Let 
$$f(x) = \begin{cases} x^2 - a^2 x & \text{if } x < 2 \\ 4 - 2x^2 & \text{if } x \ge 2 \end{cases}$$

- (a) Find  $\lim_{x\to 2^-} f(x)$ .
- (b) Find  $\lim_{x\to 2^+} f(x)$ .
- (c) Find all values of a that make f continuous at 2. Justify your answer.

Let 
$$f(x) = 2x - x^2$$
.

- (a) Find f(4)
- (b) Find f(4+h)
- (c) Find  $\frac{f(4+h)-f(4)}{h}$
- (d) Find the instantaneous rate of change of f at x = 4.

Let 
$$f(x) = x^4 - 4x^2$$
.

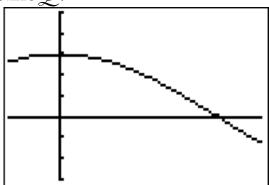
- Find all the points where f has horizontal (a) tangents.
- (b) Find an equation of the tangent line at x = 1.
- (c) Find and equation of the normal line at x = 1.

A particle moves along the y-axis with position given by

$$s(t) = -\frac{1}{2}\cos t + \frac{5}{2} \text{ for } t \ge 0.$$

- (a) In which direction (up or down) is the particle moving at t = 1.5? Why?
- Find the acceleration of the particle at t = 1.5. (b) Is the velocity of the particle increasing or decreasing at t = 1.5? Why or why not?
- (c) Find the displacement of the particle during the first two seconds.

Let f be the function given by  $f(x) = 3\cos x$ . As shown below, the graph of f crosses the y-axis at point P and the x-axis at point Q.



- Write an equation for the line passing through (a) points P and Q.
- (b) Write an equation for the line tangent to the graph of f at point Q. Show the analysis that leads to your equation.
- (c) Find the x-coordinate of the point on the graph of f, between points P and Q, at which the line tangent to the graph of f is parallel to line PQ.

#### Free Response Set #6 – NO CALCULATOR

Consider the curve given by  $xy^2 - x^3y = 6$ .

(a) Show that  $\frac{dy}{dx} = \frac{3x^2y - y^2}{2xy - x^3}$ .

Find all point on the curve whose (b) x-coordinate is 1, and write and equation for the tangent line at each of these points.

(c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

### Free Response Set #7 - CALCULATOR USE OK

A particle moves along the x-axis so that its velocity at

time t is given by 
$$v(t) = -t + 1 \sin\left(\frac{t^2}{2}\right)$$
.

At time t = 0, the particle is at position x = 1.

(a) Find the acceleration of the particle at time t= 2. Is the speed of the particle increasing at t= 2? Why or why not?

(b) Find all times t in the open interval 0 < t < 3when the particle changes direction. Justify your answer.

# Free Response Set #8 – CALCULATOR USE OK

Let f be the function given by  $f(x) = 4\sin x$ . As shown, the graph of f passes through the point  $M\left(\frac{\pi}{2},4\right)$  and crosses the x-axis at point N  $\pi$ , 0.



Write an equation for the line passing through (a) points M and N.

(b) Write and equation for the line tangent to the graph of f at point N. Show the analysis that leads to your equation.

(c) Find the *x*-coordinate of the point on the graph of, between points *M* and *N*, at which the line tangent to the graph of *f* is parallel to line *MN*.

# Free Response Set #9 – CALCULATOR USE OK

Let f be the function given by  $f(x) = 2xe^{2x}$ .

Find  $\lim_{x\to\infty} f(x)$  and  $\lim_{x\to\infty} f(x)$ . (a)

(b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

- (c) What is the range of f?
- (d) Consider the family of functions defined by  $y = bxe^{bx}$ , where b is a nonzero constant. Show that the absolute minimum value of  $bxe^{bx}$  is the same for all nonzero values of b.

#### Free Response Set #10 - NO CALCULATOR

Let b be a function defined for all  $x \neq 0$  such that h(4) = -3 and the derivative of h is given by  $h'(x) = \frac{x^2 - 2}{x}$  for all  $x \neq 0$ .

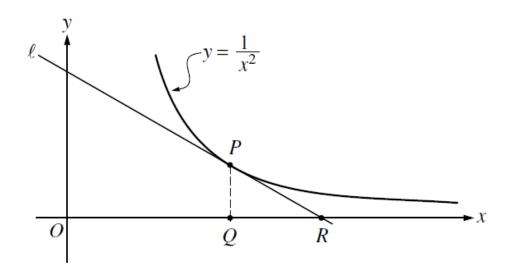
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether b has a local maximum, a local minimum, or neither at each of these values. Justify your answers.

(b) On what intervals, if any, is the graph of h concave up? Justify that your answer.

(c) Write an equation for the line tangent to the graph of *h* at x = 4.

(d) Does the line tangent to the graph of h at x =4 lie above or below the graph of h for x > 4? Why?

