1) Find

$$\lim_{h \to 0} \left(\frac{\sin(10 x + 10 h) - \sin(10 x)}{h} \right)$$

a) $-10 \cos(10 x)$ b) $10 \sin(10 x)$ c) $_0$ d) $-10 \sin(10 x)$

e) $10 \cos(10 x)$

2) The function g is defined by the formula

$$g(x) = \int_0^x e^{6t} \, \mathrm{d}t$$

Find the slope of the tangent line at x = 1.

a) $_{6} e^{6}$ b) $_{e^{6}}$ c) $\frac{1}{6} e^{6}$ d) $\frac{1}{6} (e^{6} - 1)$ e) $_{e^{6}} - 1$ 3) Find

$$\lim_{x \to \infty} \left(\frac{4x-1}{\sqrt{x^2+8}} \right)$$

a) 4

- b) $\frac{1}{2}$ c) 1
- d) $-\frac{1}{8}$
- e) The limit does not exist.
- 4) The given function *f* has a removable discontinuity at x = -5. Find *A*.

$$f(x) = \begin{cases} 5x^2 + 10 & x < -5\\ 10x & x = -5\\ Ax + 10 & -5 < x \end{cases}$$

- a) -15
- b) -5
- c) 5
- d) -4
- e) -25

5) If $f'(x) = -4(x-2)^2(x-8)$ which of the following is true about y = f(x)? a) *f* has a point of inflection at x = 2 and a local maximum at x = 8. b) *f* has a local maximum at x = 2 and a local minimum at x = 8. c) *f* has a local minimum at x = 2 and a local maximum at x = 8. d) *f* has a point of inflection at x = 2 and a local minimum at x = 8. e) *f* has a local minimum at x = 2 and a local minimum at x = 8.

6) Find f'(9), given that

$$f(x) = 8x^2 + 5\sqrt{x}$$

- a) ₆₆₃
- b) ₆₉₃
- c) <u>869</u> 6
- d) 159
- e) $\frac{437}{3}$

7) Find the average value of the given function *f* over the interval [0, 4]. $f(x) = e^{7x}$

a)
$$\frac{1}{7} (e^{28} - 1)$$

b) $\frac{1}{28} (e^{28} - 1)$
c) $\frac{1}{28} e^{28}$
d) $\frac{1}{4} (e^{28} - 1)$
e) $\frac{1}{7} e^{28}$
8) Find $f'(0)$, given that

a) ln(7) + 1
b) 1
c) ln(11) ln(7) + 1
d) ln(11) ln(7) + 11
e) ln(77) + 1
9) Find f'(1), given that

$$f(x) = \frac{x^2 + 6}{(8x)}$$

 $f(x) = 11^x \ln(7 e^x)$

a) $\frac{3}{2}$ b) $\frac{1}{32}$ c) $\frac{7}{4}$ d) $-\frac{5}{8}$ e) $\frac{7}{32}$ 10) Find

$$\lim_{x \to 0} \left(\frac{\sin(10 x) \cos(x) - \sin(10 x)}{x^2} \right)$$

a) The limit does not exist.

- b) -10
- c) 1
- d) 0
- e) 10

11) Given the following curve, find $\frac{d^2 y}{dx^2}$.

 $3x + y^2 = 12$ a) $\frac{9}{2y^3}$ b) $-\frac{3}{2y^2}$ c) $\frac{9}{4y^3}$ d) $-\frac{9}{4y^3}$ e) $\frac{3}{2y^2}$ 12) Given that $f(x) = 7\sin^2(4x)$, find $f''\left(\frac{1}{24}\pi\right)$. a) $28\sqrt{3}$ b) $_{28\sqrt{2}}$ c) ₂₈ d) 112 e) ₀ 13) Find the midpoint rectangular approximation for $\int_{0}^{3} 10 x^{3} dx$ using 3 subintervals of equal length. a) $\frac{765}{2}$ b) 360 c) $\frac{765}{4}$ d) 720 e) $\frac{125}{4}$ 14) Find the derivative of the function $y = \cos^{-1} (3x)$. a) $-3\sin^{-1}(3x)$ b) $-3\sin(3x)$ c) $3\sin(3x)$ d) $-\frac{3}{\sqrt{1-9x^2}}$ e) $\frac{3}{\sqrt{1+9x^2}}$ 15) Find $\frac{\partial}{\partial x} \left(\int_{s}^{x} \ln(5+t) dt \right)$ a) $\frac{5}{5+x}$

