

the quadratic coefficient was half the value of the indicated second derivative. By extension, it would 

seem that we want the cubic coefficient to be one third the indicated third derivative. That is good 

inductive reasoning, but it misses the point. The reason we had to divide by two was in anticipation of the 

multiplication by two that is introduced by differentiating a quadratic term. For a cubic term, when we 

differentiate once, a 3 does "come down," so it is not wrong to divide by three. However, when we 

differentiae again, the new power, now 2, comes down as well. The correct thing to do, then, is not to 

divide the -12 by 3, but by 6. (Note that in the third differentiation, the power that comes down is 1, so 

that does not change what we need to divide by.) The correct answer, then is 
2 31

10
( ) 1 5 2f x x x x= − + + − . 

Again, I leave it to you to take derivatives and check that they match. 

 Here is a more formal solution. The function we are seeking has the form 
2 3

0 1 2 3( )f x c c x c x c x= + + +  where the 
i

c s are unknown numbers. If we take successive derivatives and 

plug in 0 (the point at which we have information for these functions) we obtain the following. 
2 3

0 1 2 3 0

2
11 2 30

0 1 2

0 1

3

32

2

3

( ) (0)

(0)( ) 2 3

(0) 2!( ) 2 1 3 2

(0) 3!( ) 3 2 12

f x c c x c x c x f c

f cf x c c x c x

f cf x c c x

f cf x

c x

c c x

c c cx c x

= + + + =

′ =′ = + +

′′ =′′ = ⋅ + ⋅

′′′ =′′

+

+

⋅

+

′ = ⋅+ + +

 

Using the given information, the second column translates to: 
1

0 1 2 05
1, 5, 2! , 3! 12c c c c= − = = = −  

Solving for each 
i

c , we obtain the same coefficients as above. ◊ 

 

Notice how the function and derivatives in Example 3 simplified so marvelously when we plugged in 0. 

There was nothing special about the number zero in this case. No matter the x-value for which we are 

given the values of f and its derivatives, this simplification will always happen… as long as we stick to 

the form we used in Examples 1 and 2. Example 4 demonstrates this. 

 

Example 4 

Find the cubic function that has the following properties: (1) 0f = , (1) 4f ′ = , (1) 3f ′′ = , (1) 1f ′′′ = − . 

Partial Solution 

We modify the tableau from Example 3 only slightly. 
2 3

0 1 2 3 0

2
11 20

0 1

0 1

3

22 3

332

( ) ( 1) ( 1) ( 1) (1)

(1)( ) 2 ( 1) 3 ( 1)

(1) 2!( ) 2 1 3 2 (

( 1)

( 1) 1

( 1) 2

1)

(1) 3!(( ) 3 2) 11

f x c c x c x c x f c

f cf x c c x c x

f cf x c

c x

c c x x

c c x c

c x

f ccxf x

+ −

+

= + − + − + − =

′ =′ = + − + −

′′− =′′ = ⋅ + ⋅ −

′

+ −

+ − + − + ′′ =′′′ = ⋅ ⋅
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Notice how the second column is essentially the same as in Example 3, just with a 1 plugged in. The 

critical part, the right-hand side of this column, is identical. The reason is that when we plug x = 1 into the 

k
th
 derivative, all the terms vanish except for the one corresponding to the ( 1)k

x −  term of ( )f x . ◊ 

 

Practice 2 
Finish Example 4. 

 

 Another noteworthy feature of the methods used in Examples 3 and 4 is that the factorial numbers 

come up so naturally. Recall that the factorials were major players in some of the polynomials we saw in 

Section 2. Here we see why they came up then; they are the product (literally!) of subsequent 

differentiation as the powers of the polynomial terms become coefficients. This suggests that there may 

have been some reason to use factorial-related coefficients in the Taylor polynomials of Section 2. 

 If you can successfully do Practice 3, you will be all set for computing Taylor polynomials. 

 

Practice 3 

Find a quartic polynomial f that has the following properties: ( 1) 3f − = , ( 1) 0f ′ − = , ( 1) 1f ′′ − = − , 

( 1) 8f ′′′ − = , and (4) ( 1) 10f − = . 

Bonus: Does f have a relative extremum at x = -1? If so, what kind? 

 

 In previous courses, you were probably asked to solve similar questions. Instead of being told the 

values of a function's derivatives at a point, you were probably given several distinct points on the graph 

of the function. For example, you may have been asked to find the equation of a parabola that passes 

through three points. Or if your teachers were really into having you solve systems of equations, you 

might even have been asked to find the equation of a cubic polynomial that passes through four given 

points. The conclusion that you were supposed to draw at the time was that an n
th
-degree polynomial is 

uniquely determined by 1n +  points. In other words, given n + 1 points, you can always (excepting 

degenerate cases) find one and only one n
th
-degree polynomial that passes through those points. This 

conclusion makes a certain amount of sense geometrically, but it actually misses a bigger point. 

 The example and practice problems you have seen so far in this section suggest a broader idea which 

I suppose is important enough to put in a box. 

 

Observation: To uniquely determine an n
th
-degree polynomial, we need 1n +  pieces of information 

about the function. 

 

 Being selective about which pieces of information we want to use will give us Taylor polynomials in 

a moment, but there is good math to think about before we get there. In your previous math classes, the 

1n +  pieces of information were always distinct points. In the examples we have seen so far, the pieces of 

information were values of the function and its derivatives all at a particular x-value. They could have 

been a mixture of the two. For example, you may have been asked to find the equation of a parabola with 

vertex (2, 3) and that passes through the point (1, 7). At first, it seems like you only have two pieces of 

information; that's only enough to nail down a first-degree (i.e., linear) polynomial. But the fact that (2, 3) 

is the vertex of the polynomial is also informative; that is the third piece of information. In terms of the 

previous examples from this section, we are told that the derivative of the function we seek has value 0 at 

2x = . After completing this course, you might solve this problem differently than the way you did in the 

past. 

 

Practice 4 
Do it! Find the equation of the parabola with vertex (2,3) and that passes through the point (1, 7). 
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 What fascinates me about problems like Examples 3 and 4 is that all the information comes from 

looking at a single point on the graph of the polynomial. Instead of getting 4 different points to determine 

a cubic, we look very carefully at one point. Amazingly, all the information that we need can be found 

there. By knowing the value of the function and its first 3 derivatives at a single point, we recover enough 

information to build the entire polynomial—for all x. In general, by knowing the value of an n
th
-degree 

polynomial function and its n derivatives at a single point, we are able to determine the value of the 

polynomial at every x-value. This is an idea that will continue to build throughout this chapter. 

 

 

Taylor Polynomials 
 

 Using what we have already seen about polynomials in this section, figuring out how to build Taylor 

polynomials should be no problem. The goal, as you recall from Section 2, is to find a polynomial that is 

a "good match" for a given function, at least near a particular x-value. But in order to do this, we have to 

agree on what it means to be a good match. Here is the standard that we use: 

 

Taylor Polynomial Criterion: At the center of an n
th
-degree Taylor polynomial, the values of the 

polynomial and its n derivatives should match the values of the function being modeled and its n 

derivatives. 

 

 In other words, if f is the function being modeled by a polynomial, P is the Taylor polynomial, and a 

is the center of the polynomial, we want ( ) ( )P a f a= , ( ) ( )P a f a′ ′= , ( ) ( )P a f a′′ ′′= , and so on all the 

way to ( ) ( )( ) ( )n n
P a f a=  where n is the degree of the polynomial used to model f. If we use the notation 

(0) ( )f x  for the zero
th
 derivative of f, that is for f itself, then the above criteria becomes easy to state. 

 

Taylor Polynomial Criterion (symbolic form): The n
th
-degree Taylor polynomial for f, centered at a, 

satisfies ( ) ( )( ) ( )k k
P a f a=  for all k from 0 to n. 

 

 Let me spend a little time convincing you that this is a good criterion to use. First, it states that we 

must have ( ) ( )P a f a= . This merely says that the polynomial matches the function exactly at its center. 

This was the first of our "big 3" observations about Taylor polynomials in the previous section. Second, 

we must have that ( ) ( )P a f a′ ′= , or that the polynomial should have the same slope as the function at the 

center. If we stop here, this means that the polynomial will be tangent to the function, and we already 

know that the tangent line provides a good estimate for the values of a function. But we also know that a 

tangent line is limited for modeling non-linear functions; eventually the functions bend away from the 

tangent. But what if we bend the tangent line as well so that the concavity of this "line" matched the 

concavity of the function? Wouldn't that lead to a better model? This is nothing more than requiring that 

( ) ( )P a f a′′ ′′= ; the two functions should have the same concavity at a. When we get to the third 

derivative, it is hard to give a direct graphical description of what it means for ( ) ( )P a f a′′′ ′′′= , but surely 

this requirement is not a bad thing. At the very least it says that P 's concavity is changing at the same rate 

as f 's, which ought to make P a good model for f. And so we go on, down the line of derivatives, 

requiring them all to match. 

 

Example 5 

Find the third-degree Maclaurin polynomial for ( ) x
f x e= . 

Solution 
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To do this, we want to build a third-degree polynomial (so we will need four pieces of information) 

centered at x = 0. We want the derivatives of the polynomial to match the derivatives of f, so we should 

compute those derivatives at the center. 

( ) (0) 1

( ) (0) 1

( ) (0) 1

( ) (0) 1

x

x

x

x

f x e f

f x e f

f x e f

f x e f

= → =

′ ′= → =

′′ ′′= → =

′′′ ′′′= → =

 

Therefore we want 

3

3

3

3

(0) 1

(0) 1

(0) 1

(0) 1.

P

P

P

P

=

′ =

′′ =

′′′ =

 

But now this is a problem exactly like all the examples from the first part of this section. If the 

coefficients of the polynomial are 0 1 2, , ,c c c  and 3c , then we know we want  

0

1

2

3

(0)

(0)

(0) 2!

(0) 3! ,

P c

P c

P c

P c

=

′ =

′′ = ⋅

′′′ = ⋅

 

or in other words 

0

1

2

3

(0)

(0)

(0)

2!

(0)
.

3!

P c

P c

P
c

P
c

=

′ =

′′
=

′′′
=

 

But we want P and all its derivatives to have value 1 at x = 0, so this means we want 0 1c = , 1 1c = , 
1

2 2!
c = , and 1

3 3!
c = . Our polynomial approximation is  

2 3

3 ( ) 1
2! 3!

x x
P x x= + + + . 

 We have answered the question, and I don't want to belabor the issue, but the tableau on the next 

page summarizes and condenses all the steps that led from the derivatives of f (first column) to the 

coefficients for use in the polynomial (last column). This setup is a bit of a shortcut, so make sure that 

you understand how we worked through this example and why the setup provided here is in fact a faithful 

representation of the work we have done. 
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Divide by
Plug in the appropriate

0 factorial 1
( ) (0) 1

0!

1
( ) (0) 1

1!

1
( ) (0) 1

2!

1
( ) (0) 1

3!

xx

x

x

x

f x e f

f x e f

f x e f

f x e f

=
= → = →

′ ′= → = →

′′ ′′= → = →

′′′ ′′′= → = →

 

 The function ( ) x
f x e=  and this third-degree Maclaurin polynomial are graphed in Figure 3.1. In 

addition, a table of values shows the numerical quality of the fit. ◊ 

 
Figure 3.1: ( )

x

f x e====  and 
3
( )P x  

 

x  -0.9 -0.6 -0.3 0 0.3 0.6 0.9 
2 3

3 2 6
( ) 1 x xP x x= + + +  0.3835 0.544 0.7405 1 1.3495 1.816 2.4265 

( ) x
f x e=  0.4066 0.5488 0.7408 1 1.3499 1.8221 2.4596 

 

 

 We can summarize the results of Example 5 in the following definition. 

 

Definition If ( )f x  is differentiable n times at x = a, then its n
th

-degree Taylor polynomial centered 

at a is given by 
( )

2( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0! 1! 2! !

n
n

n

f a f a f a f a
P x x a x a x a

n

′ ′′
= + − + − + + −�  or 

( )

0

( )
( ) ( )

!

kn
k

n

k

f a
P x x a

k=

= −∑ . If a = 0, then we may call the polynomial a Maclaurin 

polynomial. 

 

 And this answers the first of the questions that concluded Section 2. The definition above gives us a 

systematic method—a formula—for determining the coefficients of a Taylor polynomial. If we follow 

this formula, that the coefficient of the k
th
-degree term should be given by ( ) ( ) / !k

f a k , then we are 

guaranteed (except in particularly nasty situations to be discussed briefly in Section 10) to get a 

polynomial that is a good model for our function. 

 Furthermore, this definition allows us to look at Taylor polynomials much more generally than we 

did in Section 2. All the Taylor polynomials in that section were Maclaurin polynomials; we did not yet 
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know enough to stray from x = 0 for our center. But now we can find a Taylor polynomial centered 

anywhere! 

 

Example 6 

Find the third-degree Taylor polynomial centered at 2
3

x π=  for ( ) sinf x x= . 

Solution 

We do not always have to start from the definition to obtain a Taylor polynomial. All of the tricks 

mentioned in Section 2 (term-by-term differentiation or integration, substitution, algebraic manipulation, 

using geometric series) still work. However, when we change the center of our polynomial, as we are 

doing here, we often have to start from scratch. I will do so using the tableau from the end of Example 5. 

( )

( )

( )

( )

2
3

Divide by
Plug in the appropriate

factorial32
3 2

2 1
3 2

32
3 2

2 1
3 2

3
( ) sin

2

1
( ) cos

2

3
( ) sin

4

1
( ) cos

12

x
f x x f

f x x f

f x x f

f x x f

π
π

π

π

π

=

−

−

= → = →

−
′ ′= → = →

−
′′ ′′= − → = →

′′′ ′′′= − → = →

 

Reading off the coefficients we arrive at the polynomial. 
2 3

3

3 1 2 3 2 1 2
( )

2 2 3 4 3 12 3
P x x x x

π π π     
= − − − − + −     

     
 

 By now you should expect a graph, so here it is (Figure 3.2). As you can see, the graph is a good 

model for the sine function near 2
3

x π= , and the quality of the fit decreases as you move away from the 

center. I have not included a table for this one because this polynomial is not as useful for approximating 

values of the sine function. To use this formula, one needs decimal approximations for π and 3 , and the 

quality of those approximations would affect the quality of the polynomial approximator for the sine 

function. So while it may not be as immediately useful as the Maclaurin polynomial, it is still pretty cool 

that we can create this polynomial. ◊ 

 

 
Figure 3.2: ( ) sin( )f x x====  and 

3
( )P x  

 

Practice 5 

Find the fifth-degree Taylor polynomial for the cosine function centered at 3
2

x π= . Graph both functions 

in the same window. 
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 At this stage we have a surprisingly large library of "stock" Maclaurin polynomials, so it is a good 

time to collect them all in one place. Some of them were obtained by "cheating" in Section 2, so you 

should verify the results below using the definition of a Taylor polynomial. You won't like reading the 

next sentence. You should memorize the polynomials in this table. At the very least, you should 

memorize the first four Maclaurin polynomials. They come up quite a bit, and it is good to have a solid 

handle on them. (The table also indicates where each polynomial was first encountered.) 

 Before closing this section, I need to make a quick note on the distinction between the degree of a 

Taylor polynomial and the order of the Taylor polynomial. For regular polynomials, degree and order are 

synonyms. For example, 2( ) 3 7f x x x= + −  can be described as either a second-degree polynomial or a 

second-order polynomial. Furthermore, if I tell you a polynomial is sixth-order, it is typically understood 

that the 6
x  term has a non-zero coefficient—there really is such a term in the polynomial—while all 

terms with higher power have a coefficient of zero so that they vanish. For Taylor polynomials, we have 

to relax that assumption; an n
th
-order Taylor polynomial might have a zero coefficient for the n

x  term. 

This comes up when we have Taylor polynomials with missing terms, like in the sine and cosine 

Maclaurin polynomials. If you were asked to find the second-order Maclaurin polynomial for the sine 

function, you would find that there was not actually a second-degree term. Let us agree to make the 

following distinction. 

 The degree of a Taylor polynomial is the highest power in the polynomial. This is exactly in keeping 

with how you have described degrees of polynomials in previous math classes. 

 The order of a Taylor polynomial is the order of the highest derivative used to compute the 

polynomial. In many cases, the order will be the same as the degree, but if there are missing terms, the 

degree may be smaller than the order. 

 
2

1
2! !

n
x x x

e x
n

≈ + + + +�  §3, Example 5 

3 5 2 1

sin( ) ( 1)
3! 5! (2 1)!

n
nx x x

x x
n

+

≈ − + − + − ⋅
+

�  §2, Equation 1 

2 4 2

cos( ) 1 ( 1)
2! 4! (2 )!

n
nx x x

x
n

≈ − + − + − ⋅�  §2, Equation 2 

2 31
1

1

n
x x x x

x
≈ + + + + +

−
�  §2, Equation 3 

2 31
1 ( 1)

1

n n
x x x x

x
≈ − + − + + −

+
�  §2, Problem 2 

2 4 2

2

1
1 ( 1)

1

n n
x x x

x
≈ − + − + −

+
�  §2, Problem 4 

2 3

ln(1 )
2 3

n
x x x

x x
n

− ≈ − − − − −�  §2, Equation 4 

2 3

ln(1 ) ( 1)
2 3

n
nx x x

x x
n

+ ≈ − + − + − ⋅�  §2, Problem 3 

3 5 7 2 1

arctan( ) ( 1)
3 5 7 2 1

n
nx x x x

x x
n

+

≈ − + − + + − ⋅
+

�  §2, Problem 4 
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Answers to Practice Problems 
 

1. 23
2

( ) 8 ( 2) ( 2)f x x x= − − + −  

 

2. 2 33 1
2 6

( ) 0 4( 1) ( 1) ( 1)f x x x x= + − + − − −  

 

3. 2 3 48 101
2 6 24

( ) 3 0( 1) ( 1) ( 1) ( 1)f x x x x x= + + + + + + + ; the denominator in the final term is 4!. 

This function does have an extremum at x = -1. ( 1) 0f ′ − = , so there is a critical point at x = -1. 

Furthermore, ( 1) 1 0f ′′ − = − < , so by the second derivative test, f has a local maximum at x = -1. 

 

4. The first way to do this is as you would have in a previous course. We know the vertex, so we will use 

the "vertex form" of the equation of a parabola: 2( )y a x h k= − + , where ( ),h k  is the vertex of the 

parabola. Hence the equation is 2( 2) 3y a x= − + . To find the value of a, we plug in the coordinates of the 

given point for x and y and solve. 
27 (1 2) 3

7 3

4

a

a

a

= − +

= +

=

 

So the desired equation is 24( 2) 3y x= − + . 

 Another approach is more like what we did in this section. The function we want has the form 
2

0 1 2y c c x c x= + + , and 1 22y c c x′ = + . We know that when x is 1, y is 7, and that when x is 2, y is 3. We 

also know that when x = 2, y' is 0, because the parabola will have a horizontal tangent at its vertex. These 

pieces of information give us a system of equations. 

0 1 2

0 1 2

0 1 2

7

3

4

2

2

4

4

2

0

c c c

c c c

c cc

= + +

=

+

+ +

= +

 

I leave it to you to solve this system to obtain 0 19c = , 1 16c = −  and 2 4c = . Hence the desired equation is 
219 16 4y x x= − + . You can verify that this is equivalent to the answer obtained from the other method. 

 

5. I really like my tableau method, so that's what I'll use. 

( )

( )

( )

( )

( )

( )

3
2

3
2

3
2

3
2

(4) (4) 3
2

(5) (5) 3
2

0
( ) cos 0

0!

1
( ) sin 1

1!

0
( ) cos 0

2!

1
( ) sin 1

3!

0
( ) cos 0

4!

1
( ) sin 1

5!

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

π

π

π

π

π

π

= → = →

′ ′= − → = →

′′ ′′= − → = →

−
′′′ ′′′= → = − →

= → = →

= − → = →

 

Therefore we have ( ) ( ) ( )
3 5

3 3 31 1
5 2 3! 2 5! 2
( ) 1P x x x xπ π π= − − − + − . I leave it to you to graph it. 
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Section 3 Problems 
 

1. Find the Taylor polynomial of order n 

centered at a for each of the following 

functions. 

a. ( )f x x= , n = 3, a = 1 

b. ( ) x
f x e= , n = 4, a = e 

c. 2( ) 1f x x= − , n = 2, a = 0 

d. 3 2( ) 3 2 8f x x x x= + − + , n = 3,  a = 0 

2. Find the Taylor polynomial of order n 

centered at a for each of the following 

functions. 

a. ( ) ln( )f x x= , n = 4, a = 1 

b. 
2

( ) x
f x e= , n = 5, a = 0 

c. 3( )f x x= , n = 2, a = -1 

d. 2( ) 7 4f x x x= + − , n = 2, a = 1 

3. Find the Taylor polynomial of order n 

centered at a for each of the following 

functions. 

a. 
1

( )f x
x

= , n = 2, a = 4 

b. ( ) cos(2 )f x x= , n = 3, a = 0 

c. ( ) cos(2 )f x x= , n = 3, 
3

a
π

= −  

d. 
1

( )f x
x

= , n = 3, a = 5 

4. Simplify your answer to Problem 2d. What 

do you suppose is true about n
th
-degree 

Taylor polynomials for n
th
-degree 

polynomial functions? 

5. Compare your answer to Problem 2a to the 

Maclaurin polynomials for ( ) ln(1 )f x x= +  

and ( ) ln(1 )f x x= − . What do you notice? 

6. Find third-degree Taylor polynomials 

centered at a for each of the following 

functions. You may use your answers from 

previous questions to simplify the work. 

a. 2( ) 1f x x x= − , a = 0 

b. ( ) x
f x xe= , a = 0 

c. 
1

( )
1

f x
x

=
−

, a = 2 

d. ( ) ln( 4)f x x= − , a = 3 

7. Find third-degree Taylor polynomials 

centered at a for each of the following 

functions. You may use your answers from 

previous questions to simplify the work. 

a. 3( ) sin( )f x x x= , a = 0 

b. 
2

( )
1

x
f x

x
=

+
, a = 0 

c. 
2

( )
1

x
f x

x
=

+
, a = -2 

d. ( ) tan( )f x x= , a = 0 

8. Use a third-degree Taylor polynomial to 

approximate the value of 10 . To do this, 

you will need to (a) pick an appropriate 

function that can be evaluated to give 10 , 

(b) determine an appropriate center for the 

Taylor expansion of your function, (c) find 

the Taylor polynomial, and (d) evaluate the 

polynomial to give an estimate of 10 . 

Compare with your calculator's value. 

9. Repeat Problem 8, but this time obtain an 

estimate of 3 10 . 

10. A function f has the following properties: 

(0) 3f = , (0) 8f ′ = − , (0) 5f ′′ = , (0) 2f ′′′ = . 

Write the second- and third-order Maclaurin 

polynomials for f. Use them to approximate 

(0.3)f . Which is most likely a better 

estimate of the actual value of (0.3)f ? 

11. A function f has the following properties: 

( 4) 2f − = , ( 4) 0f ′ − = , ( 4) 1f ′′ − = , 

( 4) 6f ′′′ − = . Write the second- and third-

order Taylor polynomials centered at x = -4 

for f. Use them to approximate ( 4.2)f − . 

Which is most likely a better estimate of the 

actual value of ( 4.2)f − ? 
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12. A function f has the property that 

( )

2

3
(2)

n
n

f
n

=  for all non-negative integers n. 

Write the third-degree Taylor polynomial 

centered at x = 2 for f. 

13. A function f has the property that 
2

( ) 1
(0) ( 1)n n n

f
n

+
= − ⋅  for n ≥ 1, and 

(0) 6f = . Write the second-degree 

Maclaurin polynomial for f. 

14. You know only the following information 

about a particular function f : (3) 4f = , 

(3) 5f ′ = , (2) 8f ′ = , (2) 1f ′′ = − , and 

(2) 6f ′′′ = . What is the highest-order Taylor 

polynomial you can write for this function? 

15. The third-degree Taylor polynomial 

centered at x = -1 for a function f is given by 
2 3

3 ( ) 2 ( 1) ( 1) 12( 1)P x x x x= − + + + + + . 

Evaluate the following or indicate that there 

is insufficient information to find the value:  

a. ( 1)f −  c. (0)f ′′  

b. ( 1)f ′ −  d. ( 1)f ′′′ −  

16. The third-degree Taylor polynomial 

centered at x = 4 for a function f is given by 
3

3 ( ) 5 4( 4) ( 4)P x x x= − − + − . Evaluate the 

following or indicate that there is 

insufficient information to find the value:  

a. (4)f  c. (4)f ′′  

b. (4)f ′  d. (0)f ′′  

17. The function f has the properties that 

( 3) 8f − =  and ( 3) 1f ′ − = . The graph of f 

has an inflection point at 3x = − . Write the 

second-order Taylor polynomial centered at 

3x = −  for f. 

18. The graph of the function g has a local 

minimum at x = 0. Which of the following 

could be the second-order Maclaurin 

polynomial for g? 

a. 2

2 ( ) 5P x x x= + +  c. 2

2 ( ) 5P x x= +  

b. 2

2 ( ) 5P x x x= + −  d. 2

2 ( ) 5P x x= −  

19. Find the fourth-degree Taylor polynomials 

for ( )f x x=  at both 2x =  and 3x = − . 

Why is it not possible to find a Taylor 

polynomial for f at x = 0? 

20. Figure 3.3 shows the graph of the function f. 

Which of the following could be the second-

-order Maclaurin polynomial for f centered 

at 2x = ? 

a. 2

2 ( ) 2 ( 2) ( 2)P x x x= + − − −  

b. 2

2 ( ) ( 2) ( 2)P x x x= − − −  

c. 2

2 ( ) ( 2) ( 2)P x x x= − + −  

d. 2

2 ( ) 2 ( 2)P x x= − −  

 

Figure 3.3 

 

21. Let ( ) (1 )k
f x x= +  where k is a constant. 

Find the second-order Maclaurin polynomial 

for f. 

22. Use your answer to Problem 19 to find 

second-order Maclaurin polynomials for the 

following functions. 

a. 
3

1
( )

(1 )
f x

x
=

+
 

b. 25( ) (1 )f x x= +  

c. 
2

1
( )

1
f x

x
=

−
 

d. ( ) arcsin( )f x x=  This time find the 

third-order polynomial. (Hint: Use your 

answer to part c.) 

Problems 23-26 are True/False. Identify whether 

the statement is true or false and give reasons 

and/or counterexamples to support your answer. 
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23. The n
th
-degree Taylor polynomial for a 

function can be used to determine the values 

of the function and its first n derivatives at 

the center of the polynomial. 

24. The n
th
-degree Taylor polynomial for a 

function can be used to determine the values 

of the function and its first n derivatives for 

x-values other than the center . 

25. The coefficient of ( )k
x a−  in a Taylor 

polynomial centered at a is ( ) ( )k
f a . 

26. Taylor polynomials respect horizontal 

translations. For example, since 
3

6
sin xx x≈ − , it follows that 

3( 1)

6
sin( 1) ( 1)

x
x x

−
− ≈ − − . 

27. The hyperbolic sine is defined by 

sinh( )
2

x x
e e

x
−

−
= , and the hyperbolic 

cosine is defined by cosh( )
2

x x
e e

x
−

+
= . 

These two functions are useful in many 

applications, particularly in differential 

equations. 

a. Find sinh(0) and cosh(0). 

b. Find the derivatives of these two 

hyperbolic functions. 

c. Find the sixth-order Maclaurin 

polynomials for the two functions. How 

are these like and unlike the Maclaurin 

polynomials of the sine and cosine 

functions? 

28. The hyperbolic tangent is defined as 

sinh
tanh

cosh

x
x

x
= . Show that for small x 

1tanh tanx x
−

≈  by finding the third-degree 

Taylor polynomials for each of the two 

functions. 

29. If an object is in free fall, then the only force 

acting on the object is its own weight. By 

Newton's second law, this means that 

mv mg′ =  (where m is the mass of the object, 

v is its velocity, and g is a constant). 

a. Assuming that the object is released 

from rest (so that (0) 0v = ), show that 

the solution to this differential equation 

is 1( )v t gt= . 

b. One way to incorporate air resistance 

into the model is as follows: 
2

mv mg kv′ = − . Show that the function 

2 ( ) tanh
mg gk

v t t
k m

 
= ⋅ ⋅  

 
 satisfies 

this differential equation. 

c. Find the third-order Maclaurin 

polynomial for 2 ( )v t  and compare it to 

1( )v t . Interpret your findings in terms of 

the physical context. 

30. The so-called "small angle approximation" 

is the claim that sinθ θ≈  for small values 

of θ. Justify this approximation using the 

Maclaurin polynomial for the sine function.
∗
 

31. Classical mechanics says that the kinetic 

energy of a moving object is given by 
21

2
K mv= , where m is the mass of the 

object and v is its velocity. However, 

Einstein's Theory of Relativity says that 

kinetic energy is given by the more 

complicated formula 

 2

2

1
1

1
K mc

γ

 
 = −
 − 

 (1) 

where c is the speed of light and γ, the 

"speed parameter" of the object, is given by 

v/c. 

a. Find a second-order Maclaurin 

polynomial for K as a function of γ. 

b. Use your polynomial approximation 

from part (a) to explain why, for speeds 

much smaller than c, the relativistic 

                                                 
∗
 The small angle approximation is used often in 

physics, for example to show that the period of 

oscillation of a simple pendulum is independent of 

the mass of the pendulum. For a simple pendulum 

that has been displaced by an angle θ from its 

equilibrium position, the magnitude of the restoring 

force is sinF mg mgθ θ= ≈ . The remaining details 

can be found in most physics texts as well as on the 

internet. 
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kinetic energy  reduces to approximately 

that predicted by the classical model. 

32. Figure 3.4 shows an electric dipole created 

by two oppositely charged particles. 

("Dipole" simply means "two poles," in this 

case corresponding to the two charged 

particles.) The particles are separated by a 

distance of 2d, and their charges are of the 

same magnitude (q) but opposite signs. 

Point P is located r units away from the 

midpoint of the dipole, as indicated. It can 

be shown that at point P the  magnitude of 

the electric field caused by the dipole is 

given by  

 
2 2

1 1

( ) ( )
E k

r d r d

 
= − 

− + 
 (2) 

 or, if you prefer, by the equivalent 

 
( ) ( )

2 22

1 1

1 1d d
r r

k
E

r

 
 = −
 − + 

 (3) 

where, in both cases, k is a constant that 

depends on the units chosen. 

a. Replace both fractions in Equation (3) 

with first-order Taylor approximations, 

using d

r
 as the variable. 

b. Use your answer to part (a) to show that 

the magnitude of the electric field at a 

distance of r units from the center of the 

dipole is proportional to 31 / r . Thus 

electric fields cause by dipoles follow an 

inverse cube law. (This is in contrast to 

electric fields caused by a single point 

charge; those follow an inverse square 

law.) 

2d

r

+q

-q

P

 

Figure 3.4: An electric dipole 

33. The Doppler Effect is the reason why an 

ambulance or police siren appears to change 

pitch when it passes you on the road. 

Though the siren gives off sound at a 

particular frequency, the relative motion of 

you and the siren affect how you perceive 

the sound. The Doppler Effect is described 

quantitatively by the equation 

 
343

343

D
obs act

S

v
f f

v

+
= ⋅

−
 (4) 

where 
obs

f  is the observed or perceived 

frequency of the siren, 
act

f  is the actual 

frequency of the siren, 
D

v  is the velocity of 

the detector (you), 
S

v  is the velocity of the 

source (or siren), and 343 is the speed of 

sound in meters per second. Equation (4) 

assumes that the detector and the source are 

approaching one another. If they are moving 

away from one another, the signs of 
D

v  and 

S
v  are both flipped. 

 If both the detector and the source are 

moving at speeds much less than 343 meters 

per second, which is likely, Equation (4) can 

be simplified to 

 1
343

S D

obs act

v v
f f

+ 
≈ ⋅ + 

 
 (5) 

as you will show in this problem. 

a. Rewrite Equation (4) as 

 ( ) ( )343obs act D Sf f v g v= ⋅ +  (6) 
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 where ( )
1

343
S

S

g v
v

=
−

. Find a first-

degree Taylor polynomial for g. 

b. In Equation (6), replace ( )Sg v  with 

your answer from part (a). 

c. Use your answer from part (b) to obtain 

Equation (5) as a first-order Taylor 

polynomial for 
obs

f . (Note that any 

terms of the form 
D S

k v v⋅  are considered 

second-order because they are the 

product of two first-order terms.) 
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Section 4 – Lagrange Remainder 
 

Section 2 closed with a few big questions about Taylor polynomials. Section 3 answered the first of these 

questions; it showed us how to compute the coefficients for a Taylor polynomial systematically. In this 

section we turn to the second question. How do we determine the quality of our polynomial 

approximations? 

 There is one trivial answer to this question: Get out a calculator and punch stuff in. But this misses 

some of the bigger ideas. For one thing, one has to wonder how the calculator is coming up with its 

decimal approximations to begin with. For another, we sometimes do not have an explicit expression for 

the function we are modeling. This will come up in particular in Section 10, but we will see some 

examples in the problems in this section. (There were a few in the last section too.) Even in these cases, 

we may be able to estimate how accurate a Taylor polynomial's approximation is. For these reasons, our 

approach to analyzing error will be based on the assumption that our calculators are mainly useful for 

arithmetic. I know this seems silly, but play along and you will learn something along the way. 

 

 

Taylor's Theorem 
 

First we need to develop a little bit more notation. We already have ( )
n

P x ; it is the n
th
-order Taylor 

polynomial for a specified function (with a specified center as well). We will also use ( )
n

R x . Here R 

stands for remainder. The remainder term accounts for the disagreement between the actual values of 

( )f x  and the approximated values ( )
n

P x ; it is what remains of ( )f x  after you have computed ( )
n

P x . 

 Note two things about ( )
n

R x . First, it depends on n. As we increase n (i.e., add more terms to the 

polynomial), we expect the remainder to decrease in size. Second, ( )
n

R x  depends on x. As we move 

away from the center of the polynomial, we expect that the size of ( )
n

R x  will usually increase. 