#### Free Response Set #11 – NO CALCULATOR



In the figure above, line lis tangent to the graph of  $y = \frac{1}{x^2}$  at point P, with coordinates  $\left(w, \frac{1}{w^2}\right)$ , where w > 0. Point Q has coordinates (w, 0). Line l crosses the x-axis at point R, with coordinates (k, 0).

(a) Find the value of k when w = 3.

(b) For all w > 0, find k in terms of w.

(c) Suppose that w is increasing at the constant rate of 7 units per second. When w = 5, what is the rate of change of k with respect to time?

(d) Suppose that w is increasing at the constant rate of 7 units per second. When w = 5, what is the rate of change of the area of  $\triangle PQR$  with respect to time? Determine whether the area is increasing or decreasing at this instant.

# Free Response Set #12 CALCULATOR USE OK

| t       | R(t)               |  |  |  |
|---------|--------------------|--|--|--|
| (hours) | (gallons per hour) |  |  |  |
| 0       | 9.6                |  |  |  |
| 3       | 10.4               |  |  |  |
| 6       | 10.8               |  |  |  |
| 9       | 11.2               |  |  |  |
| 12      | 11.4               |  |  |  |
| 15      | 11.3               |  |  |  |
| 18      | 10.7               |  |  |  |
| 21      | 10.2               |  |  |  |
| 24      | 9.6                |  |  |  |

The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period.

Use a midpoint Riemann sum with 4 (a) subdivision of equal length to approximate  $\int_{0}^{2\pi} R(t)dt$ . Using correct units, explain the meaning of your answer in terms of water flow.

(b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer.

Free Response Set #13 Calculator Use OK

| Distance           | 0   | 1  | 5  | 6  | 8  |
|--------------------|-----|----|----|----|----|
| x (cm)             |     |    |    |    |    |
| Temperature        | 100 | 93 | 70 | 62 | 55 |
| $T(x)$ $C^{\circ}$ |     |    |    |    |    |

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius  $C^{\circ}$ , of the wire xcm from the heated end. The function T is decreasing and twice differentiable.

- Estimate T'(7). Show the work that leads to (a) your answer. Indicate units of measure. Using correct units, explain the meaning of your answer in terms of water flow.
- (b) Write an integral expression in terms of T(x)for the average temperature of the wire.
- (c) Find  $\int_{0}^{s} T'(x)dx$ , and indicate units of measure. Explain the meaning of  $\int_{0}^{8} T'(x)dx$  in terms of the temperature of the wire.

(d) Are the data in the table consistent with the assertion that T''(x) > 0 for every x in the interval 0 < x < 8? Explain your answer.

The temperature outside a house during a 24-hour period is given by  $F(t) = 80 - 10\cos\left(\frac{\pi t}{12}\right)$ ,  $0 \le t \le 24$ , where F(t) is measured in degree Fahrenheit and t is measure in hours.

(a) Find the average temperature, to the nearest degree Fahrenheit, between t = 6 and t = 14?

(b) An air conditioner cooled the house whenever the outside temperature was at or above 78 degrees Fahrenheit. For what values of *t* was the air conditioner cooling the house?

(c) The cost of cooling the house accumulates at the rate of \$0.05 per hour for each degree the

outside temperature exceeds 78 degrees Fahrenheit. What was the total cost, to the nearest cent, to cool the house for this 24hour period?

#### Free Response Set #15 Calculator Use OK

A particle moves along the y-axis so that its velocity v at time  $t \ge 0$  is given by  $v(t) = 1 - \tan^{-1} e^{t}$ . At time t = 0, the particle is at y = -1. (Note:  $tan^{-1} x = arctan x$ ).

(a) Find the acceleration of the particle at time t = 2.

(b) Is the speed of the particle increasing or decreasing at time t = 2? Give a reason for your answer

(c) Find the position of the particle at time t = 2. Is the particle moving toward the origin or away from the origin at time t = 2? Justify your answer

Consider the differential equation  $\frac{dy}{dx} = \frac{3x^2}{e^{2y}}$ .

Find a solution y = f(x) to the differential (a) equation satisfying  $f(0) = \frac{1}{2}$ .

(b) Find the domain and range of the function ffound in part (a).

#### A graphing calculator is required for some problems or parts of problems.

 There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by  $f(t) = 7te^{\cos t}$  cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. (t = 6). The rate g(t), in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$g(t) = \begin{cases} 0 & \text{for } 0 \le t < 6 \\ 125 & \text{for } 6 \le t < 7 \\ 108 & \text{for } 7 \le t \le 9 \,. \end{cases}$$

- (a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?
- (b) Find the rate of change of the volume of snow on the driveway at 8 A.M.
- (c) Let h(t) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain  $0 \le t \le 9$ .
- (d) How many cubic feet of snow are on the driveway at 9 A.M.?

A graphing calculator is required for some problems or parts of problems.

Let R be the region in the first and second quadrants bounded above by the

graph of  $y = \frac{20}{1+x^2}$  and below by the horizontal line y = 2.

a. Find the area of R

b. The region R is the base of a solid. For this solid, the cross sections

perpendicular to the x -axis are semicircles. Find the volume of this solid.