b) $5\ln(5+x)$ c) $\frac{1}{5+x}$ d) $\ln(5+x)$ e) $-\ln(5+x)$ 16) Find the equation of the tangent line to the given curve at the point (0, 9). $y = 2x^2 + 4x + 9$ a) y = 8 xb) y = 9x + 2c) y = -2x + 9d) y = 4x + 9e) y = 4x - 917) If g(f(x)) = x, g(5) = 2 and g'(5) = 13, then f'(2) is a) $\frac{1}{13}$ b) $-\frac{1}{13}$ c) $\frac{1}{5}$ d) $-\frac{1}{5}$ e) $\frac{5}{13}$ 18) Given that $\int_{0}^{16} e^{x} dx = m$ find $\int_0^4 x e^{x^2} dx$ a) $\frac{1}{2}m$ b) _m c) _{2 m} d) _m² e) $\frac{1}{2}m^2$

19) Which of the following differential equations corresponds to the slope field shown in the figure below?

- b) $\frac{dy}{dx} = \frac{1}{2} x y$
- c) $\frac{dy}{dx} = \frac{1}{4} x y$
- d) $\frac{dy}{dx} = -\frac{y}{x}$

a) $\left(0, \frac{1}{2}e\right)$

b) (1, 2 e)

c) $\left(0, \frac{1}{2}\right)$

d) (1, 2)

e) $\left(1, \frac{1}{2}e\right)$

e) $\frac{dy}{dx} = \frac{y}{x}$ 20) Given the following function, with x > 0, on which interval is the function decreasing?

21) Find the area of the region enclosed by the graphs of

$$y = 4 x^{2}$$

and
$$y = 3 x$$

 $f(x) = \frac{x}{\ln(2x)}$

a) <u>9</u> 32 b) $\frac{9}{16}$ c) $\frac{3}{32}$ d) $\frac{32}{27}$ e) $\frac{64}{27}$

$$\int_{1}^{4} \frac{3}{\sqrt{x}} \, \mathrm{d}x$$

- a) ₁₂
- b) 3
- c) ₂₃
- d) ₂₄
- e) 6

23) The region bounded by the following graph

 $y = 3 \sin(x)$

and the *x*-axis, for $0 \le x \le \frac{1}{2}\pi$, is rotated about the line y = -4. The volume of this solid can be represented by:

24) The side of a cube is expanding at a constant rate of 4 inches per second. What is the rate of change of the volume, in in^3 per second, when the total surface area of the cube is 54 in^2 ? a) 36

b) 108

- c) 72
- d) 12
- e) 216

25) The solution to the differential equation

$$\frac{dy}{dx} = 12 x y$$

with the initial condition y(0) = 3 is

a) $e^{6x^2} + 3$ b) $3e^{6x^2}$ c) $e^{6x^2} + 2$ d) $\ln(6x^2 + 3)$ e) $3\ln(6x^2)$ 26) $\int \sec^2(7x) dx =$ a) $\frac{1}{7}\tan(7x) + C$ b) $7\tan(7x) + C$ c) $-7\tan(7x) + C$ d) $7\tan^2(7x) + C$ e) $\frac{1}{7}\tan^2(7x) + C$

27) The position of a particle moving along a horizontal line is given by

 $x(t) = 2 (t-3)^{3}$ What is the maximum speed of the particle for $0 \le t \le 10$? a) 54 b) 98 c) 294 d) 162 e) 18

28) Using the information below, find $\frac{dz}{dt}$ when t = 0.

$z = \ln(y)$
$y = 2x^2 + 2$
x = 4t + 1

a) 1

b) 8

c) ₁₆

d) 2

e) 4

29) If *f* is a differentiable function and f(0) = -6 and f(2) = 12, then which of the following must be true?

I. There exists a *c* in [0,2] where f(c) = 0.

II. There exists a c in [0,2] where f'(c) = 0.

III. There exists a *c* in [0,2] where f'(c) = 9.

- a) II and III only
- b) I only
- c) II only
- d) I, II and III
- e) I and III only

30) Which of the following function(s) is continuous and differentiable?