 In short, for any x-value in the domain of f, we have ( ) ( ) ( )
n n

f x P x R x= + . All this says is that the 

actual value of f at some x-value is equal to our polynomial approximation at x plus some remainder. 

 We will almost never know the function ( )
n

R x explicitly. Coming up with such a function is just too 

tall an order. However, that does not mean we cannot know anything about it. One fundamental fact about 

( )nR x  is given by the following theorem. 

 

Theorem 4.1 – Taylor's Theorem with Lagrange Remainder 
If f is differentiable n + 1 times on some interval containing the center a, and if x is some number in that 

interval, then 

 ( ) ( ) ( )
n n

f x P x R x= + . (1) 

 

Moreover, there is a number z between a and x such that 

 
( 1)

1( )
( ) ( )

( 1)!

n
n

n

f z
R x x a

n

+

+
= −

+
. (2) 

That is, there is some z between a and x such that 

 
( ) ( 1)

1

0

( ) ( )
( ) ( ) ( )

! ( 1)!

k nn
k n

k

f a f z
f x x a x a

k n

+

+

=

= − + −
+

∑ .  (3). 

 

 There are many expressions that give the remainder term ( )nR x . The form in Equation (2) is called 

the Lagrange form of the remainder. We will see another form in Section 5. 
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 One thing that is important to realize about Theorem 4.1 is that it is an existence theorem. It tells us 

that there must be some number z with the property expressed in Equation (2), but it does not tell us how 

to find that number. In the vast majority of cases, in fact, we will be completely unable to find the magic z. 

In other words, Theorem 4.1 is all but useless for computation. This is a bit of a let-down since working 

with Taylor polynomials is all about computation. The real purpose to which we will direct Theorem 4.1 

is to eventually convert it to a practical way of estimating the error involved in a Taylor polynomial. 

 Theorem 4.1 is a hard theorem, both to prove and to understand. At the end of this section are some 

of my thoughts as to how we might make meaning of the mysterious z in the Lagrange remainder, but for 

now we proceed to its most useful consequence. 

 

 

Lagrange Error Bound 
 

Because of the difficulties in finding the number z in Theorem 4.1, the best we can hope for is an estimate 

on the remainder term. This may seem like settling, but it actually makes some sense. We use Taylor 

polynomials to approximate the values of functions that we cannot evaluate directly. We are already 

settling for an approximation. If we could find the exact error in our approximation, than we would be 

able to determine the exact value of the function simply by adding it to the approximation. If we were in a 

situation where we could find the exact value of the function, then why were we starting off with an 

approximation at all?! 

 Our first order of business is to convert the existence-based Lagrange remainder to something we can 

use. This is accomplished by the following theorem. 

 

Theorem 4.2 – Lagrange Error Bound
∗∗∗∗ 

Suppose x > a. If ( 1) ( )n
f x

+  is bounded on the interval [ , ]a x  (i.e., if there is a positive number M such that 

( 1) ( )n
M f t M

+
− ≤ ≤  for all t in [ , ]a x ), then 

1
( )

( 1)!

n

n

M
R x x a

n

+
≤ −

+
. 

If x < a, then the interval in question is simply to be replaced with [ , ]x a . No other change is required. 

 

Proof 

The proof for this theorem is both reasonably straightforward and quite instructive, so let's take a look. In 

the proof, we will assume that x > a to simplify the details, but the theorem holds just as well for x < a. 

 Since 
( 1) ( )n

M f t M
+

− ≤ ≤  

for all t in the interval (note that t is just a dummy variable), we can multiply through by 
1( )

( 1)!

n
x a

n

+
−

+
 to obtain 

 
( 1)

1 1 1( )
( ) ( ) ( )

( 1)! ( 1)! ( 1)!

n
n n nM f t M

x a x a x a
n n n

+

+ + +−
⋅ − ≤ ⋅ − ≤ ⋅ −

+ + +
. (4) 

The manipulation to obtain Inequality (4) is justified since 
1( )

( 1)!
0

n
x a

n

+
−

+
> . Since Inequality (4) holds for all t 

in the interval, it holds in particular for the value z guaranteed by Theorem 4.1. (This is often how 

existence theorems like 4.1 work in mathematics. They are used to prove other theorems.) Therefore we 

have 

                                                 
∗
 The term "Lagrange Error Bound" is in common use, but is actually a bit misleading in my opinion. The name 

comes from the fact that the expression in the theorem follows quite naturally from the Lagrange form of the 

remainder term. However, this error bound can also be derived from other forms of the remainder and even from 

analyses that assume no explicit form for the remainder, as you will see in Problem 21. 
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( 1)
1 1 1( )

( ) ( ) ( )
( 1)! ( 1)! ( 1)!

n
n n nM f z M

x a x a x a
n n n

+

+ + +−
⋅ − ≤ ⋅ − ≤ ⋅ −

+ + +
 

or 

1 1( ) ( ) ( )
( 1)! ( 1)!

n n

n

M M
x a R x x a

n n

+ +−
⋅ − ≤ ≤ ⋅ −

+ +
. 

Another way to write this compound inequality is to state that 1( ) ( )
( 1)!

n

n

M
R x x a

n

+
≤ ⋅ −

+
. However, the 

only part of the right side that can possibly be negative is the quantity ( )x a− . (Even this is not negative 

under the assumptions of our proof, but if we were to go through the details for a x> , then we would 

need to worry about the sign.) We pull all the other positive stuff out of the absolute value bars and we are 

left with 

 
1

( )
( 1)!

n

n

M
R x x a

n

+
≤ −

+
 (5) 

as desired. ◊ 

 

 A more conceptual approach to the Lagrange error bound is this. Since we know that ( 1) ( )n
f z

+  is no 

more than M in absolute value, we replace it with M, sacrificing equality for inequality. Then we have to 

throw in some absolute value bars to avoid getting caught up in pernicious signs. (We wouldn't want to 

accidentally say that a negative number is bigger than a positive number, for example.) In this context, 

absolute value bars around ( )
n

R x  are actually kind of handy. ( )nR x  gives the absolute error as opposed 

to the signed error between ( )f x  and ( )
n

P x . 

 The Lagrange error bound frees us from the need to find z, but it replaces z with M. Many times, M is 

no easier to find than z. The difficulty in using the Lagrange error bound is to find a reasonable upper 

bound—a cap—on the values of ( 1) ( )n
f t

+  on the interval in question. 

 

Example 1 

Use the third-order Maclaurin polynomial for ( ) sin( )f x x=  to approximate sin(0.5). Estimate the error 

involved in this approximation. 

Solution 

As we know for this function, 
3

3 6
( ) xP x x= − . Therefore 

3(0.5) 23
6 48

sin(0.5) 0.5≈ − =  or 0.47916666…. 

(Remember the small angle approximation from Section 3, Problem 30? This is a good example). To 

estimate the error, we use the Lagrange error bound. 

3

3 (0.5) (0.5 0)
(3 1)! 192

M M
R ≤ − =

+
 

But what do we use for M? Recall that M is a bound for the ( 1)n +
st
 derivative of f on the interval [ , ]a x . 

In this case, the fourth derivative of f is given by (4) ( ) sin( )f x x= . Thus M is a number such that 

sin( )M t M− ≤ ≤  for t-values between 0 and 0.5. In fact, we can choose any number M that is certain to 

satisfy this inequality. We know that the sine function is bounded by 1 for all t, so we can use 1 for M: 

3

1
(0.5)

192
R ≤ . The error in our approximation is no more than 1/192 or 0.0052083333…. 

 But don't take my word for it. The calculator concurs! Our approximation for sin(0.5) was about 

0.4792. The calculator puts the value at 0.4794. The difference between these two numbers is about 

0.0002 which is truly less than 1/192. ◊ 
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 As Example 1 shows, the tricky thing about using Lagrange error bound is finding a suitable value 

for M. In fact, we didn't use the "best" possible value of M in this example. Since 
6

0.5 π< , 

(4) 1
2

( ) sinf t t= <  for all t-values in the interval [0,0.5] . So we could have used 1/2 for M. This would 

have shown us that our approximation for sin(0.5) was in truth more accurate than we initially thought 

based on using M = 1. However, in this problem the actual error in our approximation would still have 

been an order of magnitude less than our estimated error. The point is that it often doesn't pay to spend a 

lot of time and effort trying to find the smallest M that you can. What we really need of M is just that it is 

truly an upper bound for the values of the st( 1)n +  derivative and that it is reasonably small—the 

"reasonable" part will depend on context. 

 

Practice 1 
Use the sixth-order Maclaurin polynomial for the cosine function to approximate cos(2). Use the 

Lagrange error bound to give bounds for the value of cos(2). In other words, fill in the blanks: 

____ cos(2) ____≤ ≤ . 

 

Example 2 

Use the third-degree Maclaurin polynomial for ( ) x
f x e=  to approximate e . About how much error is 

there in your approximation? What degree polynomial would you need to use to make sure the error is 

less than 0.001? 

Solution 

The third-degree Maclaurin polynomial for ( ) x
f x e=  is 

2 3

3 2! 3!
( ) 1 x xP x x= + + + , and 

1/2
e e= . We want to 

approximate ( )1
2

f . 

( ) ( )
2 3

1 1
32 2

1 (1/ 2) (1 / 2) 79
1

2 2! 3! 48
f P≈ = + + + =  or 1.645833333… 

For the error, we use the Lagrange error bound: ( ) ( )
4

1 1
3 2 2

0
4! 384

M M
R ≤ − = , where M is an upper bound 

for the values of the fourth derivative of ( ) x
f x e=  on the interval in question. (4) ( ) x

f x e= , so we need to 

find a cap for the values of t
e  for t in 1

2
0,   . We know that ( ) t

f t e=  is an increasing function, so it will 

take on its largest value at the right endpoint of the interval. Hence a choice for M might be 1/2
e . But this 

is the value we are trying to approximate, so that won't do. We need some reasonably small number for M 

that is bigger than 1/2
e . Well, 1/2

e  is the square root of e, so 1/2
e  is clearly less than e. In turn, e is less 

than 3. We can use 3 for M and call it a day. The error in our approximation is less than 3/384 = 1/128. 

 (We could do better for M if we really wanted to. Since e < 4, 4e < . So 1/2 2e < . Two would be 

a better value for M than 3. It tells us that our error is actually les than 1/192. This is a better answer, but 

it is also more work and requires a bit more cleverness. If what we care about is an order of magnitude for 

the error, as we're about to, then the extra work doesn't really pay.) 

 Our approximation for e  is not guaranteed to be within 0.001 of the actual value; we would need a 

higher-degree Maclaurin polynomial to get that level of accuracy. We can still figure out how high a 

degree is needed by looking at the Lagrange error bound. We want the error to be less than 0.001. That 

means we want 
1
2

( ) 0.001nR ≤ . 

But we know that  

( ) ( )
1

1 1
2 2 1

0
( 1)! 2 ( 1)!

n

n n

M M
R

n n

+

+
≤ − =

+ +
. 
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If we insist that this latter term be less than 0.001, we will certainly have 1
2

( ) 0.001nR ≤ , as desired. We 

will use M = 2 just to simplify the fraction a bit. (Otherwise I would probably have stuck with my initial 

M-value of 3.) Note that it is important in this example that all derivatives of the function ( ) x
f x e=  are 

the same. If they were not, the value of M might change with n. This would require a more careful 

problem-solving strategy. In any event, we must solve 

1
0.001

2 ( 1)!n
n

<
+

. 

The factorial function is not easily inverted, so your best bet is just to look at a table of values for the 

expression on the left-hand side. 

n  0 1 2 3 4 5 

1

2 ( 1)!n
n +

 1 0.25 0.04167 0.00521 0.00052 0.00004 

As we see, the expression is first less than 0.001 when n = 4, so we need a fourth-degree Maclaurin 

polynomial to estimate e  to within 0.001. (Note, sometimes this question is a trick question, asking for 

the number of terms needed instead of the degree of the polynomial. If that were the case here, then our 

answer would be 5, not 4. A fourth-degree polynomial with no missing terms has 5 terms.) ◊ 

 

Example 3 

For a particular function, it is known that (2) 8f = , (2) 5f ′ = , and (2) 3f ′′ ≤  for all x-values in the 

domain of f. Approximate (2.5)f  and estimate the amount of error in the approximation. 

Solution 

From the given information, 1( ) 8 5( 2)P x x= + − . 1(2.5) (2.5) 8 5(2.5 2) 10.5f P≈ = + − =  

The Lagrange error bound in this case is 2

1(2.5) (2.5 2)
2! 8

M M
R ≤ − = . The choice for M is made simple 

by the given information. We know that 3 is an upper bound for the second derivative, so we take 3 for M. 

This means that our error is no more than 3/8. ◊ 

 

 Example 3 may seem silly or contrived. But consider this situation. Suppose you know a car's 

position and velocity at a particular point in time. Suppose you also know the maximum acceleration of 

the car and you want to determine where it will be at some later time. This is exactly the situation that 

Example 5 would model (given some units, of course). You can imagine how predicting the location of 

the car with some estimate of error might be useful for, say, a GPS trying to find you after you have 

entered a tunnel and lost touch with the satellites. 

 

Practice 2 

Approximate the value of ln(1.5)  by using a third-order Taylor polynomial for ( ) ln( )f x x=  centered at 

1x = . Estimate the amount of error in this approximation. 

 

 

Thoughts on Taylor's Theorem with Lagrange Remainder 

 

Though working with Lagrange error bound is the most significant idea to take away from this section, I 

would like to revisit Taylor's Theorem with Lagrange remainder and try to convince you that it makes 

sense. As I have said, we generally cannot find z, but let's look at an example where we can. The example 

will have to be ridiculously simple (on a relative scale, of course); the purpose is not necessarily to 

provide a model for future problem solving, but to develop some understanding of what the Lagrange 

remainder is about. 
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Example 4 

Let 3( ) 4 1f x x x= − + + . 

a. Use the 0
th
-order Maclaurin polynomial for f to approximate (1)f . 

b. Find 0 (1)R .  

c. Find the number z guaranteed by Theorem 4.1. 

Solution 

a. For the moment, we will ignore the fact that we can compute (1)f  directly. Instead, we find 0 ( )P x  

which will simply be (0)f . (0) 1f = , so 0 ( ) 1P x = . Our 0
th
-order approximation of (1)f  is simply 

0 (1) 1P = . We estimate that (1) 1f ≈ . 

b. In reality (1) 4f = . We were off by 3. 0 0(1) (1) (1) 4 1 3R f P= − = − = . 

c. Finally, we are asked to find a number z such that 
(1)

1

0

( )
(1 0) (1)

1!

f z
R⋅ − = . (1) ( )f x , or ( )f x′  as it is 

more commonly known, is given by 2( ) 3 4f x x′ = − +  The equation 
(1)

0

( )
(1 0) (1)

1!

f z
R⋅ − =  becomes 

2 3
1 0

3 4z
−

− + = . 

2

2

2 1
3

1
3

3 4 3

3 1

z

z

z

z

− + =

− = −

=

=

 

We ignore the other solution to this quadratic because it is not between a (0) and x (1). ◊ 

 

 If the computations in part (c) of Example 4 seem familiar to you, they should; you've done them 

before. Finding z in this example was exactly the same as the Mean Value Theorem problems you have 

worked in the past. Take another look. We are trying to find a number z such that ( )f z′  is equal to some 

previously computed value. Moreover, that value is in fact 
(1) (0)

1 0

f f−

−
.This is identical to "Find the number 

guaranteed by the Mean Value Theorem" problems. This means that when n = 0, Taylor's theorem as 

presented in Theorem 4.1 is the Mean Value Theorem. In fact, more can be said. The Lagrange Form of 

the remainder can be interpreted as a way of generalizing the MVT to higher-order derivatives. This is a 

subtle point, so we will work through it slowly. 

 The Mean Value Thorem says that there exists a z between a and x such that 
( ) ( )

( )
f x f a

f z
x a

−
′ =

−
. 

Put another way, this says that 

 ( ) ( ) ( )( )f x f a f z x a′= + − . (6) 

Let us look at this in light of Example 4 where a = 0, x = 1, and 3( ) 4 1f x x x= − + + . Figure 4.1 shows a 

graph of f along with its 0
th
-order Maclaurin polynomial 0 ( )P x . Now clearly (1)f  is different from (0)f . 

The difference between them can be accounted for by a linear function. That is, there is a line connecting 

the points ( )0, (0)f  and ( )1, (1)f . (This is the dashed secant segment in Figure 4.1.) Of course, two 

points always determine a line. The significance of the MVT is to tell us something important about that 

line: its slope is a number obtained by ( )f x′  at some point in the interval ( , )a x . 
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 Now let's connect this to the Lagrange 

remainder. Since our Taylor polynomial is a 

constant function, it approximates the actual 

value of f(x), namely 4, with the value of f(a), 

namely 1. Of course, there is error in this 

approximation. What the Lagrange remainder 

tells us is that the error can be exactly accounted 

for by tacking on a linear term to the polynomial 

approximation. The only catch is that the 

coefficient of this linear term is not the first 

derivative of f at 0, as it would be if we were 

computing another term in the Taylor polynomial. 

This makes sense; if we included the first-order 

term of the Taylor polynomial, then we would 

still have only an approximation to (1)f .  

However, Theorem 4.1 tells us there is some  

point at which the first derivative of f gives the  

slope we need to match (1)f  exactly. And 

this point is the same as the one guaranteed by the Mean Value Theorem. 

 The slope of that blue segment in Figure 4.1 is exactly what we need in order to get from the point 

(0,1)  to the point (1,4) . The MVT and Theorem 4.1 are two different ways of telling us that ( )f x′  

actually takes on this value at some point in the interval (0,1) : at 1
3

x =  according to Example 1. 

 Let's try moving up to n = 1. Taylor's Theorem for n = 1 states that there is a number z between a and 

x such that 

1 1

2

( ) ( ) ( )

( )
( ) ( )( ) ( ) .

2!

f x P x R x

f z
f a f a x a x a

= +

′′
′= + − + −

 

This means that there is a quadratic term that accounts exactly for the difference between the exact value 

of ( )f x  and the linear polynomial approximation 1( )P x . Again, though, we do not compute the 

coefficient of this quadratic term by looking at ( )f a′′ ; that would just give us the quadratic Taylor 

approximation. Instead, we are told that there is some other point at which the value of f ′′  is exactly 

what we need to account for the error. 

 

Example 5 

Revisit Example 4, this time using a first-order Maclaurin polynomial to approximate (2)f . Find the 

value of z guaranteed by Theorem 4.1. 

Solution 

For 3( ) 4 1f x x x= − + + , the first-order Maclaurin polynomial is 1( ) 1 4P x x= + . 1(2) (2) 9f P≈ = . This is 

actually an even worse approximation than in Example 4 since the actual value for (2)f  is 1. (How can 

this be? How can a higher-order Taylor polynomial lead to a worse approximation?) We can now 

compute the value of the remainder: 1 1(2) (2) (2) 1 9 8R f P= − = − = − . By Taylor's Theorem with 

Lagrange remainder there exists a number z between 0 and 2 such that 2( )
(2 0) 8

2!

f z′′
− = − . Let's solve, 

noting that ( ) 6f x x′′ = − . 

Figure 4.1: 
3

( ) 4 1f x x x= − + += − + += − + += − + +  and 
0
( )P x  
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2

2
3

( )
2 8

2!

( ) 4

6 4

f z

f z

z

z

′′
⋅ = −

′′ = −

− = −

=

 

Figure 4.2 shows f along with its first-order polynomial and, dashed and in blue, the quadratic function 

whose second-order term was computed using ( )2
3

f ′′ . Notice that the blue curve lands right at (2,1) . ◊ 

 

 
Figure 4.2: 

3
( ) 4 1f x x x= − + += − + += − + += − + +  and 

1
( )P x  

 
 I want to stress that Examples 4 and 5 are only meant to provide some concreteness to the idea of 

Lagrange remainder. The actual computations involved are almost irrelevant since we may never be able 

to carry them out in practice. (Don't believe me? Try to find z in the case where the fourth-order 

Maclaurin polynomial for ( ) x
f x e=  is use to approximate 2.5

e .) Rather, the point was just to establish the 

reasonableness of the claim that for an n
th
-degree Taylor polynomial there is a number z that can be used 

to make a polynomial that exactly computes ( )f x  for any particular x-value: 

 
( ) ( 1)

1( ) ( )
( ) ( ) ( )( ) ( ) ( )

! ( 1)!

n n
n nf a f z

f x f a f a x a x a x a
n n

+

+′= + − + + − + −
+

� . (7) 

It is the right side of Equation (7) that, when graphed produces the dashed, blue curves that land 

unfailingly at the point ( ), ( )x f x . In this way, use of the number z accounts for the error of the Taylor 

polynomial: 
( 1)

1( )
( ) ( ) ( )

( 1)!

n
n

n

f z
x a f x P x

n

+

+
− = −

+
. 

 

 

Summary 
 

Taylor's Theorem (Theorem 4.1) is a pretty remarkable theorem. It tells us that polynomials can be used 

to approximate all kinds of functions, so long as the functions are differentiable. It does even more; in the 

form of Equation (3) it tells us how to construct the polynomials by giving instructions for how to 

compute the coefficients. Beyond that, the theorem even gives us a remainder term, a way to estimate the 

error in our approximations, which leads to the Lagrange error bound as described in this section. In this 
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way, Taylor's Theorem answers the first two of the big questions that closed Section 2. And it's not done 

there. Later on, we will be able to use the remainder term to show that a Taylor series converges to the 

function it is supposed to model, but that's still quite a ways down the road (Section 10). 

 For the most part, this concludes our discussion of Taylor polynomials. The rest of the chapter will 

pick up where Section 1 left off, looking at infinite series. (We will revisit Taylor polynomials and 

estimating error in Section 8 when we will learn a simpler method for doing so in special cases). 

Examining infinite series will ultimately allow us to answer the remaining two big questions from the end 

of Section 2, both of which involve extending our Taylor polynomials so that they go on forever. 

Answering these questions requires quite a few supporting ideas, so it will be a long journey. Hang in 

there. 

 

Answers to Practice Problems 
 

1. As we know, the sixth-degree Maclaurin polynomial for cos(x) is given by 
2 4 6

6 ( ) 1
2! 4! 6!

x x x
P x = − + − , so 

2 4 62 2 2 19
cos(2) 1

2! 4! 6! 45

−
≈ − + − = , or -0.4222…. Now for the error. 7

6

8
(2) (2 0)

7! 315

M
R M≤ − = . M is an 

upper bound for the largest value of the seventh derivative of ( ) cos( )f x x= ; (7) ( ) sin( )f x x= , and of 

course sin(x) is bounded by 1. So we use 1 for M. Our error is no more than 8/315, or about 0.025396. 

This means the actual value of the cos(2) must be between 0.42 0.0254− −  and 0.42 0.0254− + . Cranking 

through the arithmetic, we find that 0.4476 cos(2) 0.3968− ≤ ≤ − . The calculator's value for cos(2) is 

0.4161− , which is indeed within the range we determined. 

 

2. First we need the third-order Taylor polynomial for ( )f x , and I don't believe we have that yet. 

1

2 1
2

3 1
3

ln 0 0 / 0! 0

1 1 /1! 1

1 1/ 2!

2 2 2 / 3!

x

x

x

x

−

− −

−

→ → =

→ → =

− → − → − =

→ → =

 

Therefore 2 31 1
2 3

ln( ) ( 1) ( 1) ( 1)x x x x≈ − − − + − . (Don't forget to incorporate the center into the Taylor 

polynomial. After not dividing by the appropriate factorial to determine the coefficients, not including the 

" a− " in ( )x a−  is the second most common mistake in building Taylor polynomials.) Plugging in 1.5 for 

x gives 
2 31 1

2 3
ln(1.5) (1.5 1) (1.5 1) (1.5 1) 5 /12≈ − − − + − =  or 0.416666…. 

4

3 (1.5) (1.5 1)
4! 384

M M
R ≤ − = , where M is a bound for the fourth derivative of the natural logarithm 

function for t values in the interval [1,1.5] . The fourth derivative is 
4

4 4

6
ln( )

d
t

dt t

−
= . This function is 

negative and increasing for t > 0. Therefore its largest values in magnitude (which is to say, its smallest 

values) are when t is smallest, in this case when t = 1. Therefore, an appropriate value to use for M is 

4

6

1
6− = . (In this case, we are actually using the best possible value for M. That's exciting!) We conclude 

that 3

6 1
(1.5)

384 64
R ≤ =  or 0.015625. We can infer that the actual value of ln(1.5) is between 

5 1

12 64
−  

and 
5 1

12 64
+ . That is, we must have 0.40104 ln1.5 0.43229≤ ≤ . Your calculator will confirm that this is 

indeed the case. 
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Example 5, parenthetical question. While we were using a higher-order Taylor polynomial, we were 

also trying to approximate the function at an x-value farther away from the center. Between these two 

competing factors (increasing the number of terms to give greater accuracy vs. moving away from the 

center to give lower accuracy), in this case the distance from the center won. 
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Section 4 Problems 
 

1. Use the fourth-order Maclaurin polynomial 

for ( ) x
f x e=  to approximate e. Estimate the 

error in your approximation using the 

Lagrange error bound. 

2. What degree Maclaurin polynomial is 

required to approximate cos(1) with error 

less than 0.0001? 

3. How many terms of the Maclaurin 

polynomial for ( ) sinf x x=  are required to 

approximate sin(3) with error less than 

0.001? What if you use a Taylor polynomial 

centered at x = π instead? 

4. Using the fifth-order Maclaurin polynomial 

for ( ) ln(1 )f x x= +  to approximate ln(1.2) . 

Estimate the error in your approximation. 

5. Use a fifth-degree Maclaurin polynomial to 

put bounds on the value of 2
e . That is, fill in 

the blanks: 2__ __e≤ ≤ . 

6. Use the second-degree Maclaurin 

polynomial for ( ) 1f x x= +  to 

approximate 1.4 . Give bounds for your 

answer. 

7. For what x-values does the approximation 
3

6
sin xx x≈ −  give values that are accurate to 

3 decimal places (i.e., with error less than 

0.0005)? 

8. For what x-values does the approximation 
2 4

2 24
cos 1 x xx ≈ − +  give values that are 

accurate to 4 decimal places? 

9. In Problems 8 and 9 of Section 3, you found 

approximations for 10  and 3 10 . Estimate 

the error in these approximations. 

10. Suppose that (1) 8f = , (1) 4f ′ = , 

(1) 2f ′′ = − , and ( ) 10f x′′′ ≤  for all x in the 

domain of f. 

a. Approximate (1.3)f . 

b. Estimate the error in your answer to part 

(a). 

11. Suppose that (0) 2f = , (0) 3f ′ = − , 

(0) 4f ′′ = , and ( ) 2f x′′′ ≤  for x in the 

interval [ 2,2]− . 

a. Approximate ( 1)f − . 

b. Prove that ( 1) 8.75f − ≠ . 

12. Suppose that (2) 0g = , (2) 2g′ = , (2) 8g′′ =  

and ( ) 5g x′′′ ≤  for x in the interval [1,3] . 

a. Approximate (1.8)g . 

b. Prove that (1.8)g  is negative. 

13. Suppose that ( 3) 2h − = , ( 3) 5h′ − = , and 

( ) 1h x′′ ≤  for all x in the domain of h. Give 

bounds for the value of ( 2.5)h − . That is, fill 

in the blanks: __ ( 2.5) __h≤ − ≤ . 

14. Figure 4.3 shows the graph of (6) ( )f x  for 

some function f. 

a. If a fifth-degree Maclaurin polynomial 

is used to approximate (1.3)f , what is 

the maximum possible error in the 

approximation? 

b. If a fifth-degree Maclaurin polynomial 

is used to approximate (5)f , what is the 

maximum possible error in the 

approximation? 

c. If a fifth-degree Taylor polynomial 

centered at x = 3 is used to approximate 

(5)f , what is the maximum possible 

error in the approximation? 

 

Figure 4.3: Graph of 
(6)

( )f x  
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15. Let 
2

1
( )

1
f x

x
=

+
. 

a. By carrying out the division ( )21 1 x÷ + , 

show that for this function 
2 2

2
( )

1

n

n

x
R x

x

+

=
+

. 

b. Conclude that 
2 2

2 4 2 1

2 2

1
1 ( 1) ( 1)

1 1

n
n n n x

x x x
x x

+

+
= − + − + − + − ⋅

+ +
� . 

16. In this problem you will explore one way to 

approximate the value of π and also an 

alternative approach to dealing with error 

bounds. 

a. Using the arctangent polynomial from 

Section 2, explain why 

 ( )1 1 1 1
3 5 7 2 1

4 1 ( 1)n

n
π

+
≈ ⋅ − + − + + − ⋅� . (1) 

b. Approximate π by using the first 5 terms 

of Equation (1). Qualitatively, how good 

is this approximation? 

c. Use the equation from Problem 15b to 

explain why 
2 2

2

0

( )
1

x n

n

t
R x dt

t

+

=
+∫

 for the 

arctangent function. 

d. Based on part (c), explain why 

2 2

0

( )

x

n

nR x t dt
+

≤ ∫ . 

e. Carry out the integration in part (d) to 

obtain an explicit bound for ( )nR x . 

f. Using your answer to part (e), determine 

the value of n that is required in 

Equation (1) to approximate π with error 

less than 0.01. 

17. Show that the error in computing x
e  for any 

x-value is no more than 
13

( 1)!

n n
x

n

+

+
. Explain 

why this means that we can compute any 

exponential value to arbitrary precision by 

using a high-enough degree Maclaurin 

polynomial. 

18. Use the Lagrange remainder to prove that all 

Maclaurin polynomials for ( ) x
f x e=  will 

underestimate the actual value of x
e  for 

0x > . 

19. Let ( ) cos( )f x x= . 

a. What degree Maclaurin polynomial is 

required to approximate (25)f  with 

error less than 10
-3

? How many terms 

are needed in this polynomial? 

b. We can reduce the answer to part (a) by 

exploiting the periodicity of the cosine 

function. Find a number t between –π 

and π such that ( ) (25)f t f= . What 

degree Maclaurin polynomial is required 

to approximate ( )f t  with error less than 

10
-3

? 

c. Using the idea from part (b), what 

degree Maclaurin polynomial is required 

to approximate sin(100)  with error less 

than 10
-6

? 

d. Explain why any sine or cosine value 

can be approximated with error less than 

10
-16

 by using a Maclaurin polynomial 

of order 28. (By slightly more involved 

tricks, you can reduce the required 

degree even further, but this is good 

enough for us.) 

20. It is a widely-held belief among calculus 

teachers that graphing calculators use Taylor 

polynomials to compute the decimal 

approximations you seen on screen. It turns 

out that this is not true, and this problem will 

provide some evidence for why the 

calculator probably cannot operate in this 

way.
∗
 

a. Determine the degree of the polynomial 

needed to compute 0.001
e  with error less 

than 1010− . (Your calculator actually 

requires even greater accuracy than this, 

probably storing 13 to 16 decimal places 

in memory.) 

                                                 
∗
 I'm told that the actual algorithm used by your 

calculator to compute trigonometric, exponential, and 

logarithmic values is the CORDIC algorithm, which 

you can research online if you like. 
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b. Determine the degree of the polynomial 

needed to compute 14
e  with error less 

than 1010− . 

c. If you use the degree found in part (b) to 

compute the 0.001
e , roughly how much 

error will there be in the approximation?  

(To think about: What is the calculator to 

do? If it always uses a polynomial with the 

degree you found in (a), it will not compute 

e
14

 with the required accuracy. But if it 

always uses the polynomial with the degree 

you found in (b), it will waste a great deal of 

computational time in the process, 

computing a value with far greater accuracy 

than it can actually handle with only 13-16 

decimal places worth of memory storage. 

And remember also that your calculator is 

probably capable of accurately computing 

powers of e on a much larger scale. In fact, I 

chose the "small" number 14
e  for part (b) 

because my calculator could not help me 

answer part (b) for larger powers of e; I 

would hit overflow errors in trying to 

compute the exponential terms.
∗
) 

21. In this problem you will prove that e is 

irrational. The proof is by contradiction 

beginning with the assumption that e can be 

expressed as a ratio of positive integers, i.e., 
p

q
e = . We will assume that 3e < . (Later on 

in the chapter you will be able to prove this 

rigorously.) 

a. Pick n to be a positive integer greater 

than q and greater than 3. Use the n
th
-

degree Maclaurin polynomial for 

( ) x
f x e=  to explain why 

 
1 1 1

1 (1)
1! 2! !

n

p
R

q n
= + + + + +� . (2) 

b. Multiply both sides of (2) by n! to 

obtain  

                                                 
∗
 It is interesting that the problem was with the 

exponential pieces and not the factorials. Ultimately, 

factorials grow much faster than exponentials. In 

these computations, the factorial dominance didn't 

"kick in" soon enough to prevent my calculator from 

overflowing. 

 ( )1 1 1
1! 2! !

! ! 1 ! (1)nn

p
n n n R

q
= + + + + + ⋅� . (3) 

Explain why both the left side of (3) and 

the first term on the right side (the n! 

times all the stuff in parentheses) must 

both be integers. Explain why if we can 

prove that ! (1)
n

n R⋅  is not an integer, our 

proof will be complete. 

c. Show that 
3

(1)
( 1)!

nR
n

≤
+

. 

d. Explain how it follow from part (c) that 

3
! (1)

1
n

n R
n

⋅ ≤
+

. Further explain how 

this implies that ! (1)
n

n R⋅  is not an 

integer. This completes the proof. 