I.
$$f(x) = \frac{7}{\sqrt{x}}$$

II.
$$g(x) = x |x|$$

III.
$$h(x) = \begin{cases} 8x+1 & x \le 0\\ x^2+1 & 0 < x \end{cases}$$

- a) II only
- b) I only
- c) III only
- d) I and II only
- e) I and III only

31) The area of the region in the first quadrant bounded by the graphs of $y = 6\cos(x)$, $y = 6\sin(x)$, and the *y*-axis is

- a) $6(\sqrt{2}-1)$ b) $3\sqrt{2}$
- c) $\frac{12}{12}$
- ^{d)} $6\sqrt{2} + 1$ e) $6\sqrt{2}$

32) Air is pumped into a spherical balloon at a rate of 6cm^3 per second. At what rate is the radius of the sphere changing when its volume is $_{36 \pi} \text{ cm}^3$?

a) $\frac{2}{3 \pi}$ cm/sec b) $\frac{2}{\pi}$ cm/sec c) $\frac{1}{4 \pi}$ cm/sec d) $\frac{1}{12 \pi}$ cm/sec

e)
$$\frac{1}{6\pi}$$
 cm/sec

33) The graph of the derivative of f is shown below. Which of the following must be true?

a) *f* has a point of inflection at x = 4.

- b) f is increasing on [-2, 2].
- c) f has a local maximum at x = 0.
- d) f is concave down on [0, 4].
- e) f has a local minimum at x = -2.
- 34) A particle is moving along the *x*-axis and its position at time $t \ge 0$ is given by

$$\mathcal{S}(t) = (t-4)^2 (t-6)$$

Which of the following is (are) true?

I. The particle changes direction at x = 4 and x = 6.

II. The particle is slowing down on [0, 4].

- III. The particle is speeding up on [4, 6].
- a) II and III only
- b) I only
- c) II only
- d) I and III only
- e) I, II and III
- 35) The region enclosed by the graphs of

$$y = 6 e^{x}$$

and the line
$$y = 6$$

for $0 \le x \le 1$, is revolved about the *y*-axis. Which of the following integrals gives the volume generated?

a)
$$\pi \int_{0}^{6} (6 e^{x} - 6)^{2} dx$$

b) $\pi \int_{6}^{6e} \left(1 - \left(\ln\left(\frac{1}{6}y\right)\right)^{2}\right) dy$
c) $\pi \int_{6}^{6e} \left(6 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$
d) $\pi \int_{0}^{6} \left(1 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$
e) $\pi \int_{6}^{6e} \left(1 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$

$$3x^2 + xy - \cos(y) = 5$$

then
$$\frac{dy}{dx}$$
 is
a) $-\frac{6x}{x + \sin(y)}$
b) $\frac{y - 6x}{x - \sin(y)}$
c) $-\frac{(y + 6x)}{x + \sin(y)}$
d) $\frac{y + x}{x - \sin(y)}$
e) $-\frac{(x + \sin(y))}{y + 6x}$

37) The sum of two positive integers x and y is 30. Find the value of x that minimizes

$$P = x^3 - 30 x y$$

- a) x = 20b) x = 5c) x = 25d) x = 10e) x = 1538) A particle moves along a straight line, and its velocity at time *t* is given by $v(t) = 7 - \ln(t)$ What is the total distance the particle travels from t = 1 to t = e? a) e-8b) 7e + 1c) 7e + 7d) 7e - 8
- e) _{7 e 1}
- 39) The function f is defined as

$$f(x) = \frac{(x-2)^2}{x-6}$$

 $x_{\neq} 6$

Which of the following is **false**?

a) f is concave up for x > 6.

- b) f is decreasing on [2, 6].
- c) f has a local maximum at x = 2.
- d) f has a horizontal asymptote at y = 1.
- e) *f* has a vertical asymptote at x = 6.