22. In this problem you will develop the 

Lagrange error bound without actually using 

the Lagrange form (or any other form, for 

that matter) of the remainder. We will 

assume, as always, that ( 1) ( )n
f t

+  exists and 

is bounded on the interval [ , ]a x . 

a. Show that ( 1) ( 1)( ) ( )n n

n
f t R t

+ +
=  for all t in 

[ , ]a x  by differentiating the equation 

( ) ( ) ( )
n n

f x P x R x= +  a total of n + 1 

times. 

b. Show that if ( 1) ( )n
f t

+  is bounded by 

some positive number M, it follows 

from part (a) that ( 1) ( )n

n
M R t M

+
− ≤ ≤ . 

c. Take the inequality from part (b) and 

integrate from a to x to show that 
( )( ) ( ) ( )n

n
M x a R x M x a− ⋅ − ≤ ≤ ⋅ − . 

(Hint: You will need to know the value 

of ( ) ( )n

n
R a . What is it and why?) 

d. Show that by repeated integration the 

inequality in part (c) can ultimately be 

expressed as  

1 1( ) ( ) ( )
( 1)! ( 1)!

n n

n

M M
x a R x x a

n n

+ +−
− ≤ ≤ −

+ +
. 

e. Conclude that ( )
( 1)!

n

n

M
R x x a

n
≤ −

+
, 

in agreement with Theorem 4.2. 
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Section 5 – Another Look at Taylor Polynomials 
(Optional) 
 

 

In Section 3, we showed how to build a Taylor polynomial by matching the derivatives of the polynomial 

to the derivatives of the function being modeled. Then in Section 4 we extended the MVT (a significant 

theoretical result of differential calculus) to the Lagrange form of the remainder term so that we could 

estimate the error in our polynomial approximations. 

 In this section we give an alternate development of Taylor polynomials. The difference will be that 

instead of looking at derivatives at a single point, we will look at integrals on an interval. One neat feature 

of this approach is that the remainder term arises naturally, almost unasked for. 

 For this entire section, we will be working on the interval bounded by a number a and a number x 

(i.e., either [ , ]a x  or [ , ]x a ). We will use t as a dummy variable for integration. Our trick will be to use a 

lot of integration by parts. 

 

 

Rebuilding the Taylor Polynomial 
 

We begin with 

 ( ) ( ) ( )

x

a

f x f a f t dt′= + ∫ . (1) 

Note that this is really just the Fundamental Theorem. If you don't recognize it as such, swing the ( )f a  

over to the other side. Then you have ( ) ( ) ( )

x

a

f x f a f t dt′− = ∫  which is definitely the Fundamental 

Theorem. The version of the Fundamental Theorem in Equation (1) is useful for thinking of definite 

integrals as accumulators of change, but that's not really relevant to the task at hand. 

 We will carry out the integration in Equation (1) via integration by parts according to the scheme 

( )

( ) .

u f t dv dt

du f t dt v t x

′= =

′′= = −
 

We've been a little crafty here. Normally you would say that if dv dt= , then v t= . But really it follows 

that v t C= + . Usually when we do integration by parts we leave the C+  for the end. If we want, though, 

we can incorporate it into the substitution scheme. Since our variable of integration is t, x is a constant 

with respect to the integration. Therefore, the x−  amounts to the same thing as a C+ . In a moment you 

will see why this is a good idea. 

 Carrying out the integration gives 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) .

x
x

a

a

x

a

f x f a f t t x t x f t dt

f a f x x x f a a x t x f t dt

′ ′′= + − − −

′ ′ ′′= + − − − − −

∫

∫

 

Cancelling and cleaning up some signs gives 

 ( ) ( ) ( )( ) ( ) ( )

x

a

f x f a f a x a x t f t dt′ ′′= + − + −∫ . (2) 

The first two terms in the right side of (2) are, of course, the first-order Taylor polynomial for ( )f x . 
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 Let's attack the integral in (2) with another round of integration by parts. The substitution scheme 

will be similar, though we won't need to incorporate a constant of integration explicitly this time. So we 

will let 

2

( ) ( )

( )
( ) .

2

u f t dv x t dt

x t
du f t dt v

′′= = −

− −
′′′= =

 

Remember that our variable of integration is t; this is why there's a negative sign in the expression for v. 

Carrying out the integration by parts, we have 

2 2( ) ( )
( ) ( ) ( )( ) ( ) ( ) .

2 2

x x

aa

x t x t
f x f a f a x a f t f t dt

− − − −
′ ′′ ′′′= + − + ⋅ − ⋅∫  

When we evaluate that middle term at x, it will vanish, as it did in the previous iteration. So let us press 

on and clean up the signs to obtain 

 
2 2( ) ( )

( ) ( ) ( )( ) ( ) ( ) .
2 2

x

a

x a x t
f x f a f a x a f a f t dt

− −
′ ′′ ′′′= + − + ⋅ + ⋅∫  (3) 

Notice that we have now created the second-order Taylor polynomial, pretty much out of nothing. 

 Let's do it one more time, just to make sure you see how this is working. We will apply integration 

by parts to the integral in (3) according to the scheme 
2

3
(4)

( )
( )

2

( )
( ) .

6

x t
u f t dv dt

x t
du f t dt v

−
′′′= =

− −
= =

 

This yields 

3 3
2 (4)( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
2 6 6

x x

aa

f a x t x t
f x f a f a x a x a f t f t dt

′′ − − − −
′ ′′′= + − + − + ⋅ − ⋅∫  

or 

 
3

2 3 (4)( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

2 6 6

x

a

f a f a x t
f x f a f a x a x a x a f t dt

′′ ′′′ −
′= + − + − + − + ∫ . (4) 

 One can show using mathematical induction that what we have observed so far applies to any 

positive integer n. That is, if f  is differentiable 1n +  times, then 

 
( )

2 ( 1)( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )

2! ! !

xn n
n n

a

f a f a x t
f x f a f a x a x a x a f t dt

n n

+′′ −
′= + − + − + + − + ⋅∫� . (5) 

The first 1n +  terms on the right side of Equation (5) are, of course, ( )
n

P x . We have recovered our 

Taylor polynomial from Section 3, and this time it seemed to build itself! As a by product, we have a 

remaining term in (5). This must be the remainder term, and so we have a new version of ( )
n

R x . 

 ( 1)( )
( ) ( )

!

x n
n

n

a

x t
R x f t dt

n

+−
= ⋅∫  (6) 

The form of the remainder term in Equation (6) is called, appropriately enough, the integral form of the 

remainder. (There are some technical considerations about the integral existing, but if we assume that 
( 1)n

f
+  is continuous, then we're safe.) 

 

 

 

 



Section 5 – Another Look at Taylor Polynomials 

 60 

Playing with the Integral Form of the Remainder 
 

The use of the integral form of the remainder is not necessarily in computing exact values of the integral. 

This was not ultimately our goal with the Lagrange form either. However, one interesting feature of the 

integral form is that it can give us the Lagrange error bound directly. 

 Let us suppose, as we did in Section 4, that ( 1) ( )n
f t

+  is bounded on [ , ]a x , i.e., we assume that there 

is a positive number M such that ( 1) ( )n
f t M

+
≤  for all t in the interval. This means that since 

( 1)( )
( ) ( )

!

x n
n

n

a

x t
R x f t dt

n

+−
= ⋅∫ , 

it follows that 

 
( )

( )
!

x n

n

a

x t
R x M dt

n

−
≤ ⋅∫  (7) 

Let's play with the right side of this inequality a bit. 

1

1

( ) ( )

! !

( )

( 1)!

( )

( 1)!

x xn n

a a

x
n

a

n

x t x t
M dt M dt

n n

x t
M

n

x a
M

n

+

+

− −
⋅ =

− −
= ⋅

+

−
= ⋅

+

∫ ∫

 

Combining this result with Inequality (7), we obtain our old friend the Lagrange error bound: 
1( )

( )
( 1)!

n

n

x a
R x M

n

+
−

≤ ⋅
+

. 

So we see that there is nothing particularly "Lagrangian" about the Lagrange error bound. 

 In fact, not only can we get the Lagrange error bound from the integral form of the remainder, we 

can obtain the explicit Lagrange remainder from the integral form as well. Doing so requires a theorem 

that is left out of many first-year calculus books. 

 

Theorem 5.1 – Generalized Mean Value Theorem for Integrals 

If f is continuous on [ , ]a b  and g is integrable and non-negative (or non-positive) on [ , ]a b , then there 

exists a number z in [ , ]a b  such that 

( ) ( ) ( ) ( )

b b

a a

f z g x dx f x g x dx⋅ =∫ ∫ . 

 

 The "regular" MVT for Integrals basically says that a continuous function will obtain its average 

value at some point. If you think of the function g in Theorem 5.1 as being some kind of weighting 

function, then this theorem says that a continuous function f obtains its "weighted average" at some point 

on the interval. The details are not too important for us. The point is to apply this to the integral form of 

the remainder. 

( 1) ( 1)( ) 1
( ) ( ) ( ) ( )

! !

x xn
n n n

n

a a

x t
R x f t dt x t f t dt

n n

+ +−
= ⋅ = −∫ ∫  

Let ( )n
x t−  take the role of ( )g x  and ( 1) ( )n

f t
+  to play the role of ( )f x . Then Theorem 5.1 tells us that 

there is a number z such that 
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( 1)

( 1) 1

( 1)
1

( )
( ) ( )

!

( ) ( )

! 1

( )
( ) .

( 1)!

xn
n

n

a

x
n n

a

n
n

f z
R x x t dt

n

f z x t

n n

f z
x a

n

+

+ +

+

+

= −

− −
= ⋅

+

= ⋅ −
+

∫

 

And poof! There's our Lagrange form of the remainder. And there are yet more forms of the remainder 

term. You can look them up online if you are interested. 

 I am still partial to the development of Taylor polynomials presented in Section 4. Matching the 

derivatives makes a lot of sense to me as a way to create a polynomial that will model a given function. 

But I also think it is truly fascinating how the integration by parts approach builds the Taylor polynomial 

automatically; we create it without any conscious desire or plan to do so. And yet it works so smoothly. 

To me, this is one of the things that makes mathematics cool. 
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Section 6 – Power Series and the Ratio Test 
 

 

From Taylor Polynomials to Taylor Series 
 

We are about to make a major shift in our focus. In this section we move from polynomials (with finitely 

many terms) to power series, polynomial-like functions that have infinitely many terms. In terms of 

modeling functions, this is the leap from Taylor polynomials, which are only approximate representations 

for functions, to Taylor series, a way of representing functions exactly. The Taylor series is more than an 

approximation for the function being modeled; it is the function… usually. There are some exceptions and 

caveats, but they are down the road a bit. 

 This is a big conceptual leap. If you are uncertain about it, you are right to be a little cautious. The 

infinite can be a strange thing. But let the picture convince you. 

 

 
Figure 6.1: Maclaurin polynomials for ( ) sin( )f x x====  

 

 Figure 6.1 shows Macluarin polynomials of various degrees (the indicated n-values) for the sine 

function. It does not show you anything new or surprising; it just collects several pictures into one place. 

The figure shows, as we have seen, that as we add more terms to the polynomial we get a better fit on a 

wider interval. In fact, we have seen the pattern that generates these polynomials: 
2 1

0

( ) ( 1)
(2 1)!

kn
k

k

x
f x

k

+

=

≈ − ⋅
+

∑ . 

Is it such a stretch to imagine that with infinitely many terms we could make the error go to zero for all x? 

Can we not imagine that  
2 1

0

( 1)
(2 1)!

n
n

n

x

n

+∞

=

− ⋅
+

∑  



Section 6 – Power Series and the Ratio Test 

 63 

would match the sine function exactly? The claim here is that while we know that ( )f x  is approximately 

given by 
3 5 2 1

3! 5! (2 1)!
( 1)

nnx x x

n
x

+

+
− + − + − ⋅� , perhaps it is given exactly by 

3 5 2 1

3! 5! (2 1)!
( 1)

nnx x x

n
x

+

+
− + − + − ⋅ +� � , 

with the extra " +� " at the end making all the difference. 

 As another example, take 
1

( )
1

g x
x

=
−

 (Figure 6.2). The polynomials are of the form 

2( ) 1 n

n
P x x x x= + + + +� . But earlier in the chapter we expanded this as a geometric series. We already 

know, in some sense, that 
0

( ) n

n

g x x
∞

=

=∑ . 

 

 

Figure 6.2: Maclaurin polynomials for 
1

( )
1

g x

x

====
−−−−

 

 

 The picture, though, is different from what we saw in 

Figure 6.1. When we graph a partial sum of the infinite 

geometric series 21 x x+ + +�  (i.e., a Taylor polynomial), 

we do not see the fit extend forever. For one thing, no matter 

how high we push the degree, no polynomial seems to be able 

to model the unbounded behavior in the graph of g near x = 1. 

The underlying issue here is of convergence. The common 

ratio of the geometric series 21 x x+ + +�   is x, so this series 

does not converge if 1x ≥ ; the series just doesn't make sense 

for such x. The high-order Taylor polynomials in Figure 6.2 

are trying to show us how the series breaks down outside the 

interval ( 1,1)− . We can't really graph the infinite series 

because there are infinitely many terms. If we could it would 

look like Figure 6.3. 

Figure 6.3: Graph of the series 
2

( ) 1g x x x= + + += + + += + + += + + +����  
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 As a final example, consider ( )h x x= , with Taylor polynomials centered at x = 4. Like with the 

earlier example of ( )f x , we can build polynomials, see the pattern in the coefficients, and extrapolate to 

an infinite series.
∗
 But like the example of ( )g x , the graphs of the partial sums (the Taylor polynomials) 

suggest a convergence issue (see Figure 6.4). It appears that the series converges from x = 0 to about x = 8 

because that is where the higher-order polynomials appear to fit the function well. However, this series 

does not happen to be geometric, so we can't really be sure as of yet. We do not yet have the tools to deal 

with convergence of non-geometric series. In order to establish the convergence of a series like the one 

representing the square root function, we need to talk about power series, and that topic will dominate 

most of the remainder of this chapter. 

 

 
Figure 6.4: Taylor polynomials for ( )h x x====  

 

 

Power Series 
 

We start right off with the definition. 

 

Definition A power series centered at x = a is an infinite series of the form 

 
0

( )n

n

n

c x a
∞

=

−∑  (1) 

 We also allow the initial value of the index to be a positive integer (instead of zero). 

 

                                                 
∗
 I'll let you work out the details for yourself if you like. This function can be represented by as 

1

3 1

1

(2 3)!!
2 ( 1) ( 4)

! 2

k n

n

n

n
x

n

∞

+

−

=

−
+ − −

⋅
∑ , where !! means the "double factorial." The double factorial is like the regular 

factorial, except that you skip every other factor. So 5!! 5 3 1= × × , 6!! 6 4 2= × × , and by definition 0!! = (-1)!! = 1. 
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 Thus a power series is an infinite series like those seen in Section 1, but it is also a function of x. 

Notice that if a = 0, the series takes on the relatively simple form 
0

n

n

n

c x
∞

=

∑ . The s
n

c  are just numbers. (The 

c stands for coefficient.) The coefficients can have a pattern which can depend on n, as in 

2 3 4 2

1

1( 3) 4( 3) 9( 3) 16( 3) ( 3)n

n

x x x x n x
∞

=

− + − + − + − = −∑�  

or  

2 3 4

0

1 1 2 6 24 ! n

n

x x x x n x
∞

=

+ + + + + =∑� . 

Or the coefficients can be random (or random-appearing), as in 
2 3 4 53 1 4 1 5 9x x x x x+ + + + + +� .

∗
 

There is one notational hole we have to plug up with our definition of a power series. If 

0

( ) ( )n

n

n

f x c x a
∞

=

= −∑ , then ( )f a  is technically undefined as it results in the operation 0
0
. But this is 

clearly not what we mean by the power series. The sigma notation is just a shorthand for writing 
2

0 1 2( ) ( ) ( )f x c c x a c x a= + − + − +� . In this form, it is clear that 0( )f a c= . Despite the notational glitch, 

we will understand that a power series evaluated at its center is always zero and never undefined. 

 The previous paragraph points out that every power series converges at its center. But for what other 

x-values does a given power series converge? As with any series, convergence is an issue with power 

series. In Section 1, a given series either converged or diverged. That was the whole story. Power series, 

however, are more complicated because they depend on x. A particular power series may converge for 

some values of x but not for others. The set of x-values for which the power series converges is called the 

interval of convergence. One nice feature about power series is that the sets of x-values for which they 

converge are fairly simple. They always converge on a (sometimes trivial) interval, and the center of the 

series is always right in the middle of that interval. The distance from the center of this interval to either 

endpoint is called the radius of convergence of the series, often denoted R. It turns out that there are only 

three possible cases that can come up. 

 

1. The "bad" case is where R = 0. A series with R = 0 converges only at its center. An example of 

such a series is 
0

! n

n

n x
∞

=

∑ . 

2. The "best" case is where R = ∞ . By this we mean that the radius of convergence is infinite; the 

series converges for all x-values. As we will show, this is the case for the series 
2 1

0

( 1)
(2 1)!

n
n

n

x

n

+∞

=

−
+

∑  

which represents the sine function. 

3. The other case is where R = L, some positive, finite number. In this case, the series converges for 

x a R− <  and diverges for x a R− > . In other words, the series converges for x-values within R 

units of the center of the series but diverges for x-values that are more than R units from the 

center. (An alternate symbolic expression of this idea is to say that the series converges if 

a R x a R− < < +  and diverges if either x a R< −  or x a R> + .) What happens if x a R− =  

depends on the particular series. It will take most of the rest of this chapter to answer the question 

of convergence at the endpoints of the interval. Both ( )g x  and ( )h x  from earlier in this section 

are examples of this last case. For ( )g x , we have a = 0 and R = 1; the series converges for all x 

                                                 
∗
 These coefficients aren't really random, but I've used a common trick for making random-seeming numbers. Can 

you tell what it is? 
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within one unit of x = 0 and diverges otherwise. We knew this from our work with geometric 

series. For ( )h x , the center is a = 4. It appears from the graphs of partial sums for the series that 

R = 4, meaning that the series converges for 0 8x< < . It is unclear at this point whether the series 

converges at x = 0 or at x = 8, so we cannot yet write the interval of convergence (it could be 

(0,8) , [0,8) , (0,8] , or [0,8] ). 

 

 To state one more time: All power series converge at their centers, even the "bad" ones. Also, just so 

we are clear about what we are discussing, note that you can have series involving xs that are not power 

series. The series (sin )n
x∑  and 1

n
x∑  are examples of series that are not power series. We do not call 

them power series because they are not like polynomials; they do not consist of positive integer powers 

for x. But even a series like ( )2 5
n

x −∑ , which is "polynomial-like," is not a power series because it 

cannot be written in the form presented in the definition. Series that are not power series can have much 

more complicated convergence properties; they need not fall into one of the three cases listed above, and 

indeed none of the examples in this paragraph does. 

 

Example 1 

The power series 
0

n

n

n

c x
∞

=

∑  converges for x = 3 and diverges for x = -5. For each of the following x-values, 

state whether the series converges, diverges, or if the convergence at that point cannot be determined: -6, 

4− , -3, -2, 0, 2, 4, 5, and 6. 

Solution 

First, observe that the center of this series is x = 0. Since the series converges for x = 3, which is 3 units 

away from the center, the radius of convergence must be at least 3. Since the series diverges at x = -5, 5 

units from the center, R can be no more than 5. This means the series converges for x-values that are less 

than 3 units from the center. 

 The series converges at x = -2, 0, and 2. (Of course, x = 0 was a freebie. Every series converges at its 

center.) 

 We can draw no conclusion about convergence at x = -4, -3, or 5. The radius of convergence is 

somewhere between 3 and 5, and this puts -4 squarely in the no-man's land; it might be within the radius 

of convergence from the center or it might be outside of it. We cannot tell without more information. As 

for x = -3 and x = 5, they could be exactly R units away from the center since we might have R = 3 or 

5R =  (or anything in between). At an x-value that is R units from the center, a series may converge or 

may diverge. We do not know which without more information. 

 The series diverges at 6x =  and 6x = −  since both these points are more than 5 units away from the 

center of the series. ◊ 
 

Practice 1 

The power series 
0

( 2)n

n

n

c x
∞

=

−∑  converges at x = 6 and diverges at x = 8. For each of the following x-

values, state whether the series converges, diverges, or if the convergence at that point cannot be 

determined: -8, -6, -2, -1, 0, 2, 5, 7, and 9. 

 

 We saw in Section 2 that term-by-term calculus operations produced new Taylor polynomials from 

old ones. This is true of power series as well. We can differentiate or integrate a power series, one term at 

a time. This is a very convenient way to create new power series or analyze existing ones. One fact that 

makes this kind of manipulation simple is that term-by-term operations do not change the radius of 

convergence of a series. That is, R is unchanged when you differentiate or integrate a power series. For 

example, we know that 2 1
1

1 ( )n

x
x x x

+
− + − + − + =� �  converges with R = 1. Integrating term by term 
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gives 
2 3 4

2 3 4
( 1) ln(1 )

nnx x x x

n
x x− + − + + − ⋅ + = +� �  which must also converge with R = 1. This latter 

series definitely converges for 1 1x− < < . Whether it converges at the endpoints is trickier. It turns out 

that when we integrate a series, endpoints that did not initially converge may converge in the new series. 

The opposite is true of differentiation; endpoints that did converge might be lost. There is no way to 

predict this; you will just have to check using the tools to be presented in Sections 7 and 8. 

 

Example 2 

Find the radius of convergence of the power series 
0

3
( )

2

n

n

x
f x

∞

=

− 
=  

 
∑  and 1

1

( ) ( 3)
2

n

n
n

n
g x x

∞
−

=

= −∑ . 

Solution 

The series defining ( )f x  is geometric with common ratio 
3

2

x
r

−
= . As we know, a geometric series 

converges if and only if 1r < , so we must have 
3

1
2

x −
<  if the series for ( )f x  is to converge. Then we 

have 
33

1 1 3 2
2 2

xx
x

−−
< ⇒ < ⇒ − <  which says that x-values must be within 2 units of x = 3. Hence, 

the radius of convergence is 2. If you are uncomfortable interpreting absolute value inequalities in terms 

of distance, now would be a good time to become more comfortable. In the meantime, though, 3 2x − <  

is the same as 2 3 2x− < − < . Equivalently, 1 5x< < . This interval is 4 units wide, so its radius must be 2. 

 The series defining ( )g x  is not geometric. Fortunately, if you write out some terms of both f and g, 

you will see that g is the derivative of f. (Remember: When in doubt, write out a few terms!) Since g is the 

derivative of f, its power series must have the same radius of convergence as f, namely 2. ◊ 

 

 

The Ratio Test 
 

In Example 2 we found the radius of convergence of a geometric power series by using the fact that r  

must be less than 1 for a geometric series to converge. If a series is not geometric, and we cannot easily 

relate it to one by differentiation or integration, we are out of luck. We need a new tool, and the best one 

in the shop is the ratio test. We'll state the test, explain it, and then give a few examples. 

 

Theorem 6.1 – The Ratio Test 

Let na∑  be a series in which 0
n

a >  for all n (or at least all n past some particular threshold value N). 

Form the ratio 1n

n

a

a

+  and evaluate its limit as n → ∞ . Provided this limit exists, there are three possible 

cases. 

 If 1lim 1n

n
n

a

a

+

→∞
> , then na∑  diverges. (As a bonus, we include 1lim n

n

a

a
n

+

→∞
= ∞  in this case.) 

 If 1lim 1n

n
n

a

a

+

→∞
< , then na∑  converges. 

 If 1lim 1n

n
n

a

a

+

→∞
= , then the ratio test is inconclusive. 

na∑  could either converge or diverge; another 

tool is needed to decide the series. 
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 The idea behind the ratio test is to see if, long term, the given series behaves like a geometric series. 

For a geometric series, 1n

n

a

a
+  is constant—the common ratio of the series—and only if 1 1n

n

a

a
+ <  do the terms 

shrink fast enough for the series to converge. In the ratio test, we no longer suppose that the ratio of 

successive terms is constant, but we are saying that if that ratio eventually gets—and stays—below 1, then 

the terms will decrease at a rate on par with a convergent geometric series. Recall that the terms of a 

convergent geometric series go to zero fast. If we can show via the ratio test that a given series has terms 

going to zero this quickly, then that will establish the convergence of the series. 

 

Example 3 
Use the ratio test to determine whether the following series converge. 

 a. 
0

1

!n n

∞

=

∑  b. 
1

3n

n n

∞

=

∑  c.  
1

1

2n n

∞

=

∑  

Solution 

a. 
0

1

!n n

∞

=

∑ : For this series 
1

!
n

a
n

= , so 1

1

( 1)!
na

n
+

=
+

. We must evaluate the limit 
1

( 1)!

1
!

lim
n

n
n

+

→∞
. 

1
( 1)!

1
!

! 1
lim lim lim 0

( 1)! 1

n

n n n
n

n

n n

+

→∞ →∞ →∞
= = =

+ +
 

 0 < 1, so this series converges. (Compute some partial sums. Can you guess to what value the series 

converges?) 

b. 
1

3n

n n

∞

=

∑ : For this series 
3n

n
a

n
=  and 

1

1

3

1

n

n
a

n

+

+
=

+
. We must evaluate 

1
13

31lim lim
3 ( 1) 3

n
n

n nn n

nn

n
n

+
+

→∞ →∞

⋅+ =
+ ⋅

. 

13
lim lim 3 3

( 1) 3 1

n

nn n

n n

n n

+

→∞ →∞

⋅  
= ⋅ = 

+ ⋅ + 
 

 3 > 1, so this series diverges. Quickly. In the long run, the terms are growing roughly as fast as a 

geometric series with common ratio 3. The terms are getting huge. In fact, we should never have 

used the ratio test on this series. It doesn't even pass the n
th
 term test ( lim 0n

n
a

→∞
≠ ). Convergence was 

never a possibility. 

c. 
1

1

2n n

∞

=

∑ : 
1

2
na

n
=  and 1

1

2 2
na

n
+

=
+

. Be careful with 1n
a

+
. When we plug in 1n +  in the place 

of n, we must distribute the 2, which is why we end up with 2 2n +  instead of 2 1n + . Not 

distributing the 2 is a common error that you should watch for. 

1
2 22 2

lim lim lim 1
1 2 22 2

2
n n n

n nn

nn
n

→∞ →∞ →∞

+
= = =

++
 

 Because the limit is equal to 1, the ratio test has failed us. We cannot determine whether this series 

converges or diverges without additional convergence tests. (Between you and me, it diverges.) ◊ 

 

 Example 3 shows some of the strengths and weaknesses of the ratio test. It works very well on series 

whose terms involve factorials and exponential factors because of the way these types of things cancel 

when put into the fraction 1 /
n n

a a
+

. When you see a factorial, you should almost always think ratio test. 

For power terms, like in the third series (which is essentially like 1/2
n

− ), the ratio test is typically 

inconclusive. 
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 The series in Example 3 were series of constants. There were no xs in those series. The point of the 

ratio test was to help with power series, so we turn our attention to them now. There is a snag, though. 

Consider the power series 
0

( 3)

2

n

n

x

n

∞

=

−
∑ . For this series 

( 3)

2

n

n

x
a

n

−
= , but this means that 

n
a  is not 

necessarily positive. This is bad because one of the hypotheses of the ratio test is that 0
n

a >  for all n. 

 It turns out that it is good enough (in fact, in some ways even better) to look at the absolute values of 

the terms in the series. Instead of applying the test to 
( 3)

2

n

n

x
a

n

−
= , we will apply it to 

( 3)

2

n

n

x
a

n

−
= . In 

Sections 8 and 9 we will talk in great detail about the difference between the convergence of 
na∑  and 

na∑ , but it would be a real shame to delay our study of power series until then. 

 

Example 4 

Determine the radius of convergence for the power series 
0

( 3)

2

n

n

x

n

∞

=

−
∑ . 

Solution 

As we will do with all non-geometric power series, we apply the ratio test to the absolute value of the 

terms: 
( 3)

2

n

n

x
a

n

−
= . 

1

1

1

( 3)

2( 1)
lim lim

( 3)

2

2 ( 3)
lim

(2 2) ( 3)

2
lim 3

2 2

3

n

n

nn n
n

n

nn

n

x

a n

a x

n

n x

n x

n
x

n

x

+

+

→∞ →∞

+

→∞

→∞

−

+
=

−

⋅ −
=

+ ⋅ −

 
= ⋅ − 

+ 

= −

 

According to the ratio test, in order for the series to converge, this limit must be less than 1. That is, we 

have convergence when 3 1x − < . From here, we can infer that the radius of convergence for this series 

is R = 1. ( 3 1 1 3 1 2 4x x x− < ⇒ − < − < ⇒ < < ) Furthermore, we know that the series will converge 

when x is in the interval (2,4)  and diverge when x > 4 or x < 2. If x = 2 or x = 4, we can conclude nothing 

at this point. ◊ 

 

Practice 2 

Determine the radius of convergence of the power series 
1 4

n

n
n

nx∞

=

∑ . 

 

 Please do take a moment to recognize that there are two different ways that we are using the ratio test 

in this section. In Example 3, we used the ratio test to determine the convergence of a series of constants. 

This is good practice, and we can learn a lot about how the ratio test works from such problems. But our 

ultimate objective was to use the ratio test for power series like in Example 4 and Practice 2. These are 

slightly different in flavor, and I wanted to call explicit attention to the difference so as to avoid confusion. 
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Answers to Practice Problems 

 

1. The center of this series is 2 and the radius of convergence is between 4 (6 is 4 units away from 2) and 

6 (8 is 6 units from 2). 

The series converges at x = -1, 0, 2 (the center), and 5. These points are within 4 units of 2. 

The series diverges at x = -8, -6 and 9. These points are more than 6 units away from 2. 

No conclusion can be drawn for x = -2 or 7. Seven is 5 units from the center, so it is in no-man's land. 

2x = −  is a potential endpoint (it is 4 units from the center), so we cannot tell if the series converges there 

or not. 

 

2. We begin by applying the ratio test to 
na∑ : 

1

1

1

1

1

( 1)

4
lim lim

4

( 1) 4
lim

4

1 1
lim

4

4

n

n

n

nn n
n

n

n n

n nn

n

n x

a

a nx

n x

n x

n
x

n

x

+

+

+

→∞ →∞

+

+
→∞

→∞

+

=

+ ⋅ ⋅
=

⋅ ⋅

+ 
= ⋅ ⋅ 

 

=

 

Now we need to have 
4

1
x

<  for convergence, or equivalently 4x < . The radius of convergence of this 

series is R = 4. 
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Section 6 Problems 

 

In Problems 1-12, use the ratio test to determine 

whether the series converges or diverges. If the 

ratio test is inconclusive, state that as well. 

1. 9 16 25 361 4
2 4 8 16 32 64

+ + + + + +�  

2. 3 51 2 4
4 16 64 256 1024

+ + + + +�  

3. 
0

2

3n
n

∞

=

∑  

4. 
2

1

1

n n

∞

=

∑  

5. 
0

!

(2 )!n

n

n

∞

=

∑  

6. 
2

0

( !)

(2 )!n

n

n

∞

=

∑  

7. 
3

1

1

n

n

n

∞

=

+
∑  

8. 
0

1

(2 1)!n n

∞

= +
∑  

9. 
1

4

5

n

n

n
∞

=

 
 
 

∑  

10. 
1

( 1)!

3n
n

n

n

∞

=

+
∑  

11. 
1

4

(2 1)!

n

n n

∞

= −
∑  

12. 
1 !

n

n

n

n

∞

=

∑  

In Problems 13-17, use any convergence / 

divergence tests you know to determine whether 

the given series converges. 

13. 3 52 4
6 7 8 9

+ + + +�  

14. 3 9 27 811
1 1 2 6 24

+ + + + +�  

15. 4 4
3 9

36 12 4− + − + +�  

16. 
1

1

n n

∞

=

∑  

17. 
5

1

!

2n

n

n

∞

=

∑  

18. Given that 0
n

a >  for 0n ≥  and 

1 1
lim

4

n

n
n

a

a

+

→∞
= , determine whether the 

following series converge. 

a. 
0

n

n

a
∞

=

∑  e. 
1

n

n

a

n

∞

=

∑  

b. 
0

1

n n
a

∞

=

∑  f. ( )
2

1

n

n

a
∞

=

∑  

c. 
1

n

n

na
∞

=

∑  g. 
1

2n

n

n

a
∞

=

∑  

d. 3

1

n

n

n a
∞

=

∑  h. 
1

5n

n

n

a
∞

=

∑  

19. In Section 1, Problems 31 and 32, you found 

the sum of series of the form 
1

n
n

n

r

∞

=

∑ . 

Technically, you only showed that if the 

series converged, then they had the sums 

that you found. Now we can do better. Prove 

that 
1

n
n

n

r

∞

=

∑  converges if r > 1. 

20. Identify which of the following series is a 

power series. For those that are power series, 

state the center. 

a. 2 3( 2) 3( 2) ( 2)x x x+ + + − + +�  

b. 2 32 ( 1) ( 2) ( 3)x x x+ − + − + − +�  

c. 
1

( 3)n

n

x
∞

=

−∑  e. 
2

3
0

2 ( 1)n n

n

x

n

∞

=

+
∑  

d. ( )2

0

4
n

n

x
∞

=

+∑  f. 
0

tann

n

x
∞

=

∑  
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21. A power series 
0

n

n

n

c x
∞

=

∑  converges at 2x = −  

and diverges at x = 5. 

a. What is the smallest possible radius of 

convergence of this series? 

b. What is the largest possible radius of 

convergence of this series? 

c. If it can be determined, state whether the 

series converges or diverges at the 

following x-values: -8, -5, -1, 0, 1, 2, 4 

22. A power series 
1

( 3)n

n

n

c x
∞

=

−∑  converges at 

0x =  and diverges at 2x = − . 

a. What is the smallest possible radius of 

convergence of this series? 

b. What is the largest possible radius of 

convergence of this series? 

c. If it can be determined, state whether the 

series converges or diverges at the 

following x-values: -3, -1, 2, 3, 5, 3, 6, 8, 

9 

23. A power series 
0

( 1)n

n

n

c x
∞

=

+∑  converges at 

5x = . Of the following intervals, which 

could be intervals of convergence for the 

series? 

a. [ 5,5]−  c. [ 8,6)−  

b. ( 3,5)−  d. ( 7,5]−  

24. A power series 
0

n

n

n

c x
∞

=

∑  has radius of 

convergence R = 5. What is the radius of 

convergence of the power series 1

1

n

n

n

nc x
∞

−

=

∑ ? 