40) The base of a solid is the region bounded by

$$y = 3\sqrt{x}$$

the *x*-axis, and

the line x = 3

Each cross-section of the solid perpendicular to the *x*-axis is a square, with one side on the *xy*-plane. Which of the following expressions represents the volume of the solid?

a) $\int_{0}^{3} 3\sqrt{x} dx$ b) $\int_{0}^{3} 3x dx$ c) $\int_{0}^{1} 9x dx$ d) $\int_{0}^{3} 9x dx$ e) $\int_{0}^{3} 3\sqrt{x} dx$

41) The rate at which a bacteria population grows is proportional to the number of bacteria present. Initially, there were 1000 bacteria present and the population doubled in 3 hours. Roughly how many hours does it take for the population to reach 10000?

a) 15.6

- b) _{12.3}
- c) _{9.9}
- d) _{6.6}
- e) _{8.7}

42) Given that F'(x) = f(x), find

$$\int_{-3}^{5} x f(x^2) \, \mathrm{d}x$$

a)
$$2F(25) - 2F(9)$$

b) $2F(\sqrt{5}) - 2F(1\sqrt{3})$
c) $\frac{25F(25) - 9F(9)}{(2)}$
d) $\frac{F(25) - F(9)}{(2)}$
e) $5F(25) + 3F(9)$
43) The line normal to
 $5x^2 + 3y + y^2 = 3$
at $x = m$ is parallel to the y-axis. What is m ?
a) $\frac{3}{2}$
b) 5
c) -5
d) 0
e) $-\frac{3}{2}$
44) f and g are two differentiable functions such that

$$f(1) = g(1) = 5$$

$$f'(1) = g'(1) = 9$$

$$f'(5) = 5$$

$$g'(5) = 9$$

If $h(x) = (f \circ g)(x)$, then h'(1) is a) 1 b) 25 c) 81 d) 45 e) 9 45) If $\frac{dy}{dx} = ye^x$ and y(0) = 4, then $y\ln(2) =$ a) 4 e b) 4 e² c) 4 e³ d) 4 e⁻² e) 4 e⁻¹ 1) Find

$$\lim_{h \to 0} \left(\frac{\sin(10 x + 10 h) - \sin(10 x)}{h} \right)$$

a) $-10 \cos(10 x)$ b) $10 \sin(10 x)$ c) $_0$ d) $-10 \sin(10 x)$ *e) $10 \cos(10 x)$ 2) The function *a* is defined

2) The function
$$g$$
 is defined by the formula

$$g(x) = \int_0^x e^{6t} \, \mathrm{d}t$$

Find the slope of the tangent line at x = 1.

a) $_{6} e^{6}$ *b) $_{e^{6}}$ c) $\frac{1}{6} e^{6}$ d) $\frac{1}{6} (e^{6} - 1)$ e) $_{e^{6}} - 1$ 3) Find

$$\lim_{x \to \infty} \left(\frac{4x-1}{\sqrt{x^2+8}} \right)$$

- *a) 4 b) $\frac{1}{2}$ c) 1 d) $-\frac{1}{8}$
- e) The limit does not exist.
- 4) The given function *f* has a removable discontinuity at x = -5. Find *A*.

$$f(x) = \begin{cases} 5x^2 + 10 & x < -5\\ 10x & x = -5\\ Ax + 10 & -5 < x \end{cases}$$

a) -15 b) -5 c) 5 d) -4 *e) -25 5) If $f'(x) = -4(x-2)^2(x-8)$ which of the following is true about y = f(x)? *a) f has a point of inflection at x = 2 and a local maximum at x = 8. b) f has a local maximum at x = 2 and a local minimum at x = 8. c) f has a local minimum at x = 2 and a local maximum at x = 8. d) f has a point of inflection at x = 2 and a local minimum at x = 8. e) f has a local minimum at x = 2 and a local minimum at x = 8. f has a local minimum at x = 2 and a local minimum at x = 8. f has a local minimum at x = 2 and a local minimum at x = 8. f has a local minimum at x = 2 and a local minimum at x = 8. f has a local minimum at x = 2 and a point of inflection at x = 8.

$$f(x) = 8x^2 + 5\sqrt{x}$$

- a) 663
- b) ₆₉₃
- *c) <u>869</u> 6
- d) ₁₅₉
- e) $\frac{437}{3}$

7) Find the average value of the given function *f* over the interval [0, 4]. $f(x) = e^{7x}$

a)
$$\frac{1}{7} (e^{28} - 1)$$

*b) $\frac{1}{28} (e^{28} - 1)$
c) $\frac{1}{28} e^{28}$
d) $\frac{1}{4} (e^{28} - 1)$
e) $\frac{1}{7} e^{28}$
8) Find $f'(0)$, given that

a) ln(7) + 1 b) 1 *c) ln(11) ln(7) + 1 d) ln(11) ln(7) + 11 e) ln(77) + 1 9) Find f'(1), given that

$$f(x) = \frac{x^2 + 6}{(8x)}$$

 $f(x) = 11^{x} \ln(7 e^{x})$

a) $\frac{3}{2}$ b) $\frac{1}{32}$ c) $\frac{7}{4}$ *d) $-\frac{5}{8}$ e) $\frac{7}{32}$ 10) Find

$$\lim_{x \to 0} \left(\frac{\sin(10 x) \cos(x) - \sin(10 x)}{x^2} \right)$$

a) The limit does not exist.

- b) -10
- c) 1
- *d) 0
- e) 10

11) Given the following curve, find $\frac{d^2 y}{dx^2}$.

 $3x + y^2 = 12$ a) $\frac{9}{2y^3}$ b) $-\frac{3}{2y^2}$ c) $\frac{9}{4y^3}$ *d) $-\frac{9}{4y^3}$ e) $\frac{3}{2v^2}$ 12) Given that $f(x) = 7\sin^2(4x)$, find $f''\left(\frac{1}{24}\pi\right)$. a) $28\sqrt{3}$ b) $_{28\sqrt{2}}$ c) ₂₈ *d) 112 e) ₀ 13) Find the midpoint rectangular approximation for $\int_{0}^{3} 10 x^{3} dx$ using 3 subintervals of equal length. a) $\frac{765}{2}$ b) ₃₆₀ *c) $\frac{765}{4}$ d) ₇₂₀ e) $\frac{125}{4}$ 14) Find the derivative of the function $y = \cos^{-1} (3x)$. a) $-3\sin^{-1}(3x)$ b) $-3\sin(3x)$ c) $3\sin(3x)$ *d) $-\frac{3}{\sqrt{1-9x^2}}$ e) $\frac{3}{\sqrt{1+9x^2}}$ 15) Find $\frac{\partial}{\partial x} \left(\int_{s}^{x} \ln(5+t) dt \right)$ a) $\frac{5}{5+x}$

b) $5\ln(5+x)$ c) $\frac{1}{5+x}$ *d) $\ln(5+x)$ e) $-\ln(5+x)$ 16) Find the equation of the tangent line to the given curve at the point (0, 9). $y = 2x^2 + 4x + 9$ a) y = 8 xb) y = 9x + 2c) y = -2x + 9(*d) y = 4x + 9e) y = 4x - 917) If g(f(x)) = x, g(5) = 2 and g'(5) = 13, then f'(2) is *a) $\frac{1}{13}$ b) $-\frac{1}{13}$ c) $\frac{1}{5}$ d) $-\frac{1}{5}$ e) $\frac{5}{13}$ 18) Given that $\int_{0}^{16} e^{x} dx = m$ find $\int_{0}^{4} x e^{x^2} dx$ *a) $\frac{1}{2}m$ b) _m c) _{2 m} d) _m2 e) $\frac{1}{2}m^2$

19) Which of the following differential equations corresponds to the slope field shown in the figure below?

- b) $\frac{dy}{dx} = \frac{1}{2} x y$ c) $\frac{dy}{dx} = \frac{1}{4} x y$
- d) $\frac{dy}{dx} = -\frac{y}{x}$

e) $\frac{dy}{dx} = \frac{y}{x}$ 20) Given the following function, with x > 0, on which interval is the function decreasing?

- *a) $\left(0, \frac{1}{2}e\right)$ b) (1, 2 e) c) $\left(0, \frac{1}{2}\right)$ d) (1, 2) e) $\left(1, \frac{1}{2}e\right)$ 21) Find the area of the region enclosed by the graphs of
 - $y = 4 x^{2}$ and y = 3x