25. A series 
0

( )n

n

f x
∞

=

∑  converges at 5x =  and 

8x = , but diverges at 6x = . Can this series 

be a power series? Explain. 

In Problems 26-40, find the radius of 

convergence of the given power series. 

26. 
2 3

1
5 25 125

x x x
+ + + +�  

27. 
2 3 42 ( 2) ( 2) ( 2)

1 2 2 4 3 8 4 16

x x x x− − − −
+ + + +

⋅ ⋅ ⋅ ⋅
�  

28. 
0

(4 )n

n

x
∞

=

∑  

29. 
1

( 4)

3

n

n
n

x

n

∞

=

+

⋅
∑  

30. 
2

1

3
( 1)

n
n

n

x
n

∞

=

+∑  

31. 
3

1

!

4

n

n
n

n x

n

∞

=

∑  

32. 
2

0

1
( 5)n

n

n
x

n

∞

=

+
−∑  

33. 
0

( 5)

3

n

n
n

x∞

=

+
∑  

34. 
0

2
( 1)

!

n
n

n

x
n

∞

=

−∑  

35. 
2

1

( 1)
n

n

n

x

n

∞

=

− ⋅∑  

36. 
0

cos( ) ( 2)

3

n

n
n

n xπ∞

=

⋅ +
∑  

37. 
2

1

1

( 4)
( 1)

4

n
n

n

x

n

∞
+

=

−
− ⋅∑  

38. 
0 !

n

n

x

n

∞

=

∑  

39. 
2 1

0

( 1)
(2 1)!

n
n

n

x

n

+∞

=

− ⋅
+

∑  

40. 
2

0

( 1)
(2 )!

n
n

n

x

n

∞

=

− ⋅∑  

41. A function ( )f x  has a power series with 

radius of convergence R = 15. What is the 

radius of convergence of the power series 

for (5 )f x ? 
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42. Suppose that a power series 
0

( )n

n

n

c x a
∞

=

−∑  

converges with radius of convergence R. 

Show that 
0

( )n

n

n

nc x a
∞

=

−∑  also has radius of 

convergence R. 

Another convergence test that can be useful for 

working with power series (or series of 

constants) is the root test. In this test, we 

examine lim n
n

n
a

→∞
, again assuming that 0

n
a > . 

As with the ratio test, Σan converges if this limit 

is less than 1 and diverges if this limit is greater 

than 1. No conclusion can be drawn about Σan if 

the limit equals 1. 

43. Use the root test to determine whether the 

following series converge. If the test is 

inconclusive, state that as well. 

a. 
1 3n

n

n∞

=

∑  c. 
1

2 1
n

n

n

n

∞

=

+ 
 
 

∑  

b. 
3

1

2

n n

∞

=

∑  d. 
0

1
n

n n

∞

=

∑  

44. Use any convergence / divergence tests you 

know to determine whether the following 

series converge. 

a. 
1

3 3

1n n n

∞

=

 
− 

+ 
∑  d. 

0

3 1

3

n

n
n

∞

=

+
∑  

b. 
0

2

(3 )!

n

n n

∞

=

∑  e. 
0

3

4

n

n
n

∞

=

∑  

c. 
1

1
n

n e

∞

=

∑  f. 
1

2n

n n

∞

=

∑  

There are several refinements of the ratio test 

that are less frequently inconclusive. One of 

these is known as the Raabe test. In this test, we 

examine 
1

lim 1n

n
n

a
n

a→∞
+

  
−  

   
. Unlike with the 

ratio and root tests, Σan converges if this limits is 

greater than 1 and diverges if this limit is less 

than 1. (This makes sense; the fraction is upside 

down relative to the ratio test.) Again, no 

conclusion can be drawn if the limit equals 1. 

Even this refinement has inconclusive cases. 

45. Use the Raabe test to determine whether the 

following series converge. If the test is 

inconclusive, state that. 

a. 1 3 (2 1)1 3 1 3 51
2 2 4 2 4 6 2 4 (2 )

1
n

n

⋅ ⋅ ⋅ −⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ + + + + +

�

�

� �

∗
 

b. 2 4 6 (2 )2 4 62 2 4
5 5 7 5 7 9 5 7 9 (2 3)

n

n

⋅ ⋅ ⋅ ⋅⋅ ⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +
+ + + + +

�

�

� �  

c. 2 5 8 (3 1)2 5 2 5 82
4 4 7 4 7 10 4 7 10 (3 1)

n

n

⋅ ⋅ ⋅ ⋅ −⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +
+ + + + +

�

�

� �  

d. 

2/3

1

2 4 (2 )

5 7 (2 3)n

n

n

∞

=

 ⋅ ⋅ ⋅
 

⋅ ⋅ ⋅ + 
∑

�

�

 

46. Not all series that look like those in #45 

require the Raabe test. Use the ratio test to 

determine whether the series  
1 3 7 (2 1)1 3 1 3 71

2 2 5 2 5 8 2 5 8 (3 1)

n

n

⋅ ⋅ ⋅ ⋅ −⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
+ + + + +

�

�

� �  

converges. 

47. As mentioned in a footnote in this section, 

the function ( )h x x=  can be represented 

as a power series centered at x = 4 as 

1

3 1
1

(2 3)!!
2 ( 1) ( 4)

! 2

n n

n
n

n
x

n

∞
+

−
=

−
+ − −

⋅
∑  

where !! is the double factorial. By 

definition, !! ( 2)!!k k k= ⋅ −  and 

0!! ( 1)!! 1= − = . 

a. Use the ratio test to determine the radius 

of convergence of this power series. 

b. Plugging in 0 for x gives the series 

3 1
1

(2 3)!! (4)
2

! 2

n

n
n

n

n

∞

−
=

− ⋅
−

⋅
∑ . 

Use the Raabe test to determine whether 

this series converges. 

c. Plugging in 8 for x gives the series 

1

3 1
1

(2 3)!! 4
2 ( 1)

! 2

n
n

n
n

n

n

∞
+

−
=

− ⋅
+ −

⋅
∑ . 

Ignore the alternating factor 1( 1)n+
−  for 

now (we will justify doing this in 

Section 8), and determine whether this 

series converges. 

                                                 
∗
 If we use the notation of double factorials, then the 

general term of this series is simply 
(2 1)!!

(2 )!!

n

n

−
. 
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d. Give the complete interval of 

convergence for this power series. 

Not all series representations of functions are 

power series. However, many non-power series 

are also interesting. In Problems 48-50, you will 

explore a few. 

48. Consider the series 
0

(sin )n

n

x
∞

=

∑ . Find all 

values of x for which this series converges. 

Does the series converge on an interval like 

power series do? Graph a few partial sums 

of this series. 

49. Consider the geometric series 
2

0

13

12

n

n

x∞

=

 −
 
 

∑ . 

a. Why is this not a power series? 

b. To what function does this series 

converge? 

c. For what values of x does the series 

converge? 

d. Graph a few partial sums of this series 

along with your answer to part (b). 

50. As we know, the function 
1

( )
1

f x
x

=
−

 can 

be represented as the power series 
0

n

n

x
∞

=

∑ . 

There are other series representations for 

this function, though. 

a. Show that 
1

1
( )

1

x

x

f x
−

=
−

. 

b. Expand the form of ( )f x  from part (a) 

as a geometric series. Why is this series 

not a power series? (This is an example 

of something called a Laurent series.) 

c. Graph some partial sums of your series 

from part (b) along with partial sums of 

the same degree for 
0

n

n

x
∞

=

∑ . You may 

also want to include the graph of f. 

51. Show that the power series 
3

2
( )

!

n

n

x
f x

n

∞

=

=∑  

solves the differential equation 2
y x y′ = + . 
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Section 7 – Positive-Term Series 
 

 

Our goal in this chapter is to work with power series, but that requires our being able to determine the 

values of x for which a series converges—the interval of convergence. As we saw in Section 6, applying 

the ratio test to the general term of a series was useful in determining how wide the interval of 

convergence is. However, the ratio test is always inconclusive at the endpoints of the interval. In this 

section and the next, we will develop tools for examining the endpoints and answering the question of 

convergence there. With these tools, we will be able to determine a complete interval of convergence for 

many power series, including the Taylor series that we commonly encounter. In this section we will deal 

exclusively with series whose terms are always positive (or at least non-negative). Series whose terms 

have varying signs will be examined in Section 8. 

 

 

The Integral Test 
 

Let us begin by examining two series: 
1

1

n

H
n

∞

=

=∑  and 
2

1

1

n

S
n

∞

=

=∑ . In Section 1 we saw that H diverges and 

it was stated that S converges (to π
2
/6), but another look at both will be informative. We'll start with H. 

 1 1 1
2 3

1
n

H = + + + + +� � . Graphically, we can think of 

this sum as adding the areas of an infinite number of 

rectangles. Each rectangle will have width 1, and the n
th
 

rectangle will have height 1/n. (See Figure 7.1.) But with the 

graph of 1
x

y =  superimposed over these rectangles, we see 

that this sum is nothing more than a left Riemann sum for the 

improper integral 
1

1
dx

x

∞

∫ . Furthermore, the picture certainly 

suggests that 
1 1

1 1

n

dx
n x

∞∞

=

>∑ ∫ . We know from our study of 

improper integrals that 
1

1
dx

x

∞

∫  diverges. Hence, the harmonic 

series H must also diverge. If the area under the curve 1
x

y =  is unbounded, then the series, which 

represents more area, must be unbounded as well. 

 
 Now let's turn to S. If we draw the same kind of picture, with rectangles of width 1 and height 1/n

2
, it 

is actually not very helpful (Figure 7.2). We know that 
2

1

1
dx

x

∞

∫  converges, and we see from the picture 

that 
2 2

1 1

1 1

n

dx
n x

∞∞

=

>∑ ∫ . But what does that mean? How much bigger than 
2

1

1
dx

x

∞

∫  is 
2

1

1

n n

∞

=

∑ ? If the sum is 

only a little bigger than the integral, then it is reasonable to guess that S converges. But if S is much 

bigger than the integral, the series may diverge even though the integral converges. We simply cannot 

conclude anything from this picture. However, we can flip it around and look at a right Riemann sum for 

2

1

1
dx

x

∞

∫ . Figure 7.3 shows that we can do this, though we end up losing the first, tallest rectangle in the 

Figure 7.1: H as a left Riemann sum 
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process. (If we kept that rectangle and shifted it over, we would be looking at a Riemann sum for 
2

0

1
dx

x

∞

∫ . 

This introduces a new kind of improper-ness to the integral: unbounded behavior of the integrand for x-

values near zero. Since we only care about long-term behavior and have no need to be entangled in what 

is going on for x-values near zero, we sacrifice the first rectangle and focus on what is left over. Besides, 

this rectangle represents the first term of the infinite series, the loss of which will not affect its 

convergence.) We see from Figure 7.3 that 
2 2

2 1

1 1

n

dx
n x

∞∞

=

<∑ ∫ . Hence, since 
2

1

1
dx

x

∞

∫  converges, 
2

2

1

n n

∞

=

∑  must 

converge as well. Geometrically, if the area bounded by 2

1

x
y =  from 1x =  to ∞ is finite, then the area 

represented by 
2

2

1

n n

∞

=

∑  must be as well. Since 
2

2

1

n n

∞

=

∑  converges, 
2

1

1

n n

∞

=

∑ also converges. 

 

  
Figure 7.2: S as a left Riemann sum Figure 7.3: S as a right Riemann sum 

 

 I would like to make two remarks about the preceding arguments. First, notice how important it was 

that the terms of the series being discussed were positive (or at least non-negative). If the terms of 
2

2

1

n n

∞

=

∑  

were sometimes negative, then the fact that the Riemann sum corresponding to 
2

2

1

n n

∞

=

∑  is less than 
2

1

1
dx

x

∞

∫  

would be meaningless; the series could still diverge if its terms were negative and huge. But because the 

terms of 
2

2

1

n n

∞

=

∑  are actually positive, they are trapped between 0 and the values of 2

1

x
. This is what allows 

us to conclude something meaningful. 

 Second, we should look at what happens if we switch 

the Riemann sum in Figure 7.1 to a right Riemann sum. This 

is shown in Figure 7.4, and again we lose the first rectangle. 

Figure 7.1 tells us that 
2 1

1 1

n

dx
n x

∞∞

=

<∑ ∫ . But again the question 

is: How much? Is the area representing the sum small 

enough that it converges even when the area represented by 

the improper integral diverges? The picture cannot answer 

this question for us. The moral is that being smaller than 

something divergent is not enough to ensure convergence, 

just as being bigger than something convergent was not Figure 7.4: H as a right Riemann sum 
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enough to guarantee divergence in the case of 
2

1

1

n n

∞

=

∑ . We will see this idea again. 

 The examples of H and S suggest that we can infer the behavior of a particular series by looking at a 

corresponding improper integral. This is stated precisely by the integral test. 

 

Theorem 7.1 – The Integral Test 

If ( )f x  is a positive, continuous, and decreasing function such that ( )
n

f n a=  for all n at least as large as 

some threshold value N, then n

n N

a
∞

=

∑  and ( )
N

f x dx

∞

∫  either both converge or both diverge. In other words, 

as the improper integral behaves, so does the series, and vice versa. 

 

 The stuff about the threshold value N sounds complicated, but it is actually there to make things 

simpler. First, it gives us the freedom to not specify a starting index value in the theorem, which let's us 

be a bit more general. Second, if the function f doesn't satisfy all the hypotheses of the theorem (being 

positive, continuous, and decreasing) until some x-value, that's fine. As long as ( )f x  matches the values 

of the series terms and eventually acts as needed, the conclusion of the theorem follows. Remember that 

convergence is not affected by the first "few" terms of a series, only by its long-run behavior, so we do 

not mind if f behaves erratically before settling down at x N= . 

 In addition to the requirement that ( )
n

f n a= , there are quite a few requirements on the function f in 

the integral test. The technical reason for these requirements is that they are necessary to prove the 

theorem. I am not going to provide a proof, but perhaps we can understand conceptually what these 

requirements do for us. (In the meantime, if there is a proof in your main text, read it and look for where 

each of the hypotheses is used.) We are interested in the series Σan, but we are using f as a proxy for { }na . 

This is a little awkward since { }na  is only defined for integer values of n while f is presumably defined 

for many more x-values than just the integers. The hypotheses of the integral test are there to make sure 

that f continues to act like we expect it to even between the integer values of x. Look back at the figures 

that we used in discussing H and S. The function f and the sequence { }na  only agree at the corners of the 

rectangles. If f were doing wild things between these points—crazy oscillation, unexpected growth, or 

vertical asymptotes—it would no longer be reasonable to expect the convergence behavior of the integral 

of ( )
N

f x dx

∞

∫  to match that of n

n N

a
∞

=

∑ . The hypotheses of the integral test, while fussy, are necessary to 

ensure that the improper integral will in fact act as a reasonable substitute for the series. 

 

Example 1 

Determine whether the series 
2

1 1n

n

n

∞

= +
∑  converges. 

Solution 

Obviously, we are going to use the integral test since that is what this section is about. But let's pause and 

think about why. For one thing, the series passes the n
th
 term test: 

2
lim 0

1n

n

n→∞
=

+
. This means that 

convergence is a possibility. The series is not geometric, and the ratio test is inconclusive (try it), so we 

are really left with no other alternatives. Additionally, if we translate the terms 
2 1

n

n
a

n
=

+
 into the 
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function 
2

( )
1

x
f x

x
=

+
, we see something that we can antidifferentiate. This suggests the integral test is 

worth trying. 

 First we note that for 1x ≥ , ( )f x  is positive, decreasing, and continuous. (In most cases, a graph is 

sufficient to convince yourself of these things. Continuity and positivity for x > 0 should be obvious. If 

you want to prove that the function decreases, examine the derivative.) Now we try to evaluate 
2

1
1

x
dx

x

∞

+∫ . 

( )

( )

2 2

1 1

21
2

0

21 1
2 2

lim
1 1

lim ln 1

limln 1 ln(1)

b

b

b

b

b

x x
dx dx

x x

x

b

∞

→∞

→∞

→∞

=
+ +

 = + 

= + −

∫ ∫

 

However, this limit does not exist; the improper integral diverges. By the integral test, we conclude that 

the series 
2

1 1n

n

n

∞

= +
∑  diverges as well. ◊ 

 

Example 2 

Determine whether the series 
2

0

1

1n n

∞

= +
∑  converges. 

Solution 

Again, we will use the integral test, noting that for 0x ≥  
2

1
( )

1
f x

x
=

+
 is positive, decreasing, and 

continuous. 

2 2

0 0

1

0

1

1 1
lim

1 1

lim tan ( )

lim tan ( ) tan(0)

/ 2

b

b

b

b

b

dx dx
x x

x

b

π

∞

→∞

−

→∞

−

→∞

=
+ +

 =  

= −

=

∫ ∫

 

This time the improper integral converges. We conclude that 
2

0

1

1n n

∞

= +
∑  converges as well. ◊ 

 

IMPORTANT: The fact that the improper integral in Example 2 converges tells us something useful 

about the corresponding series. The value to which the improper integral converges is all but irrelevant. 

Though the value of the improper integral in Example 2 was π/2, it is not the case that this is the value of 

the series 
2

0

1

1n n

∞

= +
∑ . Indeed, 2 1.7s = , which already exceeds π/2, and further terms will only increase the 

values of the partial sums. Look again at Figures 7.1-7.4. Clearly the values of the Riemann sums (i.e., the 

series) were not equal to the areas bounded by the curves (i.e., the improper integrals). It is a common and 

understandable mistake to assume that, when the integral test shows convergence, the value of the series 

is the same as the value of the improper integral. I think this comes from a basic dissatisfaction we have 

with the fact that we can find exact values of series so rarely. But do not fall for the trap of conflating the 

two values. 
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Practice 1 

Determine whether the series 
2

3
2 4n

n

n

∞

= −
∑  converges. 

 

 

Estimates Based on Integrals (Optional) 
 

Despite the comments following Example 2 warning you not to confuse the value of a convergent 

improper integral with a corresponding infinite series, it happens that the value of the improper integral is 

not completely useless to us. Figure 7.2 suggests that 
2 2

1 1

1 1
1

n

dx
n x

∞∞

=

> =∑ ∫ . On the other hand, Figure 7.3 

shows that 
2 2

2 1

1 1

n

dx
n x

∞∞

=

<∑ ∫ , or equivalently  

2 2
2 1

2
1

1 1
1 1

1
2.

n

n

dx
n x

n

∞∞

=

∞

=

+ < +

<

∑ ∫

∑
 

Indeed, experimenting with partial sums should verify for you that 
2

1

1
1 2

n n

∞

=

< <∑ . 

 In fact, you can quickly find from your calculator that to six decimal places 100 1.634984s = . The tail, 

the unused part of the series, is 
2

101

1

n n

∞

=

∑ . We can use the same reasoning from the previous paragraph to 

get a sense for the size of the tail. On the one hand, 
2

101

1

n n

∞

=

∑  must be larger than 
2

101

dx

x

∞

∫ . This is strictly in 

analogy with the discussion above, but if you are not convinced, draw out a left Riemann sum for 
2

101

dx

x

∞

∫ . 

Similarly, a right Riemann sum implies that 
2 2

102 101

1

n

dx

n x

∞∞

=

<∑ ∫  or 
2 2 2

101 101

1 1

101n

dx

n x

∞∞

=

< +∑ ∫ . Putting it all 

together, we find that 

2 2 2 2
101101 101

2 2
101

1 1

101

1 1 1 1
.

101 101 101

n

n

dx dx

x n x

n

∞ ∞∞

=

∞

=

< < +

< < +

∑∫ ∫

∑
 

Now we know that 100 1.634984s =  and that the tail has a value somewhere between 0.009901 and 

0.010097. Thus the actual value of the sum, 100s  + tail, is somewhere between 1.644885 and 1.654884. 

The actual value of π
2
/6 is indeed within this range. This approach should easily allow you to find the 

value of this sum to any degree of precision that you would like. You are only limited by the number of 

decimal places that your calculator displays. 

 The sort of reasoning we have been using applies to any convergent series whose terms are 

decreasing, not just to ones for which we use the integral test to determine convergence. For such series 

we have  
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 ( ) ( )n N

n NN N

f x dx a a f x dx

∞ ∞∞

=

< < +∑∫ ∫ . (1) 

We can always compute a partial sum simply by adding up a finite number of terms. The strength of (1) is 

that it gives us a way to estimate the size of the tail as well. Even if the improper integrals in (1) cannot be 

evaluated analytically, a numerical approximation of them is still useful for approximating the value of a 

series. 

 

 

p-Series 
 

After all this, I must admit that I try to avoid the integral test at all costs. The hypotheses can be a chore to 

verify, and the integration can also require quite a bit of effort. While some series might scream for the 

integral test, perhaps something like 
2

1

n

n

ne
∞

−

=

∑  is an example, in general the integral test is a test of last 

resort. Most series can be handled using simpler tests. 

 Why, then, did we spend so much time on the integral test? The integral test gives us a very simple 

and extremely useful convergence test as a consequence. First, though, we need a smidge of vocabulary. 

 

Definition: A p-series is a series of the form 
1

1
p

n n

∞

=

∑  where p is a number. 

 

 We have already encountered p-series a few times. Both H and S were p-series. In H, the value of p 

is 1, while in S it is 2. p need not be a whole number; 
1

1

n n

∞

=

∑  is a p-series with p = 1/2. While p can be 

negative, we are typically interested in positive p-values. If p is negative or zero, then the series will 

diverge in a fairly straight-forward manner. (Why?) Things that look like p-series generally are not p-

series. So while it is tempting to say that 
2

1

1

1n n

∞

= +
∑  is a p-series with p = 2 since it looks so much like the 

form in the definition, that would be wrong. We also will view a series like 
5

1

3

n n

∞

=

∑  as being essentially a 

p-series with p = 5. Theorem 1.1 tells us that this series is equivalent to 
5

1

1
3

n n

∞

=

⋅∑ , and this latter form is 

clearly a p-series times some constant multiple. 

 The convergence of any p-series can be determined by using the integral test. 1( ) p
x

f x =  is positive 

and continuous for x > 0. And if p is positive, f is decreasing for x > 0. Thus we will be interested in 

computing 
1

1
p

dx
x

∞

∫ . But as we know from improper integrals, this integral converges if and only if 1p > . 

This means that there is no real reason to actually evaluate the integral; we already know everything we 

need, and the theorem follows immediately. 

 

Theorem 7.2 – The p-series Test 

A p-series 
1

1
p

n n

∞

=

∑  converges if and only if 1p > . 

 

 This is a pretty simple test. Only the geometric series test comes close to its simplicity.  
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Example 3 
Determine whether the following series converge. 

  a. 
3

8

1

n n

∞

=

∑  b. 
0.1

1

1

n n

∞

=

∑  

Solution 

a. First of all, don't let the starting value of the index scare you. Remember that convergence does not 

depend on the first few terms, only on the long-run behavior of the terms. In any event, rewrite 

3

1

n
 as 

3/2

1

n
 to see that this is a p-series with p = 3/2. Since 3/2 > 1, the series converges. 

b. This series is a p-series with p = 0.1 < 1. This series diverges by the p-series test. ◊ 

 

Practice 2 
Determine whether the following series converge. 

  a. 
8

1

1

n n

∞

=

∑  b. 
4

1n

n

n

∞

=

∑  c. 1/3

1n

n
∞

−

=

∑  

 

 

Comparison Tests 
 

Between the geometric series test and the p-series test, we can quickly and effectively test a host of 

comparatively simple series for convergence. Of even more value, though, is the fact that these types of 

series can be used as a basis of comparison for more complicated series. We formalize this idea in our 

final two positive-term convergence tests.
∗
 

 

Theorem 7.3 – The Direct Comparison Test 

Suppose 0
n

a ≥  and 0
n

b ≥  for all n (or at least all n past some threshold N). Further suppose that 
n n

a b≤  

for all n (or, again, all n past N). 

 If n

n N

b
∞

=

∑  converges, then n

n N

a
∞

=

∑  converges. 

 If n

n N

a
∞

=

∑  diverges, then n

n N

b
∞

=

∑  diverges. 

If either 
n

n N

a
∞

=

∑  converges or 
n

n N

b
∞

=

∑  diverges, then no conclusion can be drawn about the other series 

based on this test. 

 

 Here's the analogy that makes sense of this theorem. Suppose we have two calculus students, Anna 

and Brian. Anna is on the short side, while Brian is quite tall. They are about to walk through a door, but 

it's a strange door; we don't know how tall the doorway is, so we don't know whether either Anna or Brian 

will fit through. Brian goes first and we find that Brian does in fact fit through the door. This means that 

Anna must also fit; she is shorter than Brian, and he got through. But suppose Brian had not fit through 

the door. In that case, we would not have been able to predict whether Anna would make it or not. It may 

be that the doorway is really short, and that is why Brian could not make it. Or it could be that he only 

just barely failed to pass through, and Anna would have made it had she tried. Now flip the thought 

experiment around. If Anna passes through the door, what does that tell us about Brian's chances? 

                                                 
∗
 There are many more, but the ones in this chapter are plenty for a first calculus course. 
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Nothing. The doorway might be just tall enough to permit Anna while still blocking Brian, or it could be 

that the door is immense and Brian will fit through as well. But if Anna cannot get through the door, then 

Brian certainly has no hope. 

 In this analogy, Anna is playing the role of a generic term an while Brian stands for the generic bn. 

Anna's being shorter than Brian corresponds to the hypothesis that 
n n

a b≤ . "Fitting through the door" 

means that the series converges. If Anna fits, then that means that 
n

n N

a
∞

=

∑  converges. Failure to get through 

the door represents divergence. The basic idea is that if a series converges, then a "smaller series" will 

also converge, though this is not a very precise way of saying it. Similarly, if a series diverges, then a 

"bigger series" will also diverge. But be careful to recognize the inconclusive cases. If a series diverges, 

then a "smaller series" may converge or diverge; more information is needed. 

 Hopefully, the idea behind the direct comparison test is relatively clear. Actually applying it is a bit 

of work. The two key pieces are (1) finding a simple series to compare against whose convergence we 

know, and (2) actually making the direct comparison. Very frequently our comparisons will be against 

either p-series or geometric series. 

 

Example 4 
Determine whether the following series converge. 

  a. 
2

1

1

5n n

∞

= +
∑  b. 

2

1

lnn n

∞

=

∑  c. 
0

1

3 1n
n

∞

= −
∑  

Solution 

a.  This series looks a lot like 
2

1

1

n n

∞

=

∑ . When n is very large, the 5 will hardly make much difference. So 

we will compare 
2

1

1

5n n

∞

= +
∑  to 

2
1

1

n n

∞

=

∑ . (The broader lesson here is to focus on the dominant terms 

within 
n

a  to figure out what your comparison series will be.) Note that since 2 25n n+ >  for all n, 

2 2

1 1

5n n
<

+
. Since we know that 

2
1

1

n n

∞

=

∑  converges (it is a p-series with 2 1p = > ), it follows by the 

direct comparison test that 
2

1

1

5n n

∞

= +
∑  converges. 

b.  For this series it is not as obvious what series to choose for comparison. But since we want 

something simple, we might try a p-series. There are no powers in the series we are exploring, so 

let's try the trivial power of 1 and compare to 
2

1

n n

∞

=

∑ . For all n ≥ 2, lnn n> . Thus, for n ≥ 2, 
1 1

lnn n
< . 

Since 
2

1

n n

∞

=

∑  diverges (it is the harmonic series), by direct comparison 
2

1

lnn n

∞

=

∑  must diverge as well. 

c.  Focusing on dominant terms leads us to ignore the 1 in the denominator and think about 
0

1

3n
n

∞

=

∑ . 

Unfortunately, the comparison is all wrong here. 3 3 1n n
> −  for all n, so 

1 1

3 3 1n n
<

−
. We know that 

0

1

3n
n

∞

=

∑  converges since it is geometric with 1
3

1r = < . However, we are now comparing a "bigger 

series" to a convergent series. The direct comparison test is inconclusive in this case. You can hunt 

for other series to make a better comparison; I am sure it can be done. But for now we will pass over 

this series and come back to it later with a slightly different tool. ◊ 
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Example 5 

Use direct comparison to show that 
0

1

!n n

∞

=

∑  converges. 

Solution 

Virtually every textbook has this example, so I feel obliged to include it as well, even if the convergence 

of this series is best determined by the ratio test. (Most books introduce the comparison tests long before 

the ratio test.) Notice that for 4n ≥ , ! 2n
n > . As a consequence, 

1 1

! 2n
n

<  for 4n ≥ . Now we can compare. 

0

1

2n
n

∞

=

∑  converges (it is geometric with 1
2

1r = < ). Therefore, by direct comparison, 
0

1

!n n

∞

=

∑  converges as 

well. 

 We can go a bit further. From the comparison we are using, we can show that 
4 4

1 1

! 2n
n nn

∞ ∞

= =

<∑ ∑ . The 

latter series is geometric, so we can actually find its sum. I leave the details to you, but the sum is 1/8. 

4

4

0

1 1

! 8

1 1 1 1 1 1 1 1 1 1

0! 1! 2! 3! ! 0! 1! 2! 3! 8

1
2.792

!

n

n

n

n

n

n

∞

=

∞

=

∞

=

<

+ + + + < + + + +

<

∑

∑

∑

 

We actually get a useful result from this comparison: an upper bound on the value of the series in 

question. This bound will turn out to be important later. ◊ 

 

 The tricky part of using a comparison test, as you have probably guessed, is in finding the series to 

compare against. Focusing on dominant terms is always a good start, but is not always the key, as 

Examples 4b and 5 show. The important thing is to try something and not be afraid to fail. You will 

probably pick the wrong thing to compare to every now and again. That's okay. Pick yourself up and try 

again. 

 

Practice 3 
Determine whether the following series converge. 

  a. 
0

5 1

2 1

n

n
n

∞

=

+

−
∑  b. 

6

5

2 1n
n

n∞

=

−

+
∑  

 

 Let's return to Example 4c. We failed to determine the convergence of 
0

1

3 1n
n

∞

= −
∑  by direct 

comparison. If your gut tells you that 
0

1

3 1n
n

∞

= −
∑  should converge because its terms are so much like those 

of 
0

1

3n
n

∞

=

∑  when n is large, you've got a smart gut. We formulate "being so much like" in the following 

theorem. 
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Theorem 7.4 – The Limit Comparison Test 

Suppose 0
n

a >  and 0
n

b >  for all n (or at least all n past a certain threshold N). 

 If lim n

n
n

a

b→∞
 exists and is both positive and finite, then n

n N

a
∞

=

∑  and n

n N

b
∞

=

∑  either both converge or both 

diverge. 

 

 Let's think for a moment about what the limit comparison test says. Suppose the series Σan happens 

to converge. This means that the terms of the series are dwindling to zero fast enough that the partial sums 

can approach a finite number. Now enter another series Σbn. If lim n

n
n

a

b→∞
 is both positive and finite, then the 

terms of the two series have, if not the same decay rates, then at least rates that are comparable. Their 

decay rates are related by at worst a constant multiple, but that puts them at least in the same order of 

magnitude. So if the terms of Σan go to zero quickly enough for convergence, the terms of Σbn must as 

well. And the converse is true for divergence. 

 The trick, as always, is to decide what known series to compare against. 

 

Example 6 
Determine whether the following series converge. 

  a. 
0

1

3 1n
n

∞

= −
∑  b. 

2

5/2
1

2 2 1

3 8n

n n

n n

∞

=

+ −

− +
∑  

Solution 

a. We compare, as we always wanted to, to the convergent geometric series 
0

1

3n
n

∞

=

∑ . We must evaluate 

the limit of an / bn. It does not really matter which series plays the role of Σan and which plays the 

role of Σbn. 
1

3 1

1

3

3
lim lim 1

3 1

n

n

n

nn n

−

→∞ →∞
= =

−
 

 If you must, you can use l'Hôpital's Rule in evaluating the limit. The point is that the limit is positive 

and finite. Thus, since 
0

1

3n
n

∞

=

∑  converges, 
0

1

3 1n
n

∞

= −
∑  converges as well by the limit comparison test. 

b.  If we focus on dominant terms, we are led to compare to the series 
2

5/2
1 1

1

n n

n

n n

∞ ∞

= =

=∑ ∑ . (I am also 

ignoring the coefficient of 2 since this can be factored out of the series; it certainly won't affect the 

issue of convergence.) The helper series diverges because it is a p-series with 1
2

1p = ≤ . Now for the 

limit. 

( ) ( ) ( )

5/2 5/2

5/2 3/22 5/2 2

1/ 3 8 3 8 1
lim lim lim

22 22 2 1 / 3 8 2 2 1n n n

n n n n n

n n nn n n n n n n→∞ →∞ →∞

− + − +
= = =

− +− − − + − +
 

 Again, the limit is positive and finite, so the two series under consideration have the same 

convergence behavior. By the limit comparison test, we conclude that 
2

5/2
1

2 2 1

3 8n

n n

n n

∞

=

+ −

− +
∑  diverges. 

 Quick note: Had we set up the limit in part (b) the other way, with the roles of Σan and Σbn swapped, 

we would have gotten the reciprocal in the limit, namely 2. This is still positive and finite, and we would 

have drawn the same conclusion. This is why it does not matter which series is Σan; the choice might 

affect the value of the limit, but not whether it is a positive, finite number. ◊ 
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 If the limit in the limit comparison test works out to be either 0 or ∞, then Σan and Σbn need not have 

the same convergence behavior. Though there are cases in which we can draw conclusions from limits of 

0 and ∞, it is often best to do a direct comparison test or a different kind of test altogether. Problems 59 

through 62 give you an opportunity to see why interpreting these limits requires a bit more care. 

 

Practice 4 

Determine whether the series 
2

3
2

1

n

n

n

∞

=

−
∑  converges. 