 $f(x) = \frac{x}{\ln(2x)}$

*a) <u>9</u> 32 b) $\frac{9}{16}$ c) $\frac{3}{32}$ d) $\frac{32}{27}$ e) $\frac{64}{27}$

$$\int_{1}^{4} \frac{3}{\sqrt{x}} \, \mathrm{d}x$$

a) ₁₂ b) ₃

- c) ₂₃
- d) 24
- *~) 24
- *e) 6

23) The region bounded by the following graph

 $y = 3 \sin(x)$

and the *x*-axis, for $0 \le x \le \frac{1}{2}\pi$, is rotated about the line y = -4. The volume of this solid can be represented by:

a)
$$2\pi \int_{0}^{\frac{1}{2}\pi} (3\sin(x) + 4)^{2} dx$$

b) $\pi \int_{0}^{\frac{1}{2}\pi} (9\sin(x)^{2} - 16) dx$
c) $2\pi \int_{0}^{\frac{1}{2}\pi} 9\sin(4 + x)^{2} dx$
*d) $\pi \int_{0}^{\frac{1}{2}\pi} ((3\sin(x) + 4)^{2} - 16) dx$
e) $2\pi \int_{0}^{\frac{1}{2}\pi} (9\sin(x)^{2} + 4) dx$

24) The side of a cube is expanding at a constant rate of 4 inches per second. What is the rate of change of the volume, in in^3 per second, when the total surface area of the cube is 54 in^2 ? a) 36

*b) 108

- c) 72
- d) 12
- e) 216

25) The solution to the differential equation

$$\frac{dy}{dx} = 12 x y$$

with the initial condition y(0) = 3 is a) $e^{6x^2} + 3$

 $(e^{+5})^{*b}_{3e^{6}x^{2}}$ $(e^{6}x^{2}+2)^{*b}_{2e^{6}x^{2}}$

d)
$$\ln(6x^2 + 3)$$

e) $3\ln(6x^2)$
26) $\int \sec^2 (7x) dx =$
*a) $\frac{1}{7} \tan(7x) + C$
b) $7\tan(7x) + C$
c) $-7\tan(7x) + C$
d) $7\tan^2 (7x) + C$
e) $\frac{1}{7} \tan^2 (7x) + C$

27) The position of a particle moving along a horizontal line is given by $x(t) = 2 (t-3)^3$ What is the maximum speed of the particle for $0 \le t \le 10$? a) 54 b) 98 *c) 294 d) 162 e) 18 28) Using the information below, find $\frac{dz}{dt}$ when t = 0.

$$z = \ln(y)$$

$$y = 2x^{2} + 2$$

$$x = 4t + 1$$

a) 1

b) ₈

c) ₁₆

d) 2

*e) 4

29) If *f* is a differentiable function and f(0) = -6 and f(2) = 12, then which of the following must be true?

I. There exists a *c* in [0,2] where f(c) = 0. II. There exists a *c* in [0,2] where f'(c) = 0.

III. There exists a c in [0,2] where f'(c) = 0.

a) II and III only b) I only c) II only d) I, II and III *e) I and III only 30) Which of the following function(s) is continuous and differentiable? I. $f(x) = \frac{7}{\sqrt{x}}$ II. g(x) = x |x|III. $h(x) = \begin{cases} 8x + 1 & x \le 0 \\ x^2 + 1 & 0 < x \end{cases}$ a) II only b) I only c) III only *d) I and II only e) I and III only 31) The area of the region in the first quadrant bounded by the graphs of $y = 6\cos(x)$, $y = 6\sin(x)$, and the y-axis is $^{*a)}$ 6 ($\sqrt{2}$ - 1) b) $3\sqrt{2}$ c) ₁₂

^{d)} $6\sqrt{2} + 1$ e) $6\sqrt{2}$

32) Air is pumped into a spherical balloon at a rate of 6cm^3 per second. At what rate is the radius of the sphere changing when its volume is $_{36 \pi} \text{ cm}^3$?

a) $\frac{2}{3\pi}$ cm/sec b) $\frac{2}{\pi}$ cm/sec c) $\frac{1}{4\pi}$ cm/sec d) $\frac{1}{12\pi}$ cm/sec *e) $\frac{1}{6\pi}$ cm/sec

33) The graph of the derivative of f is shown below. Which of the following must be true?

*a) *f* has a point of inflection at x = 4.

- b) f is increasing on [-2, 2].
- c) f has a local maximum at x = 0.
- d) f is concave down on [0, 4].
- e) *f* has a local minimum at x = -2.
- 34) A particle is moving along the *x*-axis and its position at time $t \ge 0$ is given by

$$\mathcal{S}(t) = (t-4)^2 (t-6)$$

Which of the following is (are) true?