 

 At this point, we have a lot of tests that can be applied to positive-term series: the n
th
 term, geometric 

series, ratio, integral, p-series, direct comparison, and limit comparison tests. (If you've been doing all the 

problems, you've also seen the root test, the Raabe test, and a method for dealing with telescoping series. 

And there are more out there: a couple named after Gauss, at least one named after Cauchy… the list goes 

on.) All have different hypotheses that must be met, and all have different criteria for interpretation. 

Keeping all of these details straight can be confusing. Your primary text may have a table or chart 

summarizing these tests, but I think the best thing is for you to create one for yourself. Organizing this 

information in a way that makes sense to you is the best way to internalize it. 

 To be successful with series, you need to develop a sense for when to use each test. Geometric and p-

series announce themselves fairly clearly, so there should never be any doubt as to when to apply those 

tests. The ratio test is great when dealing with factorials and exponential factors (and also power series, 

though never the endpoints). However, the ratio test is terrible for p-series and p-like series. Convergence 

of a series can be ruled out with the n
th
 term test, but we can never show convergence with it. If the 

general term looks like something you can integrate, there is always the integral test, though the 

comparison tests should often be considered before going there. The only way to develop your intuition 

and skill at selecting which test to use for what series is to practice working lots of problems. And you 

have to make a mistake every now and again by choosing the "wrong" test or a comparison that is not 

helpful. When you do err, don't give up! Figure out what went wrong and give it your best second effort. 

That's the only way to learn this stuff. 
 

 

Answers to Practice Problems 
 

1. The corresponding function 
2

3
( )

4

x
f x

x
=

−
 is positive, decreasing and continuous for 2x ≥ . 

( )

( )

2 2

3 3

2 2

31
3

2

31 1
3 3

lim
4 4

lim ln 4

lim ln 4 ln 4

b

b

b

b

b

x x
dx dx

x x

x

b

∞

→∞

→∞

→∞

=
− −

 = − 

= − −

∫ ∫

 

As in Example 1, this limit, and hence the improper integral, diverges. By the integral test, we conclude 

that the series diverges. 

 

2. All of these series are p-series. 

 a. p = 8 > 1, so the series converges. 

 b. 
1/44

1 3/4

1n n

n n n
= = . 

3
1

4
p = ≤ , so this series diverges. 
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 c. 1/3

1/3

1
n

n

−
= . 1

1

3
p ≤= , so this series diverges. 

 

3.  a. When n is large, neither of the 1s will make much difference. We ignore them and focus on 

0 0

5 5

2 2

nn

n
n n

∞ ∞

= =

 
=  

 
∑ ∑ . This is a divergent geometric series ( 5

2
1r = > ). It is clear that 

5 5 1

2 2 1

n n

n n

+
<

−
 because the 

fraction on the left side has both a smaller numerator and a larger denominator. Therefore, by direct 

comparison, 
0

5 1

2 1

n

n
n

∞

=

+

−
∑ , diverges. 

 b. If we focus on the dominant terms, we are left with 
6 2n

n

n∞

=

∑ . This is not one of our stock "simple" 

series (geometric or p-series). But it is simple enough that we can determine its convergence. The easy 

way is to cite Section 6, Problem 19 in which we proved that this series would converge. If you skipped 

that problem, then we proceed by the ratio test (since the ratio test does well with exponential terms). 

1

1

1 2 1 1 1
lim lim lim 1

2 2 2

n

n

nn n n
n

a n n

a n n

+

+→∞ →∞ →∞

 + + 
= ⋅ = ⋅ = <   

  
. 

Therefore, the "helper" series 
6 2n

n

n∞

=

∑  converges by the ratio test. Now 
5

2 1 2n n

n n−
<

+
 because the fraction on 

the right has both a larger numerator and a smaller denominator. Therefore, 
6

5

2 1n
n

n∞

=

−

+
∑  converges by direct 

comparison to 
6 2n

n

n∞

=

∑ . 

 

4. The obvious choice for comparison is 
2

3
2 2

1

n n

n

n n

∞ ∞

= =

=∑ ∑ . This is the harmonic series which we know to be 

divergent. 

( ) ( )2 3 2 3

3 3

1 / 1
lim lim lim 1

1/n n n

n n n n n n

n n n→∞ →∞ →∞

− − −
= = =  

This limit is positive and finite, so we conclude by the limit comparison test that 
2

3
2

1

n

n

n

∞

=

−
∑  diverges. (We 

could also have used direct comparison in this case. Try it!) 
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Section 7 Problems 

 

In Problems 1-11, determine whether the given 

series converges by using either the integral test 

or the p-series test. 

1. 1 1 1 1 1
1 16 81 256 625

+ + + + +�  

2. 1 1 1 1 1
4 16 64 256 1024

+ + + + +�  

3. 4 9 16 25

3 51 2 4
e e e e e

+ + + + +�  

4. 
2

1

lnn n n

∞

=

∑  

5. 
2 lnn

n

n

∞

=

∑  

6. 
5

1

3

n n

∞

=

∑  

7. 
1

1
e

n n

∞

=

∑  

8. 
1

1

n n n

∞

=

∑  

9. 
2

3
1 2n

n

n

∞

= +
∑  

10. 
1/3

2/5
1

3

2n

n

n

∞

=

∑  

11. 
0

1

2 5n n

∞

= +
∑  

In Problems 12-20, determine whether the given 

series converges by using one of the comparison 

tests. 

12. 
3

5
0

2

8n

n n

n

∞

=

+

+
∑  

13. 
2

1

1n n

∞

= −
∑  

14. 
( )3

1

ln lnn n

∞

=

∑  

15. 
0

3

4 2

n

n
n

∞

= +
∑  

16. 
0

2 5

!

n

n n

∞

=

−
∑  

17. 
0

3 2

4

n

n
n

∞

=

+
∑  

18. 
3

4
2

1

1n

n

n

∞

=

−

+
∑  

19. 
0

1

2 4n
n n

∞

= +
∑  

20. 
0

1

n an b

∞

= +
∑ , where a and b are both positive. 

In Problems 21-33, determine whether the series 

converges by using any of the tests from this 

chapter. 

21. 8 161 2 4
3 9 27 81 243

+ + + + +�  

22. 1 1 1 1 1
2 4 6 8 10

+ + + + +�  

23. 
3

1

3

!

n

n

n

n

∞

=

⋅
∑  

24. ( )
2

2
7

3

4
n

n

∞
−

=

∑  

25. 
2

0

2

!

n

n

n

n

∞

=

+
∑  

26. ( )1

1

sin
n

n

∞

=

∑  

27. ( )1

1

cos
n

n

∞

=

∑  

28. ( )1

1

sin
n

n

n
∞

=

∑  

29. ( )1

1

cos
n

n

n
∞

=

∑  

30. ( )1 1

1

sin
n n

n

∞

=

∑  

31. ( )1 1

1

cos
n n

n

∞

=

∑  

32. 
0

3 !

( 1)!

n

n

n

n

∞

=

⋅

+
∑  
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33. 
3 4

2

1 1

n n n

∞

=

 
− 

 
∑  

34. 
1/

2
1

n

n

e

n

∞

=

∑  

In Problems 35-41, use each of the following 

tests once to determine whether the given series 

converge: n
th
 term test, geometric series test, 

ratio test, integral test, p-series test, direct 

comparison test, limit comparison test. 

35. 
0

1

2 1n n

∞

= +
∑  

36. 
1n

n
∞

=

∑  

37. 
1

1

n n

∞

=

∑  

38. ( )3
4

0

n

n

∞

=

∑  

39. 
0

!

3n
n

n∞

=

∑  

40. 
2

2

3

1n n

∞

= −
∑  

41. 
1

n

n

e

n

∞

=

∑  

In Problems 42-50, use each of the following 

tests once to determine whether the given series 

converge: n
th
 term test, geometric series test, 

telescoping series test, ratio test, root test, 

integral test, p-series test, direct comparison test, 

limit comparison test. 

42. 
2

3n

n

n

∞

=

∑  

43. 
2

3 4n

n

n

∞

= −
∑  

44. 
2

3 4n

n

n

∞

= +
∑  

45. 
0

2 2

2 1n n n

∞

=

 
− 

+ + 
∑  

46. 
2

1

lnn n n

∞

=

∑  

47. ( )1
4

0

n

n

∞

=

∑  

48. 
2

1 3n
n

n∞

=

∑  

49. ( )1

1

1
n

n

n

∞

=

−∑  

50. 
0

3

2 1

n

n n

∞

=

 
 

+ 
∑  

51. Use the ratio test to attempt to determine the 

convergence of the series 
4

1

1

n n

∞

=

∑  and 
3

1

1

n n

∞

=

∑ . 

Do these series converge or diverge? What 

important fact about the ratio test is being 

confirmed here? 

52. Under what conditions on p does the series 

2

1

(ln ) p
n n n

∞

=

∑  converge? 

53. Under what conditions on p does the series 

2

1

lnp
n n n

∞

=

∑  converge? 

54. Under what conditions on p does the series 

2

ln
p

n

n

n

∞

=

∑  converge? 

55. Let 
n

p  be the n
th
 prime number (i.e., 1 2p = , 

2 3p = , 3 5p = , etc.). The Prime Number 

Theorem is a theorem that discusses the 

distribution of the numbers 
n

p . One 

consequence of the Prime Number Theorem 

is that lim 1
ln

n

n

p

n n→∞
= . (We say that the 

primes are "asymptotic to" lnn n  and we 

write ~ ln
n

p n n  for this relationship. It 

means that the n
th
 prime is roughly equal to 

lnn n , at least on a relative scale.) Use this 

fact to determine whether the series 
1

1

n n
p

∞

=

∑  

converges. 
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56. Let 
n

f  be the n
th
 Fibonacci number. (The 

Fibonacci numbers are the sequence 1, 1, 2, 

3, 5, 8, 13, 21, … where 1 2n n n
f f f

− −
= + .) It 

is known that the ratio of successive 

Fibonacci numbers approaches the Golden 

Ratio φ, which is roughly 1.618. In symbols, 

1

lim n

n
n

f

f
φ

→∞
−

= . Determine whether the series 

1

1

n n
f

∞

=

∑  converges.
∗
 

57. Suppose 1( )p x  and 2 ( )p x  are polynomial 

functions that are both positive for x N≥ . 

Under what conditions on the degrees of 

1( )p x  and 2 ( )p x  will 1

2

( )

( )n N

p n

p n

∞

=

∑  converge? 

58. Give an example of two divergent series 

na∑  and nb∑  such that n

n

a

b
∑  converges. 

59. Give an example of two convergent series 

na∑  and nb∑  such that n

n

a

b
∑  diverges. 

60. Give an example of two series na∑  and 

nb∑  such that  nb∑  diverges, lim 0n

n
n

a

b→∞
= , 

and na∑  converges. 

                                                 
∗
 In this chapter, we have looked at series 

convergence being a question of how quickly the 

terms of a series approach zero. Another perspective 

is to consider "sparseness." We know that the sum 1 

+ 1/2 + 1/3 + … diverges, but if we take out enough 

of the terms, say all the ones whose denominators are 

not perfect squares, we obtain Σ1/n
2
, a series that 

converges. One way to think of this is to say that the 

perfect squares are sufficiently few and far 

between—sufficiently sparse—that the series of their 

reciprocals converges. This problem and the previous 

one can be interpreted as telling us something about 

the sparseness of the primes and the Fibonacci 

numbers. 

61. Give an example of two series na∑  and 

nb∑  such that  nb∑  diverges, lim 0n

n
n

a

b→∞
= , 

and na∑  diverges. 

62. In the spirit of Problems 60 and 61, can you 

come up with two series na∑  and nb∑  

such that  nb∑  converges, lim 0n

n
n

a

b→∞
= , and 

na∑  diverges? 

63. Reconsider Problems 60 through 62, but this 

time suppose that lim n

n
n

a

b→∞
= ∞ . Under what 

conditions can you infer the convergence 

behavior of one series from the behavior of 

the other? 

64. Suppose that for some sequence of positive 

numbers { }na , lim n
n

na L
→∞

= , where L is 

finite, positive, and non-zero. Show that 

na∑  diverges. (Hint: Compare to the 

harmonic series.) 

65. Suppose that na

n
∑  converges ( 0

n
a > ). 

Must it be true that na∑  converges? 
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Section 8 – Varying-Sign Series 
 

 

So far we have almost exclusively considered series in which all terms were positive (or at least non-

negative). The only exceptions to this have been geometric series with r < 0 and the times that we have 

cheated by ignoring sign variation (as in using the ratio test to determine the radius of convergence of a 

power series). It is time to break free of this constraint and examine series whose terms vary in sign. 

Among other things, this will put our initial explorations of power series on more solid ground. 

 The simplest next step is to consider series in which all the terms are negative (or at least non-

positive). Of course, this isn't really a change. If we just factor the negative out of the summation, we are 

left with a positive-term series: Σ(-an) = -Σan. If this is the case, we can apply all the tests we have seen in 

recent sections. 

 Eventually, though, we have to consider series in which the signs of the terms vary. The worst 

possible situation is if the signs vary irregularly. In many cases, such as with 
1

sin

n

n

n

∞

=

∑ , determining 

convergence will be outside the scope of this chapter,
∗
 though we will sometimes be able to puzzle out 

whether such series converge. 

 We will begin with the simplest case of varying signs: the case where the terms strictly alternate. An 

example (an important one, it turns out) is 1 1 1 1 1
2 3 4 5 6

1− + − + − +� . Such series are called "alternating 

series." 

 

 

Alternating Series and the Alternating Series Test 
 

Definition: An alternating series is a series in which the terms strictly alternate in sign. In other words, 

no two consecutive terms have the same sign. 

 

 Alternating series are often represented in the form ( 1)n

na−∑  or 1( 1)n

na
+

−∑ . When written this 

way, we can parse the terms of the series into an alternating factor ( ( 1)n
− , or something similar), and a 

factor that is positive (
n

a ) and represents the magnitude of the term. At other times, though, we will let 

n
a  stand for the entire term with the alternating factor wrapped into it. Hopefully, context will make it 

clear what 
n

a  means. 

 

Practice 1 
Which of the following series are alternating? 

  a. 
1

0

( 1)

!

n

n n

+∞

=

−
∑  b. 

0

( 3)n

n

∞

=

−∑  c. 
2

0

cos( )

1n

n

n

π∞

= +
∑  d. 

1

sin( )
n

n
∞

=

∑  

 

 An alternating series can be either convergent or divergent. In Practice 1, the series in (a) and (c) 

converge, while series (b) diverges. 

 In order to gain an understanding of convergence for alternating series, let's look at the one 

mentioned above: 

11 1 1 1 1 1
1 ( 1)

2 3 4 5 6

n

n

+
− + − + − + + − ⋅ +� � . 

                                                 
∗
 You can research the Dirichlet and Abel tests if you are interested. 
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This series is called the alternating harmonic series. It is just like the harmonic series that we have seen 

over and over again since Section 1, but the terms alternate. Recall that the regular harmonic series 

diverges; although the terms go to zero, they do not do so quickly enough for convergence. What about 

the alternating harmonic series? The table below shows several partial sums 
n

s  of the series. (In this table, 

n
a  represents the term of the series, sign included. It is not only the magnitude.) 

 

n 1 2 3 4 5 6 7 8 9 10 

an 1 -0.5 0.3333 -0.25 0.2 -0.8333 0.1429 -0.125 0.1111 -0.1 

sn 1 0.5 0.8333 0.58333 0.7833 0.6167 0.7595 0.6345 0.7456 0.6456 

 

Do you see what's happening? The partial sums are bouncing up and down around some number, but all 

the while they are zeroing in on something. Maybe it will be clearer if we look a bit farther out. 

 

n 100 101 102 103 104 105 106 107 108 

an -0.01 0.0099 -0.0098 0.0097 -0.0096 0.0095 -0.0094 0.0094 -0.0093 

sn 0.6882 0.6981 0.6883 0.6980 0.6884 0.6979 0.6885 0.6978 0.6885 

 

Now can you see how the partial sums are drifting in towards some number? In fact, the alternating series 

converges to about 0.6931. The tables give some indication of how this happens. As we add up the terms, 

adding a positive term will overshoot the target of 0.6931, but then it will be followed by a negative term 

which will bring it back down. But the negative term overshoots as well. There is a constant give-and-

take between the successive positive and negative terms. But there is more to it because the terms are also 

decreasing in size throughout. So while adding each term pushes the partial sum in the opposite direction 

as the previous one did, it does so by less and less each time. Put another way, each successive term 

partially cancels the effect of the one before it, but never fully. As a consequence, we see the partial sums 

gradually drift towards a limit. 

 Figure 8.1 is an attempt to make this clearer. The 

blue dots represent the terms 
n

a of the alternating 

harmonic series (sign and all) as a function of n. The red 

dots represent the corresponding partial sums 
n

s . (Note 

that 1 1a s= , so only one dot is visible on the graph for n = 

1.)  As you can see, the blue dots are "funneling in" 

toward zero, confirming that the series passes the n
th
 term 

test. The partial sums, for their part, are tending toward 

the limit 0.6931s = . Look at the graph one n-value at a 

time. A blue dot below the n-axis corresponds to a red dot 

below the dotted line; the negative term has pulled the 

partial sum below its eventual limit. This is followed, 

though, by a blue dot above the n-axis; at the same time 

the partial sum dot has drifted back above 0.6931, but not 

as far as it had been. The picture tries to show the partial 

cancellation—the give and take between positive and negative terms as they pull on the partial sums—in 

action. This is why the series converges, even though the terms are not approaching zero particularly 

quickly. 
 The above discussion identified two key factors responsible for the alternating harmonic series 

converging. First and most fundamentally, the terms alternate in sign; this allows them to cancel partially. 

Second, the terms are decreasing in size so that the cancellation is never complete; this is why the 

oscillation in the partial sums is damped, leading to a well-defined limit. And of course it goes without 

Figure 8.1: Terms and partial sums of the 

alternating harmonic series 
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saying that the terms of the series approach zero. If they did not, the series would not pass the n
th
 term test 

and the series would diverge. 

 We summarize these observations in our final formal convergence test. 

 

Theorem 8.1 – The Alternating Series Test 

If 
n

a  is positive, the series ( 1)n

na−∑  (or 1( 1)n

na
+

−∑ , etc.) converges if lim 0n
n

a
→∞

=  and if 1n n
a a

+
<  for 

all n (at least past a threshold N). 

Put another way, a series converges if the terms 

 1. strictly alternate, 

 2. decrease in magnitude, and 

 3. tend to zero. 

 

Example 1 
Use the alternating series test (AST) when applicable to determine which of the series in Practice 1 

converge. 

Solution 

a. The series is 
1

0

( 1)

!

n

n n

+∞

=

−
∑ . We will check the three criteria from Theorem 8.1. First, the terms of the 

series can be written as 1( 1)n

n
a

+
− ⋅  where 1

!n n
a = , so this series is alternating. Second, for all n 

greater than 0, 1 1
( 1)! !n n+

< . This shows that 1n n
a a

+
< . (Notice that here we needed to use our threshold 

N. If n = 0, it is not true that 1 1
( 1)! !n n+

< . Fortunately, the decreasing behavior sorts itself out quickly.) 

Finally, 1
!

lim lim 0n n
n n

a
→∞ →∞

= = , as required. This series converges by the AST. 

b. The series is 
0

( 3)n

n

∞

=

−∑ . This series is alternating; the terms can be written as ( 1) 3n n
− ⋅ . However, the 

sequence 3n

n
a =  is not decreasing. Therefore the hypotheses of the AST do not apply to this series. 

We can conclude nothing from the AST. (Other tests, namely the geometric series test and n
th
 term 

test, can be used to show that this series diverges.) 

c. The terms of the series in part (c) can be written as ( 1)n

n
a− ⋅  where 2

1

1n n
a

+
= , so the series is 

alternating. 1n n
a a

+
<  since 2 2

1 1

( 1) 1 1n n+ + +
<  for all n. Finally, 2

1

1
lim lim 0n nn n

a
+→∞ →∞

= = . By the AST, 

2
0

cos( )

1n

n

n

π∞

= +
∑  converges. 

d. We must pass on the series in part (d). The terms of this series do not strictly alternate, so the AST 

has nothing to tell us about this series. (The n
th
 term test tells us that it diverges.) ◊ 

 

 Notice that there is no divergence condition for the alternating series test. I will say that again. THE 

AST CANNOT BE USED TO SHOW DIVERGENCE. This is a sticking point for many students just as 

using the n
th
 term test to show convergence can be. Speaking of the n

th
 term test, if a series fails criterion 

3 in Theorem 8.1, then the series does diverge, but it is not because of the AST. Number 3 in the theorem 

is simply a restatement of the n
th
 term test. Most of the time when you are tempted to say, "The series 

diverges because of the AST," you really want to say, "The series diverges because it does not pass the n
th
 

term test." Most of the time. 
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Practice 2 
Use the alternating series test, if applicable, to determine whether the following series converge. 

  a. 
1

( 1)n

n n

∞

=

−
∑  b. 

2

( 1)
1

n

n

n

n

∞

=

− ⋅
−

∑  c. ( 1)/2

1

1
( 1)n n

n n

∞
+

=

− ⋅∑  

 

 I know what you're thinking. You are thinking criteria 2 and 3 from Theorem 8.1 are redundant. 

Cleary if the terms tend to zero, their absolute values must be decreasing. Well, no. It is true in a certain 

sense that if the terms get closer to zero, then in the long run the terms will get smaller. But that tells us 

nothing about the relative size of consecutive terms. Remember that it is the relationship of consecutive 

terms that ensures the convergence we see in the AST. Some standard examples to help us see this are in 

Example 2. 

 

Example 2 

Provide a divergent and a convergent alternating series in which lim 0n
n

a
→∞

= , but in which the terms do not 

strictly decrease in magnitude. 

Solution 

Consider the series 

1 1 1 1 1 1 1 1

1 4 3 16 5 36 7 64
− + − + − + − +� . 

In summation notation, this is 1

1

( 1)n

n

n

a
∞

+

=

−∑  where 1
n n

a =  if n is odd and 2

1
n n

a =  if n is even. The terms 

in this series alternate in sign and do approach zero, but there is no N for which 1n n
a a

+
<  for all n beyond 

N. In fact, this series diverges. 

 As another example, consider  

2 2 3 3

1 1 1 1 1 1

2 4 2 4 2 4
− + − + − +� . 

This series is formed by inter-weaving two convergent geometric series, one with positive terms and the 

other with negative. This series also does not show monotonic decrease towards zero in the magnitude of 

the terms. In this case, though, the series converges. ◊ 

 

 Moral: All three parts of the AST are essential to applying Theorem 8.1. 

 

 

Alternating Series Error Bound 
 

The nature of convergence that we saw in the alternating series test tells us about how closely the n
th
 

partial sum approximates the value of the series. Since adding each term overshoots the actual sum, but 

by ever-diminishing amounts, the error after n terms can never be larger than the next term 1n
a

+
. This is 

because adding 1n
a

+
 to 

n
s  will move the partial sum in the direction towards the actual sum of the series, 

but will go too far; part of its magnitude corrects for the error in 
n

s , while the rest of its magnitude is left 

over as error. 

 The table below, again for the alternating harmonic series, shows the same data you have already 

seen, but it also includes the actual error in the n
th
 partial sum (shown as a magnitude, so always positive), 

as well as the absolute value of the "next" term. As with the previous table, an is used to represent the 

entirety of the term, not just the positive factor. As you can clearly see, the magnitude of 1n
a

+
 is always 

greater than the error in 
n

s . In this case, this error estimate seems to be fairly conservative; the actual 

error is quite a bit less than the size of the next term for this series. 
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n 1 2 3 4 5 6 7 8 9 10 

an 1 -0.5 0.3333 -0.25 0.2 0.8333 0.1429 -0.125 0.1111 -0.1 

sn 1 0.5 0.8333 0.58333 0.7833 0.6167 0.7595 0.6345 0.7456 0.6456 

Actual 

Error 0.3069 0.1931 0.1402 0.1098 0.0902 0.0765 0.0664 0.0586 0.0525 0.0475 

1na
+

 0.5 0.3333 0.25 0.2 0.8333 0.1429 0.125 0.1111 0.1 0.0909 

 

 We summarize these observations in a theorem. 

 

Theorem 8.2 – Alternating Series Error Bound 

If na∑  is an alternating series in which 1k ka a
+

<  for all k, then the error in the n
th
 partial sum is no 

larger than 1na
+

. 

 

 Notice that Theorem 8.2 only comes into play if the terms of the series are monotonically decreasing 

in size. Thus, Theorem 8.2 does not apply to series like those in Example 2. Fortunately, most alternating 

series are not like the ones in Example 2. 

 

Example 3 

Use s5 and Theorem 8.2 to give bounds on the value of 
0

( 1)

!

n

n n

∞

=

−
∑ .  

Solution 

Your calculator will tell you that 5 0.36s = . Furthermore, 6 0.00138a = . Therefore, the actual value of 

the series is somewhere between 0.36 0.00138−  and 0.36 0.00138+ . To four decimal places, we 

conclude that 
0

( 1)
0.3653 0.3681

!

n

n n

∞

=

−
≤ ≤∑ . (The actual value of this series, as we will be able to see in 

Section 10, is 1/e, or 0.3679. This is indeed within our bounds.) ◊ 

 

Practice 3 

Earlier, we claimed that 
1

1

( 1)n

n n

+∞

=

−
∑  is roughly 0.693. How many terms are needed in the series to 

approximate this sum to these 3 decimal places? 

 

 It is time to take a quick trip back a few sections to revisit the world of Taylor polynomials. This is 

an awkward mix of looking back while simultaneously getting ahead of ourselves, but that's okay. In 

Section 4 we discussed how to use Lagrange remainder to estimate the error involved in a polynomial 

approximation. For example, to estimate the error involved in using the third-degree Maclaurin 

polynomial for the sine function to compute sin(1), we knew that the error was less than 4(1 0)
4!

M
− . For 

the sine function, we could use M = 1 because 1 is sure to be an upper bound for any derivative of the sine 

function on any interval. Thus, we concluded that 
31

3!
sin(1) 1 0.83≈ − =  with an error of no more than 1

4!
 

or 1/24. 
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 But we can also use the alternating series error bound. We know that the (2 1)n +
st
-order Maclaurin 

polynomial for sin(1) is  
3 5 2 11 1 1

1 ( 1)
3! 5! (2 1)!

n
n

n

+

− + − + −
+

� . 

This is "just" an alternating series, or at least the truncation of one. (This is how we're getting ahead of 

ourselves. In Section 10 we'll see that 
3 2 11 1

3! (2 1)!
sin(1) 1 ( 1)

nn

n

+

+
= − + + − ⋅ +� �  with no error at all. The latter 

expression comes from the Maclaurin series for the sine function as opposed to the Maclaurin polynomial. 

This series is truly an infinite series, and an alternating one at that. So we are 100% justified in using the 

alternating series error bound from Theorem 8.2.) The error, then, is bounded by the first omitted term in 

the series. For the approximation 
31

3!
sin(1) 1≈ − , the error is no more than the next term that would be in 

the series: 1
5!

. Therefore we conclude that the maximum error in our approximation of sin(1) is 1/120. 

The point is not that the alternating series error bound is tighter than the Lagrange error bound we 

obtained in the previous paragraph. That will not always be the case. The point is that when we are lucky 

enough to be dealing with an alternating series, the alternating series error bound is much easier to obtain 

than the Lagrange error bound. 

 

Practice 4 
Using the alternating series error bound, what degree Maclaurin polynomial is required to estimate cos(3) 

with an error of no more than 0.001? 

 

 

Absolute and Conditional Convergence 
 

We move on to the question of convergence for series whose terms vary in sign without strictly 

alternating. We will only give a partial answer to this question, and before we do we need a little more 

vocabulary. 

 

Definition: A series na∑ is absolutely convergent if na∑  is convergent. A series that is convergent, 

but not absolutely convergent, is conditionally convergent. In other words, if na∑  

converges but na∑  diverges, then na∑  is conditionally convergent. 

 

 To see why we make a distinction between absolutely and conditionally convergent series, consider 

two examples: 
1

1

( 1)n

n n

+∞

=

−
∑  and 

1

2
1

( 1)n

n n

+∞

=

−
∑ . As we have seen, the first series, the alternating harmonic 

series, converged because of a partial cancelling of consecutive terms. There was a delicate balance 

between the positive and the negative terms that made the partial sums hover around a fixed value. But if 

we take the alternation away, we are left with the regular harmonic series, a series for which the terms do 

not go to zero fast enough for convergence. That is, if we consider 
1

1 1

( 1) 1n

n nn n

+∞ ∞

= =

−
=∑ ∑ , we replace the 

convergent series that we are interested in with a series that diverges. Therefore, we say that the 

alternating harmonic series converges conditionally. 

 However, the situation is very different with 
1

2
1

( 1)n

n n

+∞

=

−
∑ . This series surely converges by the AST. 

You are welcome to work out the details for yourself. From one perspective, this means that the positive 

and negative terms cancel out well enough for convergence. But there is something else going on with 
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this series. Even if the terms did not alternate, they are still approaching zero very quickly. The size of the 

terms is given by 1/n
2
, and we already know that these numbers decay quickly. Put another way, if we 

look at 
1

2 2
1 1

( 1) 1n

n nn n

+∞ ∞

= =

−
=∑ ∑ , we have a convergent p-series. This is absolute convergence. 

 The use of the word "absolute" is not an accident. An absolutely convergent series is one where the 

series formed from the absolute values of the terms still converges. But this is just about the symbols 

involved. We can also consider this idea on a more conceptual level. Conditionally convergent series 

converge only by the grace of cancelling between the positive and negative terms; the terms do not really 

go to zero fast enough, but by good fortune the series still converges. In the case of absolute convergence 

it is almost as though the series does not care what sign the terms have. The terms are vanishing fast 

enough that it just doesn't matter. 

 Absolute convergence is a stronger form of convergence than conditional convergence because we 

can tinker with the signs of the terms in an absolutely convergent series without affecting the convergence. 

Absolutely convergent series are robust in this way, while conditionally convergent series are more 

delicate. Since absolute convergence is such a strong form of convergence, any absolutely convergent 

series is convergent in the regular sense (i.e., in the sense that the limit of the partial sums exists). This is 

a theorem, and it can be proved. But the idea is more important for us than the proof. Absolutely 

convergent series are really convergent. When we state the theorem, it might seem self-evident to you, as 

if it is just a game with words. That's okay for now. We still state the theorem for reference. 

 

Theorem 8.3 
If a series converges absolutely, then the series converges. 

 

 If possible, we prefer to work with absolutely convergent series, though we do not always have the 

luxury to restrict our horizons this way. Absolutely convergent series behave better than conditionally 

convergent series, and they generally work exactly the way we expect. In Section 9 we will explore some 

of the weird and wild things that can happen with conditionally convergent series. Notice that a positive-

term series that is convergent must be absolutely convergent; replacing the terms with their absolute 

values would not actually change anything. 

 

Example 4 
Determine whether the following series are absolutely convergent, conditionally convergent, or divergent. 

  a. 
0

( 1)

!

n

n n

∞

=

−
∑  b. 

0

( 1)

1

n

n n

∞

=

−

+
∑  c. 

0

3
( 1)

4

n

n

n

n

∞

=

+
− ⋅

+
∑  

Solution 

a. This series converges by the AST. In essence, this was shown in Example 1. The signs have all 

flipped relative to the earlier example, but that will not affect the use of the AST. To see whether the 

convergence is absolute or conditional, we consider 
0

( 1)

!

n

n n

∞

=

−
∑  which is 

0

1

!n n

∞

=

∑ . We have seen 

(multiple times) that this series converges. Therefore, 
0

( 1)

!

n

n n

∞

=

−
∑  converges absolutely. 

b. This series is alternating, as can be seen by writing the terms as ( 1)n

n
a−  where 1

1n n
a

+
= . 

1 1

1 1 1n n+ + +
<  for all n ≥ 0. Finally, 1

1
lim 0

nn +→∞
= . Therefore the series converges by the AST. Now we 

look at the absolute value series 
0 0

( 1) 1

1 1

n

n nn n

∞ ∞

= =

−
=

+ +
∑ ∑ . This series diverges, as can be shown by 
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using limit comparison against 
1

1

n n

∞

=

∑  (a divergent p-series: 1
2

1p = ≤ ). Briefly, 

1

1

1
lim 1n

n
n

+

→∞
= , which 

is positive and finite. Since the series 
0

( 1)

1

n

n n

∞

=

−

+
∑  converges, but the corresponding absolute value 

series diverges, the original alternating series is conditionally convergent. 

c. The n
th
 term test shows us that this series diverges: 

3
lim( 1) 0

4

n

n

n

n→∞

+
− ⋅ ≠

+
. Period. End of story. ◊ 

 

 One cool thing about absolute convergence is that we can use it to determine convergence of some 

series without actually exploring the series directly. 

 

Example 5 

Show that the series 
2

1

cos

n

n

n

∞

=

∑  converges. 

Solution 

It is tempting to use some kind of comparison test against 2

1

n∑ , but this would not be justified. The 

given series is not a positive-term series so comparison tests are off the table. The series does not strictly 

alternate either, so the AST does not apply. None of our convergence tests are of any use here. However, 

let us consider the corresponding absolute value series 
2 2

1 1

coscos

n n

nn

n n

∞ ∞

= =

=∑ ∑ . This series is a positive-

term series so we can use all our tests to decide its convergence. Since cos 1n ≤  it follows that 2 2

cos 1n

n n
≤  

for all n. The series 2

1

n∑  is a convergent p-series ( 2 1p = > ), so the series 
2

1

cos

n

n

n

∞

=

∑  converges by direct 

comparison to 
2

1

1

n n

∞

=

∑ . This means, in turn, that 
2

1

cos

n

n

n

∞

=

∑  converges absolutely. By Theorem 8.3, this 

series converges. ◊ 

 

 

Power Series Concluded 
 

We have learned all the convergence tests that we are going to learn in this course, and it is time to finally 

return to the topic of central importance to us in this chapter: power series and their intervals of 

convergence. The ratio test is typically used to get us started, but the tests from this section and Section 7 

are used for determining convergence at the endpoints of the intervals. Let's dive in. 