I. The particle changes direction at x = 4 and x = 6.

II. The particle is slowing down on [0, 4].

- III. The particle is speeding up on [4, 6].
- a) II and III only
- b) I only
- *c) II only
- d) I and III only
- e) I, II and III
- 35) The region enclosed by the graphs of

$$y = 6 e^{x}$$

and the line
$$y = 6$$

for $0 \le x \le 1$, is revolved about the *y*-axis. Which of the following integrals gives the volume generated?

a)
$$\pi \int_{0}^{1} (6 e^{x} - 6)^{2} dx$$

*b) $\pi \int_{6}^{6e} \left(1 - \left(\ln\left(\frac{1}{6}y\right)\right)^{2}\right) dy$
c) $\pi \int_{6}^{6e} \left(6 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$
d) $\pi \int_{0}^{6} \left(1 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$
e) $\pi \int_{6}^{6e} \left(1 - \ln\left(\frac{1}{6}y\right)\right)^{2} dy$

$$3x^2 + xy - \cos(y) = 5$$

then
$$\frac{dy}{dx}$$
 is
a) $-\frac{6x}{x + \sin(y)}$
b) $\frac{y - 6x}{x - \sin(y)}$
*c) $-\frac{(y + 6x)}{x + \sin(y)}$
d) $\frac{y + x}{x - \sin(y)}$
e) $-\frac{(x + \sin(y))}{y + 6x}$

37) The sum of two positive integers x and y is 30. Find the value of x that minimizes

$$P = x^3 - 30 x y$$

a) x = 20b) x = 5c) x = 25*d) x = 10e) x = 1538) A particle moves along a straight line, and its velocity at time *t* is given by $v(t) = 7 - \ln(t)$ What is the total distance the particle travels from t = 1 to t = e? a) e^{-8} b) 7e + 1c) 7e + 7*d) 7e - 8e) 7e - 139) The function *f* is defined as

$$f(x) = \frac{(x-2)^2}{x-6}$$

 $x_{\neq} 6$

Which of the following is **false**?

a) f is concave up for x > 6.

- b) f is decreasing on [2, 6].
- c) f has a local maximum at x = 2.
- *d) *f* has a horizontal asymptote at y = 1.
- e) *f* has a vertical asymptote at x = 6.

40) The base of a solid is the region bounded by

$$y = 3\sqrt{x}$$

the *x*-axis, and

the line x = 3

Each cross-section of the solid perpendicular to the *x*-axis is a square, with one side on the *xy*-plane. Which of the following expressions represents the volume of the solid?

a)
$$\int_{0}^{3} \sqrt{x} \, dx$$

b)
$$\int_{0}^{3} 3x \, dx$$

c)
$$\int_{0}^{1} 9x \, dx$$

*d)
$$\int_{0}^{3} 9x \, dx$$

e)
$$\int_{0}^{3} 3\sqrt{x} \, dx$$

1

41) The rate at which a bacteria population grows is proportional to the number of bacteria present. Initially, there were 1000 bacteria present and the population doubled in 3 hours. Roughly how many hours does it take for the population to reach 10000?

a) 15.6 b) 12.3 *c) _{9.9} d) 6.6 e) 8.7 42) Given that F'(x) = f(x), find $\int_{-2}^{5} x f(x^2) \, \mathrm{d}x$ a) 2F(25) - 2F(9)b) $2F(\sqrt{5}) - 2F(\sqrt{3})$ c) $\frac{25F(25) - 9F(9)}{(2)}$ *d) $\frac{F(25) - F(9)}{(2)}$ e) 5F(25) + 3F(9)43) The line normal to $5x^2 + 3y + y^2 = 3$ at x = m is parallel to the y-axis. What is m? a) $\frac{3}{2}$ b) 5 c) _5 *d) ∩ e) $-\frac{3}{2}$ 44) f and g are two differentiable functions such that

$$f(1) = g(1) = 5$$

$$f'(1) = g'(1) = 9$$

$$f'(5) = 5$$

$$g'(5) = 9$$

If $h(x) = (f \circ g)(x)$, then h'(1) is a) 1 b) 25 c) 81 *d) 45 e) 9 45) If $\frac{dy}{dx} = ye^{x}$ and y(0) = 4, then $y\ln(2) =$ *a) 4 e b) 4 e² c) 4 e³ d) 4 e⁻² e) 4 e⁻¹