 

Example 6 

Find the interval of convergence of the power series 
1

( 5)

3

n

n
n

x

n

∞

=

−

⋅
∑ . 

Solution 

We begin, as we did in Section 6, by applying the ratio test to the general term of the series. But recall 

that we always actually applied the ratio test to the absolute value of the general term. When we first 

started doing this, it probably seemed like cheating. But now that we have worked through this section, 

we can see that we are actually finding an interval on which the series converges absolutely. 
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1 1

1 1

( 5) 3 3 ( 5)
lim lim

( 1) 3 ( 5) ( 1) 3 ( 5)

1
lim 5

( 1) 3

5

3

n n n n

n n n nn n

n

x n n x

n x n x

n
x

n

x

+ +

+ +
→∞ →∞

→∞

− ⋅ −
⋅ = ⋅ ⋅

+ ⋅ − + −

= ⋅ ⋅ −
+

−
=

 

In order for the ratio test to give convergence, we need this limit to be less than 1. 

5
1

3

5 3

3 5 3

2 8

x

x

x

x

−
<

− <

− < − <

< <

 

Therefore our "rough draft" interval of convergence is 2 8x< < . What we have actually shown is that the 

power series converges absolutely for these x-values. Therefore, by Theorem 8.3, the power series 

converges on this interval. (By way of reminder, I'll point out that this interval is symmetric about the 

center of the series, x = 5.) 

 Now we have to consider the endpoints: x = 2 and x = 8. These must be checked individually since 

they need not exhibit the same behavior as one another. 

 At x = 8, the power series is 
1 1 1

(8 5) 3 1

3 3

n n

n n
n n nn n n

∞ ∞ ∞

= = =

−
= =

⋅ ⋅
∑ ∑ ∑ . This is the harmonic series, which we 

know diverges. The power series diverges when x = 8. 

 At x = 2, the power series is 
1 1 1 1

(2 5) ( 3) ( 1) 3 ( 1)

3 3 3

n n n n n

n n n
n n n nn n n n

∞ ∞ ∞ ∞

= = = =

− − − ⋅ −
= = =

⋅ ⋅ ⋅
∑ ∑ ∑ ∑ . This is the alternating 

harmonic series, and we know that it converges conditionally. (Actually, the signs are all wrong; the 

alternating series starts with a positive term. But this does not affect convergence.) Therefore the power 

series converges at 2x = . 

 We put all the information together to obtain our final interval of convergence: 2 8x≤ < . The power 

series converges for all x-values in this interval, while it diverges for all x-values outside of this interval. 

This is the domain of the power series. It is the set of x-values for which the series makes sense. ◊ 
 

Practice 5 

Find the interval of convergence of the power series 
0

(3 )

4 1

n

n
n

x∞

= +
∑ . 

 

 To summarize our understanding of power series so far… 

 

1. Every power series has an interval of convergence. These are the x-values for which the series 

converges and for which we can get sensible values out of the infinite series. 

2. Every power series has a radius of convergence. The radius of convergence can be 0 (the power 

series converges only at its center), infinite (the power series converges for all x), or a positive 

finite number. In the latter case, the interval of convergence is an interval symmetric about its 

center whose width is twice the radius of convergence. 

3. The power series always converges absolutely in the interior of the interval of convergence. This 

is usually determined by the ratio test, but if the power series is geometric, then we can use the 

geometric series test. To determine whether the series converges (conditionally or absolutely) or 

diverges at its endpoints, we can use all the convergence tests that we have seen in this chapter. 



Section 8 – Varying-Sign Series 

 99 

4. We can integrate or differentiate a power series term by term to produce a new power series. The 

new power series will have the same radius of convergence (and center, of course), but its 

behavior at the endpoints may change. When we differentiate, we might lose endpoints from the 

interval of convergence (if the endpoints were convergent in the first place). Conversely, when 

we integrate we may gain endpoints. There is no general way to predict what will happen; you 

just have to apply convergence tests to the endpoints of the new series. 

 

In Section 10 we will use these facts in relation to power series that are specifically Taylor series. This 

will complete our study of series. 

 

 

Answers to Practice Problems 
 

1. All are alternating series except for (d). This should be clear for (a) and (b) if you simply write out a 

few terms. In (c) the alternating factor has been disguised slightly, but if you write out a few terms of 

cos( )nπ  and evaluate the trig expressions, you will see that this factor is indeed responsible for making 

the terms alternate in sign. The final series displays irregular sign variation. For a while it looks like there 

is a simple pattern to the signs: three positive, three negative, etc. But if you follow this series long 

enough, this pattern will break down. Even if the pattern held, though, we would not call the series 

alternating because the signs do not change with every term. 

 

2. For part (a), which is an alternating series, take 1
n n

a = . 1lim 0
nn→∞

=  and 1 1

1n n+
<  for all n. This series 

converges by the AST. 

In part (b), the series is alternating, but 
1

lim 1 0n

n
n

−
→∞

= ≠ . The alternating series test does not apply. The n
th
 

term test, however, tells us that this series diverges. 

The series in part (c) is not alternating. Write out a few terms to see this. The signs of the terms follow a 

clear pattern, but it is not one of strict alternation. We can conclude nothing about this series based on the 

AST. (It turns out that this series converges.) 

 

3. To be accurate to three decimal places is to have error less than 0.0005. Therefore, we want 

1 0.0005na
+

<  or, simply, 1
1

0.0005
n+

< . Solving for n gives n > 1999. Thus 2000s  is guaranteed to have the 

required accuracy. (This series converges much more slowly than the one in Example 3.) 

 

4. From our study of Maclaurin polynomials we know that 
2 4 6 23 3 3 3

cos(3) 1 ( 1)
2! 4! 6! (2 )!

n
n

n
≈ − + − + + − ⋅� . 

The error in this estimation is no more than the next term in the series—the first term we did not use. In 

this case that is, in absolute value, 
2 23

(2 2)!

n

n

+

+
. Using a calculator to scan a table of values, we find that 

2 23
(2 2)!

0.001
n

n

+

+
<  when n ≥ 6. This means that as long as we use an n value of at least 6, we will have the 

desired accuracy. But be careful. The degree of the polynomial being used is 2n, not n. Therefore, we 

need a 12
th
-degree Maclaurin polynomial to approximate cos(3) with error less than 0.001. The calculator 

value of cos(3) is about -0.98999, while 12 (3) 0.98994P = − , so we see that the polynomial approximation 

is well within the required tolerance. 
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5. We begin, as always, with the ratio test applied to the absolute value of the general term. 
1 1

1 1

(3 ) 4 1 4 1 3 3
lim lim

4 1 (3 ) 4 1 3 4

n n n n

n n n nn n

x
x x

x

+ +

+ +→∞ →∞

+ +
⋅ = ⋅ = ⋅

+ +
 

We require that 
3

1
4

x <  or 
4

3
x < . The rough draft interval of convergence is 

4 4

3 3
x− < < . Now we must 

check endpoints. 

 
4

3
x = : The series is 

( )4
3

0 0

3 4

4 1 4 1

n
n

n n
n n

∞ ∞

= =

⋅
=

+ +
∑ ∑ . This series diverges by the n

th
 term test: 

4
lim 1 0

4 1

n

nn→∞
= ≠

+
. Therefore the power series diverges at 

4

3
x = . 

 
4

3
x = − : Now the series is 

( )4
3

0 0

3 ( 1) 4

4 1 4 1

n
n n

n n
n n

−∞ ∞

= =

⋅ − ⋅
=

+ +
∑ ∑ . The alternation does not help the terms go to 

zero. This series still diverges by the n
th
 term test. The power series diverges at 

4

3
x = − . 

 The interval of convergence for the power series is 
4 4

3 3
x− < < . 
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Section 8 Problems 

 

In Problems 1-15, determine whether the given 

series converges absolutely, converges 

conditionally, or diverges. 

1. 1 1 1 1 1
1 8 27 64 125

− −+ + + + +�  

2. 3 5 62 4
1 4 9 16 25

− + − + −�  

3. 1
2

0

3 ( )n

n

∞

−

=

⋅∑  

4. 
1

( 1)
1

n

n

n

n

∞

=

− ⋅
+

∑  

5. 
2

2 1
( 1)

3 4

n

n

n

n

∞

=

+
− ⋅

−
∑  

6. 
0

( 2)

!

n

n n

∞

=

−
∑  

7. 
4

1

2

n n

∞

=

∑  

8. 
0

0.3 1.2n

n

∞

=

⋅∑  

9. 
0

3 1

!

n

n n

∞

=

+
∑  

10. 
0

cos( )

2 1n

n

n

π∞

= +
∑  

11. 
0

( 1) !

10

n

n
n

n∞

=

− ⋅
∑  

12. 
( 1)/2

2
1

( 1)n n

n n

+∞

=

−
∑  

13. 
2

1

2 cos

n

n

n

∞

=

−
∑  

14. 
1

sin

3n
n

n∞

=

∑  

15. 
2

0

( 3)

!

n

n n n

∞

=

−

+
∑  

16. Approximate the value of 
1

1

( 1)

2

n

n
n n

+∞

=

−

⋅
∑  using 

s10. Estimate how much error there is in this 

approximation. 

17. Approximate the value of 
3

1

( 1)
1

n

n

n

n

∞

=

− ⋅
+

∑  

using s15. Estimate how much error there is 

in this approximation. 

18. Approximate the value of 
2

1
1 ( 3)n

n

n∞

+
= −
∑  using 

s20. Estimate how much error there is in this 

approximation. 

19. How many terms are needed to approximate 

1

( 1)n

n n

∞

=

−
∑  to within 0.05? 

20. How many terms are needed to approximate 

3
1

( 1)
10

n

n

n

n

∞

=

− ⋅
+

∑  to within 0.05? 

21. How many terms are needed to compute the 

value of 
1

3
1

( 1)n

n n

+∞

=

−
∑  accurately to 3 decimal 

places? 

22. How many terms are needed to compute the 

value of 
2

2

cos( )

1n

n

n

π∞

= −
∑  accurately to 4 decimal 

places? 

23. Use the 10
th
 partial sum of 

1

1

( 1)n

n n

−∞

=

−
∑  and 

the alternating series error bound to give 

bounds on the value of the sum. That is, fill 

in the blanks: 
1

1

( 1)
____ ____

n

n n

−∞

=

−
≤ ≤∑ . 

24. Use the 10
th
 partial sum of 

0

cos( )

(2 )!n

n

n

π∞

=

∑  and 

the alternating series error bound to give 

bounds on the value of the sum. 

25. Look back at your answers to problems 16-

24. Which appear to converge faster (i.e., 

have less error for an equal number of terms 

in the partial sum), absolutely convergent or 

conditionally convergent series. Why? 



Section 8 – Varying-Sign Series 

 

 102 

26. Use the fourth-order Maclaurin polynomial 

for ( ) cos( )f x x=  to approximate cos(-1). 

Estimate the amount of error in your 

approximation using the alternating series 

error bound. 

27. Based on the alternating series error bound, 

what degree Maclaurin polynomial is 

required to approximate sin(5) with error 

less than 10
-6

? How about sin(0.5)? How 

about sin(0.01)? 

28. Recall that the Maclaurin polynomial of 

degree n for ( ) x
f x e=  is given by 

2

2! !
( ) 1

n
x x

n n
P x x= + + + +� . 

a. Use 5 ( )P x  to approximate the value of 

e
-2

. 

b. Use the alternating series error bound to 

estimate the amount of error in this 

approximation. 

c. Use Lagrange error bound to estimate 

the error in this approximation. 

d. In this particular case, which method is 

easier? Which gives a tighter bound on 

the error? 

e. Can you repeat parts (b)-(d) to estimate 

the error involved in approximating 2
e  

using 5 ( )P x ? Why or why not? 

29. Recall that the n
th
-degree Maclaurin 

polynomial for ( ) ln(1 )f x x= +  is given by 

2 3

( ) ( 1)
2 3

n
n

n

x x x
P x x

n
= − + − + − ⋅� . 

a. Use the fifth-degree Maclaurin 

polynomial to approximate ln(1.3) . 

b. Use the alternating series error bound to 

provide bounds for the value of ln(1.3) . 

c. Use Lagrange error bounds to estimate 

the error in your approximation from 

part (a). Which kind of error bound is 

more convenient to apply in this 

situation? 

30. Recall that the n
th
-degree Maclaurin 

polynomial for ( ) arctanf x x=  is given by  

3 5 2 1

3 5 2 1
( ) ( 1)

nnx x x
n n

P x x
+

+
= − + − + − ⋅� . 

a. Use the fact that 4arctan(1)π =  and the 

third-degree Maclaurin polynomial for 

the arctangent function to approximate 

the value of π. 

b. Use the alternating series error bound to 

estimate the error in your approximation 

from part (a). 

c. How many terms would you need in 

order to obtain a decimal approximation 

of π that is accurate to two decimal 

places? (Hint: Be careful of the 4.)
∗
 

31. Give an example of a series ( 1)n

na−∑  

(with 0
n

a > ) that converges absolutely, or 

explain why no such series exists. 

32. Give an example of a series ( 1)n

na−∑  

(with 0
n

a > ) that diverges, or explain why 

no such series exists. 

33. Give an example of a series na∑  (with 

0
n

a > ) that converges conditionally, or 

explain why no such series exists. 

34. Give an example of a convergent series 

na∑  such that 2

na∑  diverges. 

35. Give two divergent series na∑  and nb∑  

such that ( )n na b+∑  converges 

In Problems 36-41, identify whether the 

statement is true or false. If it is true, give a 

proof or explanation of why. If it is false, give a 

counter-example or explanation. 

                                                 
∗
 This approach to computing digits of π, while 

appealing in its simplicity, is completely useless in 

practice. Your answer to part (c) should indicate this. 

There are several series that converge to π much 

more rapidly.  One improvement is to use two 

arctangents, for example 1 1
4 2 3

arctan arctanπ = + . 

Replacing these arctangents with their corresponding 

series produces an approximation that is accurate to 

all decimal places displayed by a TI-84 after only 13 

terms. Question for you: Why does this approach 

converge so much more rapidly? 
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36. If 2

na∑  converges, then na∑  converges. 

37. If na∑  and na−∑  both converge, then 

na∑  converges. 

38. If na

n
∑  converges then na∑  converges. 

39. If na∑  converges absolutely, then na∑  

converges. 

40. If na∑  converges, then na∑  converges. 

41. If 
na∑  converges absolutely, then 

( 1)n

na−∑  converges. 

In Problems 42-56, find the radius and interval 

of convergence of the given power series. 

42. 
2

1

( 1)n

n

x

n

∞

=

+
∑  

43. 
2

0

3

(2 )!

n

n

n
x

n

∞

=

+
∑  

44. 
0

(3 )

2 1

n

n

x

n

∞

= +
∑  

45. 
2

0

!( 6)

5

n

n

n x

n

∞

=

−

+
∑  

46. 
0 3

n

n
n

x∞

=

∑  

47. 
0 3

n

n
n

x

n

∞

= ⋅
∑  

48. 
2

0 3

n

n
n

x

n

∞

= ⋅
∑  

49. 
2

0

!

3

n

n
n

n
x

n

∞

= +
∑  

50. 
0

( 4)n

n
n

x

n

∞

=

−
∑  

51. 
0

1

5

n

n

x∞

=

+ 
 
 

∑  

52. 
2

0 !

n

n

x

n

∞

=

∑  

53. 
2

2
1

( 2)

2

n

n

x

n n

∞

=

+

+
∑  

54. 
1

( 3)
1

n

n

n
x

n

∞

=

+
+

∑  

55. 
1

3

2 1

n
n

n
n

x
∞

= −
∑  

56. 
2

1

sin n

n

n
x

n

∞

=

∑  

57. Provide an example of a power series whose 

radius of converges is 0. 

58. Provide an example of a power series whose 

radius of convergence is infinite. 

59. Provide an example of a power series whose 

radius of convergence is finite and which 

diverges at both endpoints of its interval of 

convergence. 

60. Provide an example of a power series whose 

radius of convergence is finite and which 

converges at both endpoints of its interval of 

convergence. 

61. Provide an example of a power series whose 

radius of convergence is finite and which 

converges at the right endpoint of its interval 

of convergence, but not at the left endpoint. 

62. Let 
0

( ) n

n

f x x
∞

=

=∑ . 

a. Find the interval of convergence of this 

power series. 

b. Express ( )f x′  as a power series and 

find its interval of convergence. 

c. Express 
0

( )

x

f t dt∫  as a power series and 

find its interval of convergence. 

63. Let 
0

( 3)
( )

2

n

n

x
f x

n

∞

=

−
=∑ . 

a. Find the interval of convergence of this 

power series. 
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b. Express ( )f x′  as a power series and 

find its interval of convergence. 

c. Express 
0

( )

x

f t dt∫  as a power series and 

find its interval of convergence. 

64. Let 
2

2

0

( 1)
( ) ( 1)

3

n

n
n

n
f x x

∞

=

−
= +∑ . 

a. Find the interval of convergence of this 

power series. 

b. Express ( )f x′  as a power series and 

find its interval of convergence. 

c. Express 
0

( )

x

f t dt∫  as a power series and 

find its interval of convergence. 

65. The function f is defined by a power series 

as follows: 
0

( )
2 1

n

n

x
f x

n

∞

=

=
+

∑ . 

a. Find the interval of convergence of this 

series. 

b. Approximate ( 1)f −  by using a fourth-

degree Maclaurin polynomial for f. 

c. Estimate the error in your approximation 

from part (a) and give bounds for the 

value of ( 1)f − . 

66. The function f is defined by a power series 

as follows: 
0

( 3)
( ) ( 1)

2 !

n
n

n
n

x
f x

n

∞

=

−
= − ⋅

⋅
∑ . 

a. Find the radius of convergence of this 

series. 

b. Use the third partial sum of the series to 

approximate (4)f . 

c. Estimate the error in your answer to part 

(b). 

d. How many terms are needed in a 

polynomial approximation of f to 

compute (4)f  with error less than 10
-6

? 

67. Given a power series ( )n

nc x a−∑ , suppose 

that 1lim n

n
n

c
L

c

+

→∞
= , where L is positive and 

finite. 

a. What is the radius of convergence of 

this power series? 

b. Ignoring the question of endpoint 

convergence for the moment, what is the 

interval of convergence of this series? 

Give your answer in terms of a and L. 
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Section 9 – Conditional Convergence 
(Optional) 
 

 

In this section we will explore some of the ways in which conditionally convergent series behave in ways 

that are just plain weird. The purpose of including this section is twofold. First, I hope that by seeing 

some of the strange things that happen in the realm of conditional convergence you will gain an 

understanding of why absolutely convergent series are "better" in some way. Second, some of the bizarre 

results you will see in this section are really wild, and I think that is interesting for its own sake. You may 

find that some of the ideas here push you to think a little more abstractly than you normally do, and that is 

good for your development as a mathematician. 

 

 

Revisiting the Alternating Harmonic Series 
 

We know by now that the alternating series,  

 
1

1

( 1) 1 1 1 1 1
1

2 3 4 5 6

n

n n

+∞

=

−
= − + − + − +∑ � , (1) 

converges conditionally. I suggested in Section 8 that the sum of this series is about 0.693. You can try to 

convince yourself of this by looking at partial sums. Unfortunately, this series converges very slowly (see 

Practice 3 of Section 8), so you might have to take my word for now. In fact, I'll ask you to trust me a 

little further. The exact sum of the alternating harmonic series is 

 
1

1

( 1)
ln 2

n

n n

+∞

=

−
=∑ . (2) 

I don't know whether this will be hard to believe or not. Your calculator will show you that ln 2 0.693≈ , 

so if you believed the earlier claim about this series, this one might not be hard to take. We have actually 

seen some veiled hints as to why Equation (2) should be true. If you feel like looking for clues, I refer you 

to Section 3. In any event, in Section 10 we will make the case for Equation (2) explicitly. For now, 

please accept it on faith. It really is a true statement. You can find it on the internet. 

 Another thing we know at this point in our mathematical education is that addition is commutative. 

The commutative property of addition basically says that when you add, the order in which you add the 

terms does not matter: 5 8 8 5+ = + . Let's see how this plays out with the alternating harmonic series. 

1 1 1 1 1 1 1 1 1 1 1
ln 2 1

2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1
1

2 4 3 6 8 5 10 12

= − + − + − + − + − + − +

     
= − − + − − + − − +     
     

�

�

 

All I have done is reorder the terms in a particular way. I started by grouping the 1 (the first positive term) 

with the 1/2 (the first negative term). Then I tacked on the next negative term that had not yet been used. 

Then I added another group, this time of the smallest positive and negative terms that had not yet been 

used. Then I tacked on the next negative term. The process is repeated forever. Now that you have a sense 

for how this rearrangement is being performed, let's continue by simplifying the grouped expressions. 
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1 1 1 1 1 1 1 1 1 1 1
ln 2 1

2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1
1

2 4 3 6 8 5 10 12

1 1 1 1 1 1

2 4 6 8 10 12

1 1 1 1 1 1
1

2 2 3 4 5 6

1
ln 2

2

= − + − + − + − + − + − +

     
= − − + − − + − − +     
     

= − + − + − +

 
= − + − + − + 

 

=

�

�

�

�

 

 We conclude that 

 1
2

ln 2 ln 2= . (3) 

That certainly seems odd. I bet you thought the only number equal to half of itself was 0. I guess this 

means that ln 2 0= . But ln1 0= . It appears then that 2 must equal 1. Or consider another path to this 

conclusion: 
1
2

1
2

ln 2 ln 2 Equation (3)

1 Divide by ln 2.

2 1 Multiply through by 2.

=

=

=

 

We can "prove" a whole bunch of nonsense from Equation (3). For example, by the properties of 

logarithms this equation implies 1/2ln 2 ln 2=  or equivalently 2 2= . Hm. Strange. 

 Of course, if 2 = 1, then we can subtract 1 from both sides to obtain 1 = 0. At this point, it is not hard 

to show that all numbers are equal to zero and hence to one another. Mathematics as we know it is about 

to completely collapse. What went wrong? 

 

 

The Non-Commutativity of Addition 
 

Let's put our minds to rest about one truth. Equation (3) is not a valid statement. It is not true that ln 2  is 

equal to half of itself. Our derivation of (3) was flawed, and the error came in the process of rearranging 

the terms of (1). There was no problem with the rearrangement per se; every term in (1) is used once and 

only once in the rearranged series. (You should take a moment to convince yourself that this statement is 

true. It is.) Rather the problem was in our expectation that rearranging the terms of (1) would not affect 

the value of the sum. It turns out that when there are infinitely many terms involved, addition is not 

necessarily commutative. The order in which you add the terms can affect the sum. To repeat: addition is 

not always commutative when you are adding infinitely many things. That ought to be surprising. 

 We can be a little more specific about this new fact of mathematics. The series in (1) is conditionally 

convergent. The catastrophic events that unfolded in our derivation of (3) could never have happened if 

we had been working with an absolutely convergent series. In the absolutely convergent series, the terms 

are heading to zero so quickly that sliding the terms around does not make any difference. In other words, 

addition in the absolutely convergent case follows the same rules of addition that we have always 

believed and treasured; addition is commutative for absolutely convergent series. Why are conditionally 

convergent series different? What is the defect in them that destroys the commutativity of addition? 

 One way to think about this is to recognize that any conditionally convergent series has infinitely 

many positive terms and infinitely many negative terms. If this were not the case, the series could not 

converge conditionally; it would either diverge or converge absolutely. For example, if a series has 

finitely many negative terms, once you get past them you are left with what is effectively a positive-term 

series; if an exclusively positive-term series converges, it must do so absolutely (and the same for an 
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exclusively negative-term series). Now imagine a conditionally convergent series (for example, (1)), and 

look at the collection of positive terms separately from the negative terms. In this way we can parse the 

series into two sub-series. If the series we started with was conditionally convergent, both of these sub-

series must diverge. In the case of (1), the two sub-series are 
1

2 1n +
∑  and 

1

2n
−∑ , both of which 

clearly diverge by comparison to the harmonic series. This always happens with conditionally convergent 

series; it has to. If the sub-series did not both diverge to infinity, then they must converge. However, if the 

sub-series converge, they must do so because the terms are vanishing very quickly. (Remember that the 

sub-series have all the same sign, so the only way for them to converge is to do so absolutely—that is, 

quickly.) But if the terms go to zero quickly, then the original series should have converged absolutely, 

not conditionally. Therefore, we conclude the following Important Point: 

 

 Important Point: Any conditionally convergent series can be broken up into two divergent series, 

one consisting of only positive terms and the other of only negative terms. 

 

 If we let 
n

a  stand for the terms of the original series, 
n

p  be the positive terms, and 
n

q  be the 

negative terms, then the Important Point says 

( )

.

n n na p q= +

= ∞ + −∞

= ∞ − ∞

∑ ∑ ∑
 

As we know, ∞ − ∞  is an indeterminate form. Its value, if it has a one, is very sensitive to just how these 

infinities are approached. Every conditionally convergent series is a delicate balancing act of positive and 

negative terms. The precise balance is determined by the order in which the terms appear in the sum. 

Change the order, and you change the balance; the sum is affected. 

 Here is a different way to think about this. If a series Σan converges to a sum s, then that means that 

lim n
n

s s
→∞

= . The sum of the series is simply the limit of the partial sums. But the partial sums depend very 

crucially on the order in which the terms are listed. If you scramble the terms, the sequence of partial 

sums will be a completely different sequence. There is no reason to expect that a different sequence of 

partial sums would converge to the same limit. From this perspective, it is actually surprising that an 

absolutely convergent series' value is not dependent on the order of the terms. This helps us appreciate 

that absolute convergence really is a more robust kind of convergence than conditional convergence. 

 

 

Riemann's Rearrangement Theorem 
 

We showed at the beginning of this section that the terms of the alternating harmonic series, which 

converges to ln 2 , can be rearranged to converge to half of that value. In fact, the situation is much worse. 

If we rearrange the terms just right, then we can make them converge to any number we want. The order 

we want to put the terms in will depend on the target sum we are trying to hit. 

 For example, let's say we want to rearrange the terms of the alternating harmonic series in such a 

way as to force the rearranged series to converge to 1/3. This number is positive, so we will start with our 

positive terms, and we might as well start from the beginning with 1. But 1 is already too big. So let us 

start including the negative terms in our sum, in order, until our partial sum drops below 1/3. 
1
3

1 1 1
2 2 3

1 1 1 1
2 4 4 3

1 1

1

1

= >

− = >

− − = <
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Now we have gone too far with the negative terms, so let's add positive terms until we overshoot 1/3 

again. 
1 1 1 1
2 4 4 3

71 1 1 1
2 4 3 12 3

1

1

− − = <

− − + = >
 

We have overshot our goal again, so it is time to switch to negative terms. Skipping ahead a bit, we will 

get the following series: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

2 4 3 6 8 5 10 12 7 14 16 9 18 20 11 22 24
− − + − − + − − + − − + − − + − − +�  

This rearrangement of the alternating series will converge to one third. 

 If we had wanted the series to converge to π instead of 1/3, we could have done that as well. For any 

number you want, there is a rearrangement of the terms of the alternating harmonic series that gets there. 

And there is nothing special about the alternating harmonic series. What we have seen of the alternating 

harmonic series is true of all conditionally convergent series, and it is stated in a theorem due to Riemann 

(of Riemann sum fame). 

 

Theorem 9.1 – Riemann's Rearrangement Theorem 

For any conditionally convergent series and for any number s there exists a rearrangement of the terms of 

the series such that the new sequence of partial sums converges to s. 

 

 I think that's just crazy. It is also the reason why we as mathematicians feel a bit more comfortable 

with absolutely convergent series. Absolutely convergent series (like power series in the interior of their 

intervals of convergence) are simply much better behaved. 
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Section 10 – Taylor Series 
 

 

Taking Stock of Where We Are 
 

This is the final section of this chapter, so now would be a good time to look back at what our goals were 

from the beginning and see how we are doing so far. We closed Section 2 with four questions about 

modeling functions with polynomials. For reference, here they are. 

 

1. Is there a systematic way to come up with the coefficients of a Taylor polynomial for a given 

function?  

2. Can we know how big the error will be from using a Taylor polynomial? 

3. When can we extend the interval on which the Taylor polynomial is a good fit indefinitely? 

4. Can we match a function perfectly if we use infinitely many terms? Would that be meaningful?  

 

 We answered Question 1 in Section 3. The coefficient for the n
th
-degree term should be 

( ) ( )

!

n
f a

n
, 

where a is the center of the polynomial. Question 2 has been answered twice. In special cases, we can use 

the alternating series error bound from Section 8. The more general answer to this question, though, came 

in Section 4 in the form of Taylor's Theorem and the Lagrange error bound. 

 Questions 3 and 4 take us beyond polynomials and into the realm of power series. As you might 

expect, the answer to Question 3 has everything to do with interval of convergence, though we need to 

talk about Question 4 before we can appropriately frame Question 3 and its answer. In any event, the tools 

we developed in Sections 6-8 are crucial for determining intervals of convergence. 

 And finally we come to Question 4, the most important question for this chapter. The second part of 

this question—Would it be meaningful to have infinitely many terms?—has been answered already. A 

power series is a "polynomial" with infinitely many terms. Such a thing does indeed make sense, at least 

on its interval of convergence. The answer to the first part—Can we match a function perfectly with a 

power series?—is: Yes! (Actually, we have to qualify that quite a bit. Most functions that we care about 

can be matched perfectly by a power series, though there are plenty of functions that can't be. And of 

course, even for the ones that can be represented as a power series, this representation only makes sense 

on the interval of convergence of the series.) The name we give a power series that represents a given 

function is a Taylor series (or a Maclaurin series if the center is 0). 

 

 Let's look at a couple examples. We already know that the sine function can be approximated by 
3 5 2 1

2 1 3! 5! (2 1)!
( ) ( 1)

nnx x x
n n

P x x
+

+ +
= − + − + − ⋅� . This is a Maclaurin polynomial. The Maclaurin series for the sine 

function is simply 
3 5 2 1 2 1

3! 5! (2 1)! (2 1)!
0

( 1) ( 1)
n nn nx x x x

n n

n

x
+ +

∞

+ +

=

− + − + − ⋅ + = − ⋅∑� � ; just tack a " +� " on the end. This 

power series is an exact representation of the sine function. It is not an approximation. It is the function.
∗
 

                                                 
∗
 In fact, we can take this power series to be the definition of the sine function. In more advanced texts, having clear 

and precise definitions for transcendental functions is very important. Defining the trigonometric function in terms 

of the ratio of side lengths in a right triangle or in terms of the coordinates of points on the unit circle can be quite 

awkward. Two alternative approaches that trade our geometric understanding of the sine function for something that 

is easier to state precisely and work with theoretically are to define ( ) sinf x x=  to be the unique solution to the 

initial value problem 0y y′′ + = , (0) 0y = , (0) 1y′ =  or to define ( ) sinf x x=  as the Maclaurin series we see here. 



Section 10 – Taylor Series 

 110 

 For any power series, we must ask about the interval of convergence. We suspect from our work in 

Section 2 that the interval of convergence for the sine series will be the entire real line. In fact, this is so, 

as the ratio test proves. 

 
1 2 3 2

2 1

( 1) (2 1)!
lim lim 0 1

(2 3)! ( 1) (2 3)(2 1)

n n

n nn n

x n x

n x n n

+ +

+→∞ →∞

− +
⋅ = = <

+ − + +
 

Since this limit is less than 1, independent of the x-value in question, the sine series converges for all x. 

The radius of convergence is infinite. 

 But hang on a second. We know that the series 
2 1

0

( 1)
(2 1)!

n
n

n

x

n

+∞

=

−
+

∑  converges, but how do we know it 

converges to the sine function? The partial sums (Maclaurin polynomials) were created to model the sine 

function, but that was just a model. How do we know that the series fits the sine function exactly for all x-

values? We can prove that this is indeed the case by using Taylor's Theorem. Applied to the sine function, 

Taylor's Theorem says that 

3 5 2 1

sin( ) ( ) ( )

( 1) ( )
3! 5! (2 1)!

n n

n
n

n

x P x R x

x x x
x R x

n

+

= +

= − + − + − ⋅ +
+

�
 

where 1( ) ( )
( 1)!

n

n

M
R x x a

n

+
≤ −

+
. In the case of the sine function, we can take M = 1 since all derivatives 

of the sine function are bounded by 1 on all intervals. Our center was chosen to be zero, so a = 0. This 

means that 

 11
( )

( 1)!

n

nR x x
n

+
≤ ⋅

+
. (1) 

To see what happens as we add infinitely many terms to the polynomial, we simply take the limit of (1). 
1

lim ( ) lim 0
( 1)!

n

n
n n

x
R x

n

+

→∞ →∞
≤ =

+
 

This tells us that the remainder—the error between the polynomial approximation and the actual value of 

the sine function—goes to zero as we pass to the limiting case of the power series. For any x-value, the 

Maclaurin series for the sine function has no error. This series is the sine function. 

 We will typically skip the verification that ( )
n

R x  goes to zero as n → ∞ , as it will be the norm for 

the functions that we care about. However, you should be aware that there are some naughty functions out 

there whose Taylor series converge, but do not converge to the function being modeled. You can play 

with some examples in the problems. 

 For our second example, let us look at the Maclaurin series for ( ) ln(1 )f x x= + . The Maclaurin 

polynomial for this function is given by 
2 3 1

2 3
( ) ( 1)

nnx x x
n n

P x x
+

= − + − + − ⋅� , so we will brazenly assert 

that the Maclaurin series is  
2 3

1 1

1

ln(1 ) ( 1) ( 1)
2 3

n n
n n

n

x x x x
x x

n n

∞
+ +

=

+ = − + − + − ⋅ + = − ⋅∑� � . 

Now that we have a power series, we need to know what the interval of convergence is. We apply the 

ratio test. 
2 1

1

( 1)
lim lim

1 ( 1) 1

n n

n nn n

x n n
x x

n x n

+ +

+→∞ →∞

−
⋅ = ⋅ =

+ − +
 

We need 1x < , or 1 1x− < < . We now check for convergence at the endpoints. 
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 1x = : 1

1 1 1

( 1) 1 1
( 1)

n
n

n n nn n n

∞ ∞ ∞
+

= = =

− −
− ⋅ = = −∑ ∑ ∑ . This is the (opposite of the) harmonic series. It diverges. 

 1x = : 
1

1

1 1

1 ( 1)
( 1)

n n
n

n nn n

+∞ ∞
+

= =

−
− ⋅ =∑ ∑ . This is the alternating harmonic series. It converges. 

We conclude that the interval of convergence for this series is 1 1x− < ≤ . It is reassuring that the series 

diverges when x is -1. If we plug -1 in for x in ln(1 )x+ , we obtain ln(0), which is undefined. The fact that 

our Maclaurin series is consistent with this feature of the function it represents lends credence to the idea 

that the series is the function, at least within the interval of convergence. At the other end of the interval, 

consider what happens when we plug in 1 for x. 

1

1

1

1

1

1

ln(1 ) ( 1)

1
ln(1 1) ( 1)

( 1)
ln(2)

n
n

n

n
n

n

n

n

x
x

n

n

n

∞
+

=

∞
+

=

+∞

=

+ = − ⋅

+ = − ⋅

−
=

∑

∑

∑

 

This justifies the claim made in Section 9 that the sum of the alternating harmonic series is none other 

than the natural logarithm of 2. 

 We have not yet shown a graph of this function with its Maclaurin polynomials, so that is included in 

Figure 10.1. 

 

 
Figure 10.1: Maclaurin polynomials of degree n for ( ) ln( 1)f x x= += += += +  

 

 

 We are in danger of getting ahead of ourselves, so let's pause and state formally what we are talking 

about. 

 

 

Taylor Series 
 

Definition: If a function f is differentiable infinitely many times in some interval around x a= , then the 

Taylor series centered at a for f is 
( )

0

( )
( )

!

n
n

n

f a
x a

n

∞

=

−∑ . 

 If 0a = , then we can call the series a Maclaurin series. 
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 As you can see, a Taylor series is a special case of a power series where the coefficients 
n

c  are 

determined by the function in question and the chosen center: 
( ) ( )

!

n

n

f a
c

n
= . Though it is not part of the 

definition, we have seen that the Taylor series for a function is an alternative representation of the 

function that (in the nice cases that we care about) is perfectly faithful to how we understand the function 

to behave. This is something that is still amazing to me; by analyzing the derivatives of f at a single point, 

we are able to build a representation of f that is valid anywhere within in the interval of convergence. For 

example, when we developed the Maclaurin series for the sine function, we were able to create a power 

series that describes how the sine function behaves at any x-value by looking very closely at its behavior 

at x = 0. And we could just as easily have chosen a different center. By looking at, say, 3
4

x π= , we still 

would have extracted enough information to represent the sine function for all x. It is as if every point on 

the curve has all the information resting inside of it to create the entire function. The DNA (the values of 

the derivatives) is there in every cell (x-value) of the organism (the function). In the case of 

( ) ln(1 )f x x= + , the power series even seemed to know where the vertical asymptote would be! The 

interval of convergence ended just as we hit the edge of the domain of f. How did it know? 

 In practice, we often do not need to resort to the definition to build a Taylor series for a given 

function. First of all, so many of the functions we care about have been done already; the table at the end 

of Section 3 can be extrapolated with a " +� " to give Maclaurin series for the most commonly 

encountered functions. It remains for us, of course, to find their intervals of convergence. 

 Furthermore, we can use the same tricks that we used to generate new Taylor polynomials to 

generate new Taylor series. We can substitute into known Taylor series, manipulate known series 

algebraically, differentiate and integrate term by term, and exploit the geometric series sum formula just 

as we have been doing all along. It is only when we encounter a legitimately new function or are changing 

the center of the series expansion that we have to go back to the definition for guidance in determining the 

coefficients. 

 

 

Another Perspective on Radius of Convergence 
 

 The standard way to determine radius of convergence is to apply the ratio test to the absolute value 

of the general term of the series. However, there is a short-cut. The radius of convergence of a Taylor 

series is always as big as it can be. Look back at the example of the Maclaurin series for ( ) ln(1 )f x x= + . 

This series could not possibly converge at 1x = −  since the function it represents is not defined there. But 

the series does converge for every x-value between -1 and the center. The radius of convergence is 1—the 

distance from the center to the end of the function's domain. On the other side, the interval of 

convergence ended at 1x =  because the Maclaurin series must have an interval of convergence that is 

symmetric about its center. 

 This will always be the case. The radius of convergence will always be as large as it can be without 

including any singularities of the function. Consider 
0

1
( )

1

n

n

g x x
x

∞

=

= =
−

∑ . This series is geometric, with 

r x= , so it converges for 1 1x− < < . This is as big an interval of convergence as you can have with a 

center at 0x = . The vertical asymptote in the graph of g is at x = 1, one unit away from the center, so the 

radius of convergence is 1. If you choose a different center, you can find a Taylor series with a different 

radius of convergence because the distance from the center to the asymptote will be different. This idea is 

explored in the problems. 
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 But what about 
2

1
( )

1
h x

x
=

+
? The domain of h includes all real numbers. Yet the Maclaurin series 

2

0

( 1)n n

n

x
∞

=

−∑  is a geometric series with 2
r x= , so it converges only for 1 1x− < < . This seems to 

contradict the point I am trying to make about an interval of convergence being as big as it can be before 

including a singularity of the function. We have to look in a different direction to understand this function, 

this time into the complex plane. The function h is defined for all real numbers, but it is not defined for 

all numbers. Specifically, h is undefined if x i= ± , as either of these x-values makes the denominator 

vanish. Both i and –i are one unit away from the origin of the complex plane, so the radius of convergence 

of the Maclaurin series for h can be no larger than 1. In fact, the Maclaurin series for h converges for 

every number—real and complex—that is within one unit of the origin in the complex plane. 

 Suddenly all the terminology involving centers and radii of convergence make more sense. These 

terms suggest circles, and you may have been wondering where these circles are. They are in the complex 

plane. A power series converges for every complex number z that is within R units of the center (R being 

the radius of convergence). We do not need to go into the complex plane much for this course, but it does 

make sense of the terms that we have been using all along. 

 

 

Applications of Taylor Series: Integrals, Limits, and Sums 
 

Okay, so why do we care? I care about Taylor series because I think they are really, really cool. You are 

free to disagree, but if you do I will have to present some more concrete examples of their utility. 

 The first has to do with filling a major hole in our ability to do calculus. Your calculus course has 

been mainly about finding and using derivatives and antiderivatives. Derivatives are no problem. Between 

the definition of the derivative and the various differentiation rules, you should be able to quickly write 

down the derivative of any differentiable function you meet. Antidifferentiation is trickier; many 

functions simply do not have explicit antiderivatives. We cannot integrate them. Taylor series provide us 

with a way for circumventing this obstacle, at least to a certain extent. 

 

Example 1 

Evaluate 
2x

e dx∫ . 

Solution 

The function 
2

( ) x
f x e=  has no explicit antiderivative,  so we cannot approach this problem directly. 

However, we can replace 
2

x
e  with its Maclaurin series. Recall that 

2

0

1
2! ! !

n n
x

n

x x x
e x

n n

∞

=

= + + + + + =∑� � , 

whence it follows by substitution that 

( )
( ) ( )2

2
2 2

2

4 2 2
2

0

1
2! !

1 .
2! ! !

n

x

n n

n

x x
e x

n

x x x
x

n n

∞

=

= + + + + +

= + + + + + =∑

� �

� �

 

We can integrate this series term by term. 
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2
4 2

2

3 5 2 1

1
2! !

3 5 2! (2 1) !

n
x

n

x x
e dx x dx

n

x x x
C x

n n

+

 
= + + + + + 

 

= + + + + + +
⋅ + ⋅

∫ ∫ � �

� �

 

I put the constant of integration at the front to avoid confusion with the ellipsis at the end. 

 In one sense, this is only a partial solution to the problem. We still cannot get an explicit 

antiderivative, but we can at least give a series representation: 
2

2 1

0 (2 1) !

n
x

n

x
e dx C

n n

+∞

=

= +
+ ⋅

∑∫ . As needed, 

partial sums can be taken for computation. ◊ 

 

 This idea is also useful for definite integrals. 

 

Example 2 

Compute 
2

1

0

x
e dx∫ . 

Solution 

2

11 3 5 7

0 0

0

3 5 2! 7 4!

1 1 1
1

3 5 2! 7 4!

1

(2 1) !

x

n

x x x
e dx x

n n

∞

=

 
= + + + + 

⋅ ⋅ 

= + + + +
⋅ ⋅

=
+ ⋅

∫

∑

�

�  

Again, partial sums can be used for specific computation. ◊ 

 

Practice 1 

Use Taylor series to compute ( )3sin x dx∫  and 
1/2

4

0

1 x dx+∫ . 

 

 Another handy application of Taylor series is to simplify the computation of limits. We saw a 

glimmer of this back in Section 2, long before we were ready to really make use of it. But now that we 

know that a Taylor series for a function is the function, we are justified in replacing any function with its 

Taylor series. 

 

Example 3 

Use Maclaurin series to help evaluate 
0

sin
lim
x

x

x→
 and 

0

1 cos
lim
x

x

x→

−
. 

Solution 

First we replace sin x  with its Maclaurin series in the first limit. 

( )
3 5

2 43! 5!

3! 5!
0 0 0

sin
lim lim lim 1

x x
x x

x x x

xx

x x→ → →

− + −
= = − + −

�
�  

Every term other than the first has an x in it, and will therefore go to zero as 0x → . This leaves only the 

leading 1 remaining. 
0

sin
lim 1
x

x

x→
= . 

 We use the same trick with the second limit, replacing cos x  with its Maclaurin series. 
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( )
2 4 6

2 4 6 3 5
2! 4! 6! 2! 4! 6!

0 0 0 0

1 11 cos
lim lim lim lim 0

2! 4! 6!

x x x x x x

x x x x

x x x x

x x x→ → → →

− − + − +  − + −−
= = = − + − = 

 

� �
�  

This time all the terms have an x in them after simplifying, so the limit reduces quickly and easily to 0.
∗
 ◊ 

 

Practice 2 

Use a Maclaurin series to help evaluate 
20

1
lim

x

x

e

x→

−
. 

 

 We can even sometimes use Taylor series to sneak out a way to find the sum of a thorny infinite 

series of constants. Despite spending all this time testing whether series converge, we have not had much 

success finding the actual sum of a series unless it is geometric or telescoping. We have evaluated a 

couple other sums here and there by using special tricks, and Taylor series provide yet another way. 

 

Example 4 
Evaluate the following series. 

  a. 
1 1 1

1
2! 4! 6!

− + − +�  b. 
3 5 71 1 1

2 2 21
2

(tan ) (tan ) (tan )
tan

3 5 7
− + − +�  

Solution 

a. The general term of this series is 
1

( 1)
(2 )!

n

n
− ⋅ . The series alternates, and the denominators are the 

factorials of even numbers. That reminds us of the cosine Maclaurin series whose general term is 
2

( 1)
(2 )!

n
n x

n
− ⋅ . In fact, this is the given series, except that 2n

x  has become 1. This can easily happen if 

1x = . Hence the given series is the cosine series evaluated at x = 1. Its value must be cos(1). I 

encourage you to compute some partial sums and check. 

 (Note: Another solution to the equation 2 1n
x =  is 1x = − . Was it right of me to ignore this 

possibility?) 

b. There are a couple clues here, the most obvious of which is the bizarre, recurring appearance of 
1
2

tan  in the series. This already puts me in mind of tangents or perhaps arctangents. In any event, 

the general term of the series is 
2 11

2
(tan )

( 1)
2 1

n

n

n

+

− ⋅
+

. The series is alternating, has only odd powers, 

and has only odd denominators—not factorial denominators. A quick scan of the table of Maclaurin 

polynomials in Section 3 shows that this is indeed consistent with the arctangent series whose 

general term is 
2 1

( 1)
2 1

n
n x

n

+

− ⋅
+

. This series is the arctangent series evaluated at 1
2

tanx = ; its value is 

( )1 1
2 2

arctan tan = .   ◊ 

 

 

 

 

                                                 
∗
 These limits are easily evaluated using l'Hôpital's Rule, but that is generally frowned upon. You may recall that 

these limits were important in developing the derivatives of the sine and cosine functions, so using  l'Hôpital's 

Rule—which assumes you already know the derivatives—is circular. However, if we define these functions as their 

power series, as mentioned in an earlier footnote, the limits become a cinch. On the other hand, since we can also 

differentiate a power series term by term, we no longer need these limits to find the derivatives… 
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Practice 3 
Evaluate the following very important sums. 

  a. 
1 1 1

1 1
2! 3! 4!

+ + + + +�  b. 
1 1 1

1 1
2! 3! 4!

− + − + −�  

 

 In the problems you will have the opportunity to explore some other crafty approaches to using 

series for evaluating sums. 

 

 

Applications of Taylor Series: Differential Equations 
 

 Another important use of Taylor series is in the solution of differential equations. Since many 

phenomena in the physical sciences are expressed as differential equations (Newton's Third Law, for 

example, states that 
2

2

d x
F m

dt
= ⋅ .), solving differential equations is an indispensable tool for 

understanding the world around us. However, it is frequently the case that the differential equations we 

use as models are unsolvable. Taylor series give us a way to handle such situations. 

 There are two ways that a differential equation can be unsolvable to us. The first is if its solution 

requires an integration that we cannot perform. An example of this would be the differential equation 

( )2sin
dy

x
dx

= . 

But this difficulty is not new to us; overcoming it amounts to no more than using Taylor series for 

antidifferentiation, a topic that we just discussed. 

 The other way that a differential equation can stymie us is if it is not separable. This is where Taylor 

series come into play in a novel and interesting way. 

 

Example 5 

Solve the initial value problem 2y x y′ = − , (0) 0y = . 

Solution 

First, convince yourself that this differential equation is not separable and therefore cannot be solved by 

methods you have probably learned so far. 

 We will begin by supposing that there is a solution of the form 

 2 3

0 1 2 3y c c x c x c x= + + + +� . (2) 

That is, we assume that there is a Maclaurin series for y. We also need y' since it appears in the 

differential equation. That is obtained simply by differentiating. 

 2

1 2 32 3y c c x c x′ = + + +�  (3) 

From (2) it follows that 2x y−  (the right side of the differential equation) is given by 

 ( ) ( )2 3 2 3

0 1 2 3 0 1 2 32 2 1 2 2 2x c c x c x c x c c x c x c x− + + + + = − + − − − −� � . (4) 

Combining (3) and (4), we obtain the following. 

( )2 3 2 3

1 2 3 4 0 1 2 3

2

2 3 4 2 1 2 2 2

y x y

c c x c x c x c c x c x c x

′ = −

+ + + + = − + − − − −� �
 

Now we equate the coefficients of like powered terms. For example, the constant term on the left side 

must equal the constant term on the right. Therefore 

1 02c c= − . 

Continuing on in this fashion we obtain the following relationships. 
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2 1

3 2

4 3

2 1 2

3 2

4 2

c c

c c

c c

= −

= −

= −

�

 

In general, for 2n > , 12
n n

nc c
−

= − . 

 Now this is a big mess of coefficients, but we can use our initial condition to compute as many of 

them as desired. Since (0) 0y = , Equation (2) becomes 
2 3

0 1 2 30 0 0 0c c c c= + ⋅ + ⋅ + ⋅ +� . 

Therefore, 0 0c = . Since 1 02c c= − , 1 0c =  as well. We can continue to just plug and chug. 
1

2 1 2 2 2

1 1
3 2 3 32 3

1 2 1
4 3 4 43 3 6

1 1 1
5 4 5 56 3 15

2 1 2 2 1 2 0

3 2 3 2 1

4 2 4 2

5 2 5 2

c c c c

c c c c

c c c c

c c c c

−

−

− −

= − ⋅ ⇒ = − ⋅ ⇒ =

= − ⇒ = − ⋅ = − ⇒ =

= − ⇒ = − ⋅ = ⇒ =

= − ⇒ = − ⋅ = ⇒ =

�

 

Hence, the solution to our initial value problem is 2 3 4 51 1 1 1
2 3 6 15

y x x x x= − + − +� . 

 We have our answer, and it is fine to consider the problem solved at this point. However, I would 

like to look closer at the solution. Had we not reduced any of the fractions in computing the s
n

c , we 

would have obtained 

( )

( )

( )

3 4 5

2 3 4 5

2 3 4 5

2 3 4 581 2 4
2 6 24 120

2 8 16 321
4 6 24 120

(2 ) (2 ) (2 ) (2 )1
4 2 6 24 120

(2 ) (2 ) (2 ) (2 )1
4 2! 3! 4! 5!

2

.

x x x

x x x x

x x x x

y x x x x

x

= − + − +

= − + − +

= − + − +

= − + − +

�

�

�

�

 

Pulling out the 1/4 was a trick to make the powers of 2 in the numerators match the powers on the xs that 

were already there. When we rewrite the series this way, it looks a lot like some kind of exponential 

because of the factorial denominators. However, a 2x has been substituted for x, and the series alternates, 

which suggests that the 2x is actually a -2x. 

( )
2 3 4 5( 2 ) ( 2 ) ( 2 ) ( 2 )1

4 2! 3! 4! 5!

x x x x
y

− − − −
= + + + +�  

We are just missing the first two terms in the series for 2x
e

− , namely 1 and -2x. Therefore, I will take the 

leap and suggest that  

( ) ( )2 21 1
4 4

(1 2 ) 2 1x x
y e x x e

− −
= − − = − + . 

I leave it to the reader to verify that this function does indeed satisfy both the differential equation and the 

initial condition. ◊ 

 

 The fact that the solution to Example 5 was actually an elementary function begs the question of 

whether we could have found it by some direct method. As it turns out, there is a method for solving 

differential equations like the one in Example 5 without resorting to series. The trick is to use something 

called an integrating factor, and you will learn about it if you take a course in differential equations. In 

fact, you will learn several tricks for solving differential equations, but none of them is a cure-all. There 

are still plenty of differential equations that cannot be solved except by series expansion. We consider one 

in our next example. 
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Example 6 

The Airy equation is the differential equation 0y xy′′ − =
∗
 or y xy′′ = . Solve this equation subject to the 

initial conditions (0) 1y =  and (0) 0y′ = . 

Solution 

The general approach is just like Example 5, just with an extra derivative. We again suppose that there is 

a Maclaurin series solution of the form 

 2 3 4 5

0 1 2 3 4 5y c c x c x c x c x c x= + + + + + +� .  (5) 

It follows that  

 2 3 4

1 2 3 4 52 3 4 5y c c x c x c x c x′ = + + + + �  (6) 

and 

 2 3

2 3 4 52 6 12 20y c c x c x c x′′ = + + + +� . (7) 

Also, using (5) we can determine that 

 2 3 4 5 6

0 1 2 3 4 5xy c x c x c x c x c x c x= + + + + + +� . (8) 

 Now we can represent the differential equation by combining (7) and (8). 

 2 3 2 3 4 5 6

2 3 4 5 0 1 2 3 4 52 6 12 20c c x c x c x c x c x c x c x c x c x+ + + + = + + + + + +� �  (9) 

Equating the coefficients of like powers of x from (9) gives the following equalities. 

2

3 0

4 1

5 2

6 3

3

2 0

6

12

20

30

( 1) n n

c

c c

c c

c c

c c

n n c c
−

=

=

=

=

=

− =

�

�

 

We see immediately that 2 0c = . But since 5 220c c= , we must have 5 0c =  as well. In fact, since every 

coefficient is a multiple of the coefficient that came three before it, we must have 8 110, 0c c= = , and in 

general 3 2 0
k

c
+

=  where k is any non-negative integer. 

 Now it is time to use our initial conditions. Let's start with (0) 0y′ = . From equation (6), this 

condition implies that 1 0c = . In turn, this means that 4 0c = , 7 0c = , and in general that 3 1 0
k

c
+

= . 

 The condition that (0) 1y = , when substituted into (5), implies that 0 1c = . This in turn implies that 

36 1c = , or 1
3 6

c = . Next, 1
6 6

30c = , so 1
6 180

c = . The particular solution to this differential equation is 

 3 61 1
6 180

1y x x= + + +� . (10) 

To my knowledge, there is no explicit formula for this function. Some partial sums (i.e., Maclaurin 

polynomials) for this function are shown in Figure 10.2 (next page). The black curve is the 99
th
 partial 

sum.  ◊ 

 

                                                 
∗
 The Airy equation originally came up in George Airy's studies of the rainbow and has since been useful in 

quantum mechanics and other areas. The particular solution to the Airy equation that we will look at in this example 

is significant in that it has a turning point—a point where the function switches from being oscillatory like a sine or 

cosine to explosive like an exponential. 
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Figure 10.2: Maclaurin polynomials of degree n for the Airy function (10) 

 

 

Euler's Formula 
 

As a final example of the usefulness and beauty of Taylor series, we will derive an amazing and 

surprising result called Euler's Formula. This will involve looking at functions whose inputs are allowed 

to be complex numbers. We have not looked at this yet, except briefly in our discussion of radius of 

convergence, but there is nothing special that we will need to worry about for what we are about to do. 

The number i is a constant, and it acts just like any other constant. It is useful to recall the powers of i 

before we begin. 
0

1

2

3 2

4 3

5 4

1

1

1

i

i i

i

i i i i

i i i

i i i i

=

=

= −

= ⋅ = −

= ⋅ =

= ⋅ =

�

 

Notice that the values repeat cyclically. 

 We begin by considering the function ix
e  as a Maclaurin series. To do this, we simply need the 

regular exponential series with (ix) substituted for x. 
2 3 4 5 6 7

2 3 4 5 6 7

( ) ( ) ( ) ( ) ( ) ( )
1

2! 3! 4! 5! 6! 7!

1
2! 3! 4! 5! 6! 7!

ix ix ix ix ix ix ix
e ix

x ix x ix x ix
ix

= + + + + + + + +

− − − −
= + + + + + + + +

�

�

 

In the second line all that we have done is simplify the powers of i. 

 Next we will group the real terms and the imaginary terms, factoring the i out of the imaginary group. 

This regrouping is legal because the series for the exponential function converges absolutely for all inputs. 
2 3 4 5 6 7

2 4 6 3 5 7

1
2! 3! 4! 5! 6! 7!

1
2! 4! 6! 3! 5! 7!

ix x ix x ix x ix
e ix

x x x x x x
i x

− − − −
= + + + + + + + +

   
= − + − + + − + − +   
   

�

� �

 

 The two grouped series should look familiar. They are simply the cosine and sine series respectively. 

We conclude from this that  
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cos sinix
e x i x= + . 

This is Euler's Formula. 

 Observe the crazy things that Euler's Formula suggests. It tells us that when we look in the complex 

plane there is a certain equivalence between sinusoidal and exponential functions. The exponential 

function suddenly has a periodic or oscillatory behavior. Perhaps even stranger, the sine and cosine 

functions have exponential character; they grow without bound in the complex plane! 

 Euler's Formula is not just a curious result of manipulating Maclaurin series. It is tremendously 

useful for computation with complex numbers. We will show just a hint of this by plugging in π for x. 

cos sin

1 0

1

i

i

i

e i

e i

e

π

π

π

π π= +

= − + ⋅

= −

 

This is absolutely insane. The number e is a transcendental number, a number that is impossible to 

express precisely in our decimal number system. We take that number, raise it to the imaginary 

transcendental number iπ, and we get an integer! It is almost unbelievable. Not only do we get an integer, 

but we get a negative integer. Euler's formula shows us that exponential quantities can be negative when 

their inputs are complex, something that cannot happen for real inputs. 

 Mathematicians often like to take our last result and add 1 to both sides, giving 

1 0i
e

π
+ = . 

This relatively simple formula relates the five most important constants in mathematics: 0 (the additive 

identity), 1 (the multiplicative identity), π (the ratio of the circumference to the diameter of any circle), e 

(the base of the natural logarithm), and i (the imaginary constant). It is a truly remarkable statement that 

ties together many areas of mathematics that we otherwise might never have imagined to be connected. 

Basic arithmetic, the numbers e and π, the trigonometric functions, the exponential function, and complex 

numbers all arose at different points in history to solve completely different problems. But Euler's 

Formula shows us that for some reason these ideas and tools were all inevitably related from the start. 

There is something deep going on here, and if that is not an invitation to continue studying mathematics, I 

am not sure what is. 

 

 

Answers to Practice Problems 
 

1. We start with finding a Taylor series for the first integrand by substituting into the Maclaurin series for 

the sine function. 

( )
( ) ( ) ( )

3 5 2 1
3 3 3

3 3

9 15 6 3
3

sin ( 1)
3! 5! (2 1)!

( 1)
3! 5! (2 1)!

n

n

n
n

x x x
x x

n

x x x
x

n

+

+

= − + − + − ⋅ +
+

= − + − + − ⋅ +
+

� �

� �

 

Now for the integral. 

( )
9 15 21

3 3

4 10 16 22

6 4

0

sin
3! 5! 7!

4 10 3! 16 5! 22 7!

( 1)
(6 4) (2 1)!

n
n

n

x x x
x dx x dx

x x x x
C

x
C

n n

+∞

=

 
= − + − + 

 

= + − + − +
⋅ ⋅ ⋅

= + − ⋅
+ ⋅ +

∫ ∫

∑

�

�  
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 For the second integral, we do not have a stock series to use for the integrand, so we will create one 

from scratch. To avoid lots of chain and quotient rule, though, we will find a series for ( ) 1f x x= +  and 

then substitute into that later. The computations are simplest if we use a Maclaurin series. 

( )

( )

( )

( )

( )

( )

1/2

1/21 1
2 2

3/21 1
4 4

5/23 3
8 8

(4) 7/2 (4)15 15
16 16

(5) 9/2 (5)105 105
32 32

1
( ) (1 ) 0 1

0!

1
( ) (1 ) 0

2 1!

1
( ) (1 ) 0

4 2!

3
( ) (1 ) 0

8 3!

15
( ) (1 ) 0

16 4!

1
( ) (1 ) 0

f x x f

f x x f

f x x f

f x x f

f x x f

f x x f

−

−− −

−

−− −

−

= + → = →

′ ′= + → = →
⋅

−
′′ ′′= + → = →

⋅

′′′ ′′′= + → = →
⋅

−
= + → = →

⋅

= + → = →
05

32 5!⋅

 

Using this tableau we find that 

2 3 4 1

1

1 1 3 15 (2 3)!!
( ) 1 1 ( 1)

2 1! 4 2! 8 3! 16 4! 2 !

n
n

n
n

n x
f x x x x x

n

∞
+

=

− ⋅
= + − + − + = + − ⋅

⋅ ⋅ ⋅ ⋅ ⋅
∑� . 

Substituting gives 
4

4 4 8 12 1

1

1 1 3 (2 3)!!
1 1 1 ( 1)

2 4 2! 8 3! 2 !

n
n

n
n

n x
x x x x

n

∞
+

=

− ⋅
+ = + − + − = + − ⋅

⋅ ⋅ ⋅
∑� . 

And now we are ready to integrate. 
1/2 1/2

4 4 8 12

0 0

1/2
5 9 13

0

5 9 13

5 9 13

6 11 16

1 1 3
1 1

2 4 2! 8 3!

3

5 2 9 4 2! 13 8 3!

1 (1 / 2) (1 / 2) 3(1 / 2)

2 5 2 9 4 2! 13 8 3!

1 1 1 3

2 2 5 2 2 9 4 2! 2 13 8 3!

1 1 1 3

2 2 5 2 9 2! 2 13

x dx x x x dx

x x x
x

 
+ = + − + − 

⋅ ⋅ 

 
= + − + − 

⋅ ⋅ ⋅ ⋅ ⋅ 

= + − + −
⋅ ⋅ ⋅ ⋅ ⋅

= + − + −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= + − +
⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫ �

�

�

�

1

5 1
1

3!

1 ( 1) (2 3)!!

2 2 (4 1) !

n

n
n

n

n n

+∞

+
=

−

− −
= +

⋅ + ⋅
∑

�

 

This can be approximated to any desired accuracy by using a partial sum. Even better, the series is 

alternating which means that you can even estimate the error fairly easily. 

 

2. 
( )

2 3
2 3

2! 3! 2! 3!

2 2 20 0 0 0

1 11 1 1
lim lim lim lim

2! 3!

x xx x x

x x x x

x xe x

x x x x→ → → →

− + + + + − − − −− − 
= = = − − − 

 

� �
�  

Because of the 1/x, this limit does not exist. 

 

3.  The series in part (a) shows every factorial in the denominator, and this suggests the series for x
e . In 

fact, it is this series, but with 1 substituted for x. Hence the value of this series is simply e. 
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 In part (b), we have the same series, but it alternates. Alternation can be introduced by substituting a 

negative x-value, and this series sums to 1
e

−  or 1/e. 
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Section 10 Problems 

 

For all problems in which you are asked to find 

a Taylor series, you should include at least three 

non-zero terms and the general term of the series 

unless otherwise noted. 

1. Find the Maclaurin series for ( ) cosf x x=  

and its interval of convergence. 

2. Find the Maclaurin series for ( ) x
f x e=  and 

its interval of convergence. 

3. Find the Maclaurin series for 
1

( )
1

f x
x

=
−

 

and its interval of convergence. 

4. Find the Maclaurin series for 
2

1
( )

1
f x

x
=

+
 

and its interval of convergence. 

5. Find the Maclaurin series for 

( ) arctanf x x=  and its interval of 

convergence. 

6. Find the Maclaurin series for 

( ) ln(1 )f x x= −  and its interval of 

convergence. 

7. Find the Taylor series for the ( ) ln( )f x x=  

centered at 1x = . Also find the interval of 

convergence. 

8. Find the Taylor series for ( ) cos( )f x x=  

centered at 4
3

x π−= . 

9. Find the Taylor series for ( ) x
f x e=  

centered at x e= . 

10. Find the Taylor series for ( ) sin( 2)f x x= −  

centered at 2x = . (Hint: This problem is 

easier than it might appear.) 

11. Find the Maclaurin series for 

( )2( ) arctanf x x=  and its interval of 

convergence. 

12. Find the Maclaurin series for ( ) x
f x xe= . 

13. Find the Maclaurin series for 
2

( ) 2 x
f x xe=  

three ways. 

a. Use the definition of Taylor series to 

find the appropriate coefficients. 

b. Substitute into the series for x
e  and then 

multiply through by 2x. 

c. Differentiate the series for 
2

( ) x
g x e= . 

d. Do your answers from parts (a), (b), and 

(c) agree? 

14. Find the Maclaurin series for 2( ) cosf x x= . 

(Hint: 22cos 1 cos(2 )x x= + .) 

15. Find the Maclaurin series for 
3( ) 2 sin cosf x x x x= . 

16. Find a Maclaurin series for 
2 3

1
( )f x

x x
=

−
. 

17. Find the Taylor series for 3( )f x x=  

centered at x = 8. No general term is 

required. However, make a conjecture of the 

radius of convergence of this series. (Hint: 

Look at a graph of f along with a partial sum 

of the Taylor series.) 

18. Find the Maclaurin series for ln(4 )x+  

centered at x = -3 and its interval of 

convergence. 

19. The binomial series is the Maclaurin series 

expansion for the function ( ) (1 )k
f x x= + . 

a. Show that the binomial series is 

2 3( 1) ( 1)( 2)
1

2! 3!

k k k k k
kx x x

− − −
+ + + +� . 

b. Show that the series from part (a) 

terminates if k is a positive integer. In 

this case, the binomial series agrees with 

the binomial theorem. 

c. Assuming that k is not a positive integer, 

find the radius of convergence of the 

binomial series. 

d. Use the binomial series to find 

Maclaurin series for the following 

functions. 

i. 5/2( ) (1 )g x x= +  
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ii. 
( )

3
2

2
( )

1
h x

x
=

+

 

iii. 
2

1
( )

1
k x

x
=

−
 

e. Use your series for ( )k x  to find the 

Maclaurin series for ( ) arccos( )l x x= . 

20. Use the binomial series to explain why 

2

1/ 211

2
( 1) 1n n

n n
x x x−+ ≈ + +  when x is small in 

absolute value. 

21. The derivatives at 0 of a function f are given 

by ( )

2

( 1) ( 1)
(0)

n
n n

f
n

− ⋅ +
=  for n > 0. 

Furthermore, (0) 3f = . Find the 

Maclaurin series for f and determine its 

interval of convergence. 

22. The derivatives at 0 of a function g are given 

by 
2

( ) 3
(0)

2

n
n

n

n
g

+
=  for 0n ≥ . Find the 

Maclaurin series for g and determine its 

interval of convergence. 

23. The derivatives at 2x =  of a function h are 

given by ( ) !
(2)

1

n n
h

n
=

+
 for 0n ≥ . Find the 

Taylor series for h centered at 2x =  and 

determine its interval of convergence. 

24. The derivatives at 1x = −  of a function f are 

given by ( )

2

!
( 1) ( 1)

2

n n

n

n
f

n
− = − ⋅

+
 for n ≥ 2. 

( 1) 8f − =  and ( 1) 0f ′ − = . 

a. Find the Taylor series for f centered at 

1x = − . Determine its interval of 

convergence. 

b. Does f have a local maximum, local 

minimum, or neither at 1x = − ? 

c. Find the Maclaurin series for 

( ) ( 1)g x f x= −  and for ( )2( )h x g x= . 

25. The Maclaurin series for a function f is 

given by 
0

2 ( 1)
( )

!

n
n

n

n
f x x

n

∞

=

⋅ +
=∑ . What is 

the value of (4) (0)f ? Can you determine the 

value of (4) (1)?f  

26. The Taylor series centered at 3x =  for a 

function g is given by 

2
0

( 1) 3
( ) ( 3)

1

n n
n

n

g x x
n

∞

=

− ⋅
= −

+
∑ . Evaluate 

(5) (3)g . 

27. What is the coefficient of the 12
th
-degree 

term of the Maclaurin polynomial for 

( )3( ) cosf x x= ? 

28. What is the coefficient of the sixth-degree 

term of the Maclaurin polynomial for 
2( ) x

g x x e= ? 

29. Find the Maclaurin series for 

2
( )

1

x
f x

x x
=

− −
. You can either do this by 

using the definition of a Maclaurin series, or 

you can cross multiply and determine the 

coefficients in a manner similar to that of 

Examples 5 and 6. 

30. Let ( )1
1

( ) ln x

x
f x +

−
= . 

a. Find the Maclaurin series for f. 

b. Find the interval of convergence for 

your series from part (a). 

c. Even though the interval of convergence 

for this series is not the entire real line, 

the series from part (a) is quite powerful. 

Show that any positive number α can be 

written as 1
1

x

x

+

−
 for some x in the interval 

of convergence. 

d. As a specific example, determine the 

value of x that corresponds to 15α = . 

Use the seventh-degree Maclaurin 

polynomial for f to estimate ln(15). 

31. The hyperbolic functions sinh( )x  and 

cosh( )x  are defined by 

sinh( )
2

x x
e e

x
−

−
=  

and 
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cosh( )
2

x x
e e

x
−

+
= . 

a. Find Maclaurin series for both these 

functions. Also determine their intervals 

of convergence. (Hint: You can do this 

either combining exponential series or 

by determining the derivatives of 

hyperbolic functions at 0x = .) 

b. Show that cosh( ) cos( )ix x=  and that 

sinh( ) sin( )i ix x− = .
∗
 

In Problems 32-34, use Taylor series to simplify 

the evaluation of the given limits. Confirm your 

answers by using another method to evaluate the 

limits. 

32. 
1

0

tan
lim
x

x

x

−

→
 

33. 
( )2

40

cos 1
lim
x

x

x→

−
 

34. 
0

1
lim

sin

x

x

e x

x→

− −
 

In Problems 35-38, express the indefinite 

integral as a Taylor series. 

35. ( )2cos x dx∫  

36. 
1x

e
dx

x

−
∫  

37. 
x

e
dx

x∫
 

38. 31 x dx+∫  

In Problems 39-41, express the value of the 

definite integral as an infinite series. Then use a 

partial sum (at least three terms) to approximate 

the value of the integral. Estimate the error in 

your approximation. 

                                                 
∗
 These relations give an alternate way to define the 

sine and cosine functions for complex inputs. In 

practice, this strategy is used to define the 

trigonometric functions in terms of the exponential 

function: sin
2

ix ix

x
e e

i

−

=
−

 and cos
2

ix ix
e e

x

−
+

= . 

39. ( )
1

2

0

cos x dx∫  

40. 
2

0

x

dx

e∫
 

41. 
1

0

cos(3 ) 1x
dx

x

−
∫  

42. The "sine integral function" is defined as 

0

sin
Si( )

x
t

x dt
t

= ∫ . It has applications in areas 

of engineering and signal processing. 

a. Find the Maclaurin series for Si(x). 

b. Express Si(1)  as an infinite series. 

c. How many terms do you need to include 

in a computation of Si(1)  in order to 

have error less than 10
-6

? 

43. The "error function" is defined as 

2

0

2
erf( )

x

t
x e dt

π

−
= ∫ . The error function is 

useful in many areas of applied mathematics. 

For example, its close relationship with the 

Gaussian or normal distribution curve makes 

it useful in computing probabilities of events 

that are randomly distributed.  

a. Find the Maclaurin series for erf( )x . 

b. Find the Maclaurin series for ( )2
erf x . 

c. Compute ( )1

2
erf  using the third partial 

sum from your answer to part (b). 

Estimate the error in this 

approximation.
†
 

                                                 
†
 The answer to part (c) is the probability that a 

randomly selected measurement taken from a 

normally distributed set will be within one standard 

deviation of the mean. If you compute ( )2

2
erf  and 

( )3

2
erf , you will develop the 68-95-99.7% rule that 

is familiar to those of you who have taken statistics. 

However, you'll need much higher-order partial sums 

to compute these with sufficient accuracy. 
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44. Identify the explicit function represented by 

the following series. For example, if the 

series were 
2 3

2! 3!
1 x xx+ + + +� , you would 

say, " ( ) x
f x e= ." 

a. 2 3 43 9 27 81x x x x x+ + + + +�  

b. 
3 5 7 9

3 5 7 9
x x x xx − + − + −�  

c. 
2 4 6 8 10

3! 5! 7! 9! 11!
x x x x x− + − + − +�  

d. 
2 4 6 825 625 15625 390625

2! 4! 6! 8!
1 x x x x− + − + −�  

45. Identify the explicit function represented by 

the following series. 

a. 
2 3 4 5

2 3 4 5
x x x xx − + − + −�  

b. 
3 5 7 98 32 128 512

3! 5! 7! 9!
2 x x x xx − + − + +�  

c. 
102 4 6 8

2
8 4 2 xx x x x− + − + �  

d. 
2 3 4 5

2! 3! 4! 5!
x x x xx − + − + −�  

46. Identify the explicit function represented by 

the following series. 

a. 
5 7 9 113

2! 4! 6! 8!
x x x xx − + − + −�  

b. 
6 10 14 182

3! 5! 7! 9!
x x x xx − + − + −�  

c. 
2 3 4 5

2! 3! 4! 5!
1 x x x xx+ − − + + −�  

d. ( ) ( ) ( )2 4 61 1 1 1 1
2! 2! 4! 3! 6!

1 1 x x x+ − + + + − +�

 

47. Figure 10.3 shows the graph of 

( ) sec( )f x x=  along with a partial sum of its 

Maclaurin series. What do you expect is the 

radius of convergence of this Maclaurin 

series? What is the interval of convergence? 

 

Figure 10.3 

48. Figure 10.4 shows the graph of 
1

( )
1

f x
x

=
−

. 

Consider two different Taylor series for f : 

one centered at 0x =  and the other centered 

at 2x = − . Which has a larger radius of 

convergence? Explain. 

 

Figure 10.4 

 

49. Figure 10.5 (next page) shows the graph of 

1
( )

( 1)( 3)( 4)
f x

x x x x
=

− − −
 along with a 

partial sum of its Taylor series centered at 

3.2x = . As you can see, the Taylor series 

appears to match the function on the interval 

from roughly 3x =  to 3.3x =  or so. 

a. Where in the interval (3, 4) should the 

Taylor series be centered so as to have 

the widest possible interval of 

convergence? 

b. On the interval [-1, 5], what is the 

largest possible radius of convergence 

for a Taylor series of ( )f x . 
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Figure 10.5 

 

50. Revisit Section 2, Problem 6, this time in 

terms of Maclaurin series instead of 

polynomials. This gives a way to prove 

trigonometric identities in terms of 

Maclaurin series, which is handy if you 

choose to define the trigonometric functions 

in terms of their series. 

51. Use polynomial long division to obtain a 

Maclaurin series for the tangent function. 

No general term is required, but make a 

conjecture as to the radius of convergence of 

the series. 

52. Show that the function 

0

1 ( 1) 2 (3 )

9 3 !

n n

n

x x
y

n

∞

=

− ⋅ ⋅
= − + +∑  

is the Maclaurin series solution to the 

differential equation 3y y x′ + = . 

53. Show that the function 
2 1

1

( 1)

(2 )!

n n

n

x
y

n

−∞

=

− ⋅
=∑  is 

the Maclaurin series solution to the 

differential equation sinxy y x′ + = . 

54. Show that the function 
2

0 2 !

n

n
n

x
y

n

∞

=

=
⋅

∑  is the 

Maclaurin series solution to the differential 

equation 0y xy y′′ ′− − = . 

55. The Bessel function of order zero (there are 

many Bessel functions of different orders) is 

given by the Maclaurin series 

2

0 2 2
0

( 1)
( )

2 ( !)

n n

n
n

x
J x

n

∞

=

−
=

⋅
∑ . 

Show that this function satisfies the 

differential equation 

2 2 0x y xy x y′′ ′+ + = .
∗
 

56. Find the particular solution to the 

differential equation from Problem 54 

(which you might prefer to write as 

y xy y′′ ′= + ) satisfying the initial conditions 

(0) 0y =  and (0) 1y′ = . Give your answer as 

a Maclaurin series. 

57. Solve the initial value problem 3
y x y′′ = , 

(0) (0) 1y y′= = . Give the first four non-zero 

terms. If you are feeling bolder, give the first 

six non-zero terms. 

58. The Hermite equation is 

2 0y xy yλ′′ ′− + =  

where λ is a constant. 

a. Find a Maclaurin series solution to the 

Hermite equation satisfying the initial 

conditions (0) 0y =  and (0) 1y′ = . Call 

your solution 1y , and give at least three 

non-zero terms. 

b. Find a Maclaurin series solution to the 

Hermite equation satisfying the initial 

conditions (0) 1y =  and (0) 0y′ = . Call 

your solution 2y , and give at least three 

non-zero terms. 

c. Notice that if λ is a non-negative, even 

integer, then the series for either 1y  or 

2y  (but not both) will terminate to give 

a regular polynomial. Find these 

polynomials when 4λ =  and 6λ = , 

                                                 
∗
 Bessel functions of various orders are important in 

describing waves of all kinds (from electromagnetic 

radiation to the vibrations of a drumhead). To 

generalize from order zero (in this problem) to order 

α, change the differential equation to 

( )2 2 2
0x y xy x yα′′ ′+ + − =  and solve. 
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calling the functions 4 ( )h x  and 6 ( )h x , 

respectively. 

d. A Hermite polynomial of degree n, 

denoted ( )
n

H x , is determined by the 

equation 

2( ) ( )
n n

H x k h x= ⋅  

where k is a scaling constant chosen so 

that the leading coefficient of ( )
n

H x  is 

2n . Find the Hermite polynomials 

2 ( )H x  and 3 ( )H x .
∗ 

59. Use Taylor's Theorem and the Lagrange 

error bound to show that the Maclaurin 

series for ( ) cosf x x=  converges to the 

cosine function. 

60. Use Taylor's Theorem and the Lagrange 

error bound to show that the Maclaurin 

series for ( ) x
f x e=  converges to the 

exponential. 

61. Use the Maclaurin series for ( ) x
f x e=  to 

show that 2 4e< < . (If you prefer a 

different upper bound, that's fine.)
†
 

62. Evaluate the following sums. 

a. 3 3 3 3
2 4 8 16

3 + + + + +�  

b. 1 1 1 1
3 5 7 9

1− + − + −�  

c. 9 27 81
2! 3! 4!

1 3+ + + + +�  

d. 1 1 1 1
2 4 2 8 3 16 4⋅ ⋅ ⋅

− − − − −�  

63. Evaluate the following sums. 

                                                 
∗
 The Hermite polynomials come up in applications 

of mathematics including quantum mechanics. For 

example, they are used in determining the wave-

equation of a harmonic oscillator—basically a 

molecular spring. This in turn allows us to understand 

what frequencies of infrared light are absorbed by 

diatomic molecules. 
†
 This problem fills in a small gap of the proof that e 

is irrational from Problem 21 from Section 4. A slight 

modification of that problem may be required 

depending on the upper bound you select here. Also, 

as a hint I will point out that this problem has been 

done for you in an example problem somewhere in 

this chapter. 

a. 
3 5 7 95 5 5 5

3! 5! 7! 9!
5− + − + − +�  

b. 1 1 1 1
2 6 24 120

1+ − + − +�  

c. 1
6

216 36 6 1− + − + +�  

d. 
2 3(ln 4) (ln 4)

2! 3!
1 ln 4+ + + +�  

64. In Section 6, Problem 19 you proved that a 

series of the form 
1

n
n

n

r

∞

=

∑  converges if r > 1. 

In Section 1, Problems 31 and 32, you found 

the sum of such a series. In this problem, 

you will take a different perspective on this 

series. 

a. First prove that this series converges 

(absolutely) iff 1r > . 

b. Let 
1

( )
1

f x
x

=
−

, and let 

( ) ( )g x x f x′= ⋅ . Give an explicit 

formula for ( )g x . 

c. Find the Maclaurin series for ( )g x . 

d. Show that the Maclaurin series for  

( )g x  converges when 1x < . 

e. Now make the substitution 1
r

x =  into 

the Maclaurin series for ( )g x . Use this 

series to show that 
1

n
n

n

r

∞

=

∑  converges for 

1r > . Specifically, show that 
1

n
n

n

r

∞

=

∑  

converges to 
2( 1)

r

r −
. 

65. Let 
1

( )
x

e
f x

x

−
= . 

a. Find (1)f ′  by explicitly differentiating 

and substituting into ( )f x . 

b. Express ( )f x′  as a Maclaurin series. 

c. Substitute 1 for x in your answer to part 

(b). Use this to show that 
1

1
( 1)!n

n

n

∞

=

=
+

∑ . 
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66. Let 
0

( )

x

t
f x te dt= ∫ . 

a. Evaluate (1)f . (Nothing fancy yet. Just 

integrate.) 

b. Express ( )f x  as a Maclaurin series. 

c. Substitute 1 for x in your answer to part 

(b). Use this to show that 

0

1
1

( 2) !n n n

∞

=

=
+ ⋅

∑ . 

67. Was it surprising that the series in Problems 

65 and 66 had the same value? Show that 

they are, in fact, the same series. 

68. ( )f x  has Maclaurin series 

2 3 4 5 6

0

1 2 3 2 3 n

n

n

x x x x x x c x
∞

=

+ + + + + + + =∑� . 

The coefficients cn are given by 

1, 3

2, 3 1

3, 3 2

n

n k

c n k

n k

=


= = +
 = +

 

where k is an integer. 

a. By treating this series as three inter-

woven geometric series, find the sum of 

the series. That is, find an explicit 

formula for ( )f x . (Why is rearranging 

the terms of the series legitimate?) 

b. What is the radius of convergence of the 

series for f ? (Hint: If two power series 

with the same center have radii of 

convergence 1R  and 2R , then the radius 

of convergence of their sum is the 

smaller of 1R  and 2R . The broader 

theorem is that the sum of two power 

series converges on the intersection of 

the two intervals of convergence.) 

c. Use this series to evaluate the sums 
3 32 1 2

2 4 8 16 32
1+ + + + + +�  and 

3 32 1 2
3 9 27 81 243

1− + − + − +� . 

d. Generalize the result of this problem. 

What are the sum and radius of 

convergence of the series 
0

n

n

n

c x
∞

=

∑  where 

the coefficients cn are given by 

1,

2, 1

2

, 3

n

n mk

n mk
c

n mk

m n mk

=


= +
= 

= +
 = +

�
 

where k is an integer. 

e. Generalize even more. Suppose the 

coefficients are any collection of 

numbers that cycle with period m. That 

is, 

0

1

,

, 1

2

, 3.

n

m

c n mk

c n mk
c

n mk

c n mk

=


= +
= 

= +
 = +

�
 

Give the sum of this series. 

f. Evaluate the following sum: 

2 3 4 5 6 7

3 5 8 3 5 82 2
1 5 5 5 5 5 5 5

+ + + + + + + +�  

69. Find the Taylor series for 
1

( )f x
x

=  centered 

at 1x = . Also find the interval of 

convergence. (Hint: 1 1
1 (1 )x x− −

= .) 

70. Find the Taylor series for 
1

( )f x
x

=  centered 

at 4x = . (Hint: You can start "from scratch" 

by finding derivatives, or you can do some 

clever algebra to express ( )f x  as the sum of 

a geometric series as in the hint for Problem 

69.) 

71. Find the Taylor series for 
1

( )
1

f x
x

=
−

 

centered at the following x-values. 

a. 2 c. 5 

b. -2 d. k ( 1k ≠ ) 

72. Find the Taylor series for 
1

( )
3

f x
x

=
−

 

centered at 2x = . 
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In Problems 73-76, you will explore functions 

whose Taylor series converge, but not 

necessarily to the function they are meant to 

model. Sometimes this is a good thing; the 

Taylor series "fixes" any problems with the 

function. More often, though, this is an 

indication of something weird about the function. 

73. Consider the function f defined as 

2

2

cos ,
( )

1, .

x x
f x

x

π

π

 ≤
= 

− >
 

a. Show that f is differentiable for all x. 

b. Find the Maclaurin series for this 

function. (Hint: It shouldn't be a lot of 

work.) 

c. Explain how you know that the series 

you found in part (a) converges for all x 

but does not converge to ( )f x  for 

2
x π> . 

d. In fact, we should not expect the 

Maclaurin series for f to converge to 

( )f x  for 
2

x π> . Why not? (It is still 

unfortunate, though, that the series 

converges outside of the interval on 

which it represents its parent function.) 

74. Consider the function g defined as 

21/ , 0
( )

0, 0.

x
e x

g x
x

− ≠
= 

=
 

a. Show that g is differentiable infinitely 

many times and, in particular, 
( ) (0) 0n

g =  for all n. (Hint: Induction is 

probably the best way to go here.) 

b. Find the Maclaurin series for g and its 

interval of convergence. 

c. Is there any non-trivial interval around 

the origin on which the Maclaurin series 

is equal to ( )g x ? (This function is a 

standard example of a function that 

infinitely differentiable (i.e., smooth), 

but not analytic (i.e., not represented by 

its own Maclaurin series).) 

75. Let 
2 4

( )
2

x
h x

x

−
=

−
. 

a. Given that this function is not defined at 

2x = , what would you expect the radius 

of convergence for the Maclaurin series 

of h to be? 

b. Find the Maclaurin series for h(x) and its 

interval of convergence. Surprised? 

(This behavior is typical of a function 

with a removable discontinuity. In fact, 

some texts describe a function with a 

removable discontinuity as one whose 

Taylor series "patches over" the point of 

discontinuity. Had there been a vertical 

asymptote or jump discontinuity in the 

graph of h, the Taylor series would have 

"detected" it by having a bounded 

interval of convergence.) 

76. Let 
sin

( )
x

k x
x

= . 

a. Show that ( )k x  has a removable 

discontinuity at 0x = . 

b. Formally manipulate the Maclaurin 

series of the sine function to obtain a 

Maclaurin series for ( )k x .  

c. Explain why ( )k x  should not actually 

have a Maclaurin series. 

d. Graph ( )k x  and the fourth degree 

partial sum of your series from part (b). 

Does the series seem to represent the 

function? Find the interval of 

convergence. (Again we see the Taylor 

series patching over a hole in the 

function. This time the hole is the center 

of the series!) 

 



Section 1 

 

1. a. 1,2,3,4,5  

 b. 1 1 1 1
2 3 4 5

1, , , ,− −−  

 c. 3 4 51, 2, 3, 4, 5  

 d. ln(ln 2),ln(ln 3),ln(ln 4),ln(ln5), ln(ln 6)  

 e. 3 9 27 811
4 16 64 256 1024
, , , ,  

 

3. 1b; converges to 0 

 1c; converges to 1 

 1e; converges to 0 

 2b; converges to 0 

 

5. a. 163
5 1060

; 2.7182818s s= ≈  

  The series converges to e. 

 b. 11
5 1030

; 0.367879s s= ≈  

  The series converges to 1/e. 

 

7. Diverges; geometric with r = -2 

 

9. Diverges; fails n
th
 term test ( lim 1

n
a = ) 

 

11. Converges; geometric with 1er
π

= <  

 

13. Diverges; fails n
th
 term test ( lim

n
a  DNE) 

 

15. Hard to say at this point (Later we will be 

able to prove that this series diverges.) 

 

17. 
1
8

2 16

1 7
=

−
 

 

19. 
4
5

4
20

1
=

−
 

 

21. 
( )

10
3
4

3
4

59049

1 262144
=

−
 

 

23. 
31

4 4

5 1 32

1 1 3
+ =

− −
 

 

27. Down: ( )1
3

0

3
1

2

n

n

∞

=

⋅ =∑  

 Up: ( )1
3

1

1
1

2

n

n

∞

=

⋅ =∑  

 Total: 2 meters 

 

29. 
4

0

7 2801n

n=

=∑  

 

31. 2 

 

33. a. 1
1

1n n
s

+
= −  

 b. 1 

 

35. 1 

 

37. 
2
π  

 

39. False 

 

41. False 

 

43. False 

 

45. a. ( )4
3

3
n

nP = ⋅ ; diverges 

 b. 1

1

3 3 1 2 3
3 4

4 4 9 5

n

n

n

A
∞

−

=

 
= + ⋅ ⋅ = 

 
∑  

 

 

Section 2 

 

1. 2 3 4 51 1 1 1
5 2 6 24 120
( ) 1P x x x x x x= + + + + +  

 

3. 2 3 4 5

5 ( ) 1P x x x x x x= − + − + −  

 

5. a. 2 4 6

2

1
1

1
x x x

x
≈ − + −

+
 

 b. 3 51 1
3 5

arctan( )x x x x≈ − +  

 d. arctan(0.2) 0.1974≈  (very close) 

  arctan( 0.6) 0.5436− ≈ −  (pretty close) 

  arctan(3) 42.6≈  (absolutely terrible) 

 

7. a. 2 35 5 5 5
3 2 4 8 16
( )P x x x x= + + +  

 b. 2

3 ( ) 3 3P x x= −  

 c. 3

3 ( ) 2 2P x x x= −  

 d. 2 31 1 1
3 2 4 8
( )P x x x x= + +  



 

9. a. 2

3 ( )P x x=  

 b. 3

3 ( )P x x=  

 

11. A: 7
th
-degree 

 B: 3
rd

-degree 

 

 

Section 3 

 

1. a. 2 31 1 1
3 2 8 16
( ) 1 ( 1) ( 1)xP x x x−= + − − + −  

 b. 
2( )

4 2
( ) ( )

e
e x ee e

P x e e x e
−

= + − +  

   
3 4( ) ( )

6 24

e e
e x e e x e− −

+ +  

 c. 21
2 2
( ) 1P x x= −  

 d. 2 3

3 ( ) 8 2 3 ( )P x x x x f x= − + + =  

 

3. a. 
23( 4)41

2 2 16 256
( )

xxP x
−−= − +  

 b. 2

3 ( ) 1 2P x x= −  

 c. ( ) ( )
2

1
3 2 3 3
( ) 3P x x xπ π−= − − + −  

   ( )
32 3

3 3
x π+ −  

 d. 
2 3( 5) ( 5)51

3 5 25 125 625
( )

x xxP x
− −−= − + −  

 

7. a. 3 ( ) 0P x =  

 b. 3

3 ( )P x x x= −  

 c. 
2 33( 2) 2( 2) 7( 2)2

3 5 25 125 625
( )

x x x
P x

+ + +−= − − +  

 d. 31
3 3
( )P x x x= +  

 

9. 2.1547 (calculator value: 2.1544) 

 

11. 
2( 4)

2 2
( ) 2

x
P x

+
= + ; 2 ( 4.2) 2.02P − =  

 
2( 4) 3

3 2
( ) 2 ( 4)

x
P x x

+
= + + + ; 

 3 ( 4.2) 2.012P − =  

 2.012 is probably a better estimate. 

 

13. 25
2 4
( ) 6 2P x x x= − +  

 

15. a. 2 

 b. -1 

 c. Cannot be determined 

 d. 2 

 

17. 2 ( ) 8 1( 3)P x x= + +  

 

19. a = 2: 4 ( )P x x=  

 a = -3: 4 ( )P x x= −  

 f is not differentiable at x = 0. 

 

21. 
( 1) 2

2 2
( ) 1

k k
P x kx x

−
= + +  

 

23. True 

 

25. False 

 

27. a. sinh(0) = 0; cosh(0) = 1 

 b. sinh( ) cosh( )
d

x x
dx

=  

  cosh( ) sinh( )
d

x x
dx

=  

 c. sinh: 
3 5

6 3! 5!
( ) x xP x x= + +  

  cosh: 
2 4 6

6 2! 4! 6!
( ) 1 x x xP x = + + +  

 

31. a. 
2 2

2
mcK γ≈  

 b. v

c
γ = , so 

2 2 2

2

2 21
2 2 2

mc mc v

c
K mvγ≈ = ⋅ = . 

   

33. a. 2

1 1
343 343

( )S Sg v v≈ +  

 b. ( )1 1
343 343

(343 )obs act D Sf f v v≈ + +  

 c. ( )2343 343 343
1 S S DDv v vv

obs actf f≈ + + +  

  Neglecting the second-order term 2343

S Dv v
 

leaves us with ( )343
1 S Dv v

obs actf f
+

≈ + , as 

desried. 

 

 

Section 4 

 

1. 65
24

2.708333...e ≈ =  

 Error ≤ 3/120 

 

3. 6 terms (a 12
th
-degree polynomial with 

missing terms, including the leading term) 

 

5. 2109 1094 4
15 5 15 5

e− ≤ ≤ +  or 

 26.46666... 8.06666...e≤ ≤  

 

7. 0.33 0.33x− ≤ ≤  



 

9. 10 : Error ≤ 0.00001786 

 3 10 : Error ≤ 0.0003215 

 

11. ( 1) 7f − ≈  

 
32

2 3!
( 1) 1 1 / 3R − ≤ − =  

 ( 1) 7 1 / 3 8.75f − ≤ + <  

 

13. 7.375 ( 2.5) 7.625h≤ − ≤  

 

19. a. Degree: 73; Terms: 37 

 b. 25 8 0.13274t π= − ≈ − ; Requires a 3
rd

-

degree polynomial 

 c. 7
th
-degree 

 

 

Section 6 

 

1. Converges 

 

3. Converges 

 

5. Converges 

 

7. Inconclusive 

 

9. Converges 

 

11. Converges 

 

13. Diverges 

 

15. Converges 

 

17. Diverges 

 

21. a. 2 

 b. 5 

 c. Converges: -1, 0, 1 

  Diverges: -8, 4 

  Cannot be determined: -5, 2 

 

23. c, d 

 

25. No. 

 

27. 2 

 

29. 3 

 

31. 0 

 

33. 3 

 

35. 1 

 

37. 1 

 

39. ∞ 

 

41. 3 

 

43. a. Converges 

 b. Diverges 

 c. Inconclusive 

 d. Converges 

 

45. a. Diverges 

 b. Converges 

 c. Diverges 

 d. Inconclusive 

 

47. a. 4 

 b. Converges 

 c. Converges 

 d. 0 ≤ x ≤ 8 

 

49. a. It is not of the form ( )n

nc x a−∑ . 

 b. 2

12

25 x−
 

 c. ( 5, 1) (1,5)− − ∪  

 

 

Section 7 

 

1. Converges 

 

3. Converges 

 

5. Diverges 

 

7. Converges 

 

9. Diverges 

 

11. Diverges 

 

13. Diverges 

 

15. Converges 



 

17. Converges 

 

19. Converges 

 

21. Diverges 

 

23. Converges 

 

25. Converges 

 

27. Diverges 

 

29. Diverges 

 

31. Diverges 

 

33. Converges 

 

35. Diverges 

 

37. Diverges 

 

39. Diverges 

 

41. Diverges 

 

43. Diverges 

 

45. Converges 

 

47. Converges 

 

49. Diverges 

 

53. p > 1 

 

55. Diverges 

 

57. (Degree of p2) – (Degree of p1) must be 

strictly greater than 1. 

 

65. No 

 

 

Section 8 

 

1. Converges absolutely 

 

3. Converges absolutely 

 

5. Diverges 

 

7. Converges absolutely 

 

9. Converges absolutely 

 

11. Diverges 

 

13. Converges absolutely 

 

15. Converges absolutely 

 

17. 15 0.3491s = −  

 Error ≤ 0.0039 

 

19. 20 terms 

 

21. 13 terms 

 

23. 
1

1

( 1)
0.1492 0.7522

n

n n

−∞

=

−
≤ ≤∑  

 

25. Absolutely convergent series; the terms go 

to zero faster 

 

27. sin(5): 23
rd

 

 sin(0.5): 7
th
 

 sin0.01): 3
rd

 

 

29. a. 0.264 

 b. 0.261975 ≤ ln1.3 ≤ 0.266025 

 c. 0.002025 

 

37. False 

 

39. True 

 

41. True 

 

43. ;R x= ∞ − ∞ < < ∞  

 

45. 0; 6R x= =  

 

47. 3; 3 3R x= − ≤ <  

 

49. 0; 0R x= =  

 

51. 5; 6 4R x= − < <  

 



53. 1; 3 1R x= − < < −  

 

55. 0; 0R x= =  

 

63. a. 2 ≤ x < 4 

 b. 
1( 3) ( 3)

2 2
1 0

( )
n n

x x

n n

f x
−

∞ ∞
− −

= =

′ = =∑ ∑  

  2 < x < 4 

 c. 
1( 3)

2 ( 1)
13

( )
n

x

x

n n

n

f t dt
+

∞
−

+

=

=∑∫  

  2 ≤ x ≤ 4 

 

65. a. -1 ≤ x < 1 

 b. 263
315

( 1)f − ≈  

 c. Error ≤ 1/11 

  2578 3208
3465 3465

( 1)f≤ − ≤  

 

67. a. 1 / L 

 b. 1 1
L L

a x a− < < +  

 

 

Section 10 

 

1. 
22 4 ( 1)

2 4! (2 )!
1

n n
xx x

n

−
− + − + +� �  

 x−∞ < < ∞  

 

3. 21 n
x x x+ + + + +� �  

 1 1x− < <  

 

5. 
2 13 5 ( 1)

3 5 2 1

n n
xx x

n
x

+
−

+
− + − + +� �  

 1 1x− ≤ ≤  

 

7. 
2 3 1( 1) ( 1) ( 1) ( 1)

2 3
( 1)

n n
x x x

n
x

+
− − − −

− − + − + +� �  

 0 2x< ≤  

 

9. 
2( ) ( )

2! !
( )

e e n
e x e e x ee e

n
e e x e

− −
+ − + + + +� �  

 

11. 
4 26 10 ( 1)2

3 5 2 1

n n
xx x

n
x

+
−

+
− + − + +� �  

 1 1x− ≤ ≤  

 

13. 
5 2 13 2 2

2! !
2 2

n
x x

n
x x

+

+ + + + +� �  

 

15. 
2 1 2 46 8 ( 1) 24 8 32

3! 5! (2 1)!
2

n n n
xx x

n
x

+ +
−

+
− + − + +� �  

 

17. 
2 3( 8) 5( 8)8

12 288 20,736
2

x xx − −−+ − + +�  

 

19. c. 1 

 d. 
2 35 15 15

2 8 48
( ) 1 x x xg x = + + + +�  

  2 4 6( ) 2 6 12 20h x x x x= − + − +�  

  
2 4 63 5

2 8 16
( ) 1 x x xk x = + + + +�  

 e. 
3 5 73 5

2 6 40 112
( ) x x xl x xπ= − − − − −�  

 

21. 2

( 1) ( 1)

!
1

( ) 3
n n

n x

n n
n

f x
∞

− +

⋅
=

= +∑ ; x−∞ < < ∞  

 

23. 
( 2)

1
0

( )
n

x

n

n

h x
∞

−

+

=

=∑ ; 1 ≤ x < 3 

 

25. 80; No 

 

27. 1/24 

 

29. 
1

( ) n

n

n

f x F x
∞

=

= ⋅∑ , where 
n

F  is the n
th
 

Fibonacci number 

 

31. a. 
2 1

(2 1)!
0

sinh
n

x

n

n

x
+

∞

+

=

=∑  

  
2

(2 )!
0

cosh
n

x

n

n

x
∞

=

=∑  

  Both converge on ( , )−∞ ∞ . 

 

33. -1/2 

 

35. 
4 1

0

( 1)

(4 1) (2 )!

n n

n

x
C

n n

+∞

=

−
+

+ ⋅
∑  

 

37. 
0

ln
( 1)!

n

n

x
C x

n

∞

=

+ +
+

∑  

 

39. 
0

( 1)
0.9046

(4 1) (2 )!

n

n n n

∞

=

−
≈

+ ⋅
∑  

 with error ≤ 41.068 10−
×  

 

41. 
2

1

( 1) 3
1.575

2 (2 )!

n n

n n n

∞

=

−
≈ −

⋅
∑  

 with error ≤ 0.0203 



 

43. a. 
2 1

0

2 ( 1)
erf( )

(2 1) !

n n

n

x
x

n nπ

+∞

=

− ⋅
=

+ ⋅
∑  

 b. ( )
2 1

(2 1)/22
0

2 ( 1)
erf

2 (2 1) !

n n

x

n
n

x

n nπ

+∞

+
=

− ⋅
=

⋅ + ⋅
∑  

 c. ( )1

2
erf 0.6649≈ , error ≤ 0.0199 

 

45. a. ln( 1)x +  

 b. sin(2 )x  

 c. 
2

2

16

2

x

x+
 

 d. 1 x
e

−
−  

 

47. π/2; 
2 2

xπ π− < <  

 

49. a. 3.5 

 b. 1 

 

51. 
3 52

3 15
x xx + + +�  

 -π/2 < x < π/2 

 

57. 5 61 1
20 30

1y x x x= + + + +�  

 

63. a. sin(-5) 

 b. 1 + 1/e 

 c. 1296/7 

 d. 4 

 

65. a. 1 

 b. 
2 12 31

2! 3! 4! ( 1)!

nx x nx

n

−

+
+ + + + +� �  

 

69. 21 (1 ) (1 ) (1 )n
x x x+ − + − + + − +� �  

 

71. a.. 21 ( 2) ( 2)x x− + − − − +�  

  1

0

( 1) ( 2)n n

n

x
∞

+

=

= − −∑  

 b. 
2( 5)51 1 1

4 4 4 4 16

xx −−− + − +�  

  ( )1 51
4 4

0

( 1)
nn x

n

∞
+ −

=

= −∑  

 c. 
2( 2)21 1 1

3 3 3 3 9

xx +++ + +�  

  ( )21
3 3

0

n
x

n

∞

+

=

= ∑  

 d. ( )1
1 1

0

n
x k

k k

n

∞

−

− −

=

∑  

 

73. b. 
2

(2 )!
0

( 1)
nn x

n

n

∞

=

−∑  

 d. f is only once-differentiable at ±π. 

 

75. a. 2 

 b. 2x + , converges for all reals 
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