Non Calculator Portion form A

1. If $f(x) = \frac{x^2 - 9}{x + 3}$ is continuous at x = -3, then f(-3) =

- (E) -6

2. The graph of $y = 3x^2 - x^3$ has a relative maximum at

- (D) (4,-16) only (E) (0,0) and (2,4)

- (A) 0

4. If $f(x) = \sqrt{4\sin x + 2}$, then f'(0) =

- (A) -2

- (B) 0 (C) $\sqrt{2}$ (D) $\frac{\sqrt{2}}{2}$

5, The equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (5, -12) is

- (A) 5y-12x=-120
- **(B)** 5x 12y = 119
- (C) 5x-12y=169

- **(D)** 12x + 5y = 0
- **(E)** 12x + 5y = 169

- 6. The figure above shows the graph of the velocity of a moving object as a function of time. At which of the marked points is the speed the greatest?

- (A) A (B) B (C) C (D) D (E) E

 7. If the graph of $f(x) = 2x^2 + \frac{k}{x}$ has a point of inflection at x = -1, then the value of k is

 (A) 1 (B) -1 (C) 2 (D) -2 (E) 0

- 8. Which of the following is an equation of the line tangent to the curve with parametric equations $x = 3e^{-t}$, $y = 6e^{t}$ at the point where t = 0?

- (A) 2x+y-12=0 (B) -2x+y-12=0 (C) 2x+y-6=0 (D) -2x+y-6=0 (E) 2x+y=0
- 9. If $x = \sin t$ and $y = \cos^2 t$, then $\frac{d^2 y}{dx^2}$ at $t = \frac{\pi}{2}$ is

- (A) 0 (B) $\frac{1}{4}$ (C) $-\frac{1}{4}$ (D) -2

- 10. If $y = x(\ln x)^2$, then $\frac{dy}{dx} =$
- (A) $3(\ln x)^2$
- (B) $(\ln x)(2x + \ln x)$
- (C) $(\ln x)(2 + \ln x)$
- (D) $(\ln x)(2 + x \ln x)$ (E) $(\ln x)(1 + \ln x)$

- 11. A particle moves on the x-axis so that at any time t its velocity $v(t) = \sin 2t$ subject to the condition x(0) = 0 where x(t) is the position function. Which of the following is an expression for x(t)?
- (A) $\cos 2t + \frac{1}{2}$ (B) $-\frac{1}{2}\sin 2t + \frac{1}{2}$ (C) $-\frac{1}{2}\cos 2t$

- (D) $-\frac{1}{2}\cos 2t + \frac{1}{2}$ (E) $-\frac{1}{2}\cos 2t \frac{1}{2}$
- 12. The maximum value of $f(x) = 2x^3 9x^2 + 12x 1$ on [-1,2] is
- (A) 0
- (B) 1 (C) 2 (D) 3 (E) 4
- 13. At what value(s) of x does $f(x) = x^4 8x^2$ have a relative minimum?
- (A) 0 and -2 only
- (B) 0 and 2 only (C) 0 only

- (D) -2 and 2 only
- (E) -2, 0, and 2
- 14. The function $y = x^4 + bx^2 + 8x + 1$ has a horizontal tangent and a point of inflection for the same value of x. What must be the value of b?
- (A) -1
- (B) 4

- (C) 1 (D) 6 (E) -6
- 15. $\lim_{x\to 2} \frac{2^{\frac{-}{2}}-2}{2^x-4}$ is

- (A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) $\ln 2$
- (E) nonexistent

41 Problems: AP Calculus AB

- 16. If x+y=xy, then $\frac{dy}{dx}=$

- (b) x+y-1 (E) $\frac{2-xy}{y}$
- 17. For |x| < 1, the derivative of $y = \ln \sqrt{1 x^2}$ is

- 18. What are all values of x for which the graph of $y = x^3 6x^2$ is concave downward?
- (A) 0 < x < 4 (B) x > 2
- **(D)** x < 0
- **(E)** x > 4
- 19. A <u>normal</u> line to the graph of a function f at the point (x, f(x)) is defined to be the line perpendicular to the tangent line at that point. The equation of the <u>normal</u> line to the curve $y = \sqrt[3]{x^2 - 1}$ at the point where x = 3 is (B) y-4x=10 (C) y+2x=4 (D) y+2x=8 (E) y-2x=-4
- (A) y+12x=38

- 20. If $\int_{0}^{6} (x^2 2x + 2) dx$ is approximated by three <u>inscribed</u> rectangles of equal width on the x – axis, then the approximation is
- (A) 24
- (B) 26
- (C) 28
- (D) 48
- (E) 76

Calculator Portion - form A

21.
$$\lim_{x \to -3} \frac{x^2 + 3x}{\sqrt{x^2 + 6x + 9}}$$
 is

- (C) 1 (D) 3 (E) nonexistent

22. The cost C of producing x items is given by $C(x) = 20,000 + 5(x - 60)^2$. The revenue R obtained by selling x items is given by R(x) = 15,000 + 130x. The revenue will exceed the cost for all x such that

- (A) 0 < x < 46
- (C) x < 100

- **(D)** 46 < x < 100

23.

x	0	1	2	3	4	5 6	7_	8	9	10
f(x)	20	19.5	18	15.5	12	7.5 2	4.5	-12	-20.5	-30

Some values of a continuous function are given in the table above. The Trapezoidal Rule approximation for $\int_{0}^{10} f(x) dx$ is

- (A) 30.825
- (B) 32.500
- (C) 33.325
- (D) 33.333

24. For which pair of functions f(x) and g(x) below, will the $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$?

- f(x)g(x)
- (A) e^x
- e^x (B) $\ln x$
- (C) e^x $\ln x$
- (D) $\ln x$ х
- 3^{*x*} (E) 2^x

25,

X	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
f(x)	2.018	2.008	2.002	2	2.002	2.008	2.018
g(x)	1	1	1	2	2	2	2
h(x)	4 0 7 4	4 00 -	4 00-	undefined	4 007	4.007	4 074

The table above gives the values of three functions, f, g, and h near x-0. Based on the values given, for which of the functions does it appear that the limit as x approaches zero is 22

- (A) f only
- (C) h only
- (D) f and h only (E) f, g, and h

26. If $f(x) = |(x^2 - 12)(x^2 + 4)|$, how many numbers in the interval $-2 \le x \le 3$ satisfy the conclusion of the Mean Value Theorem?

- (A) None
- (B) One
- (D) Three
- (E) Four

27. The amount A(t) of a certain item produced in a factory is given by

$$A(t) = 4000 + 48(t-3) - 4(t-3)^3$$

where t is the number of hours of production since the beginning of the workday at 8:00 am. At what time is the rate of production increasing most rapidly?

- (A) 8:00 am
- (B) 10:00 am
- (C) 11:00 am
- (D) 12:00 am
- (E) 1:00 pm

28. At how many points on the curve $y = 4x^5 - 3x^4 + 15x^2 + 6$ will the line tangent to the curve pass through the origin?

- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

29. A population grows according to the equation $P(t) = 6000 - 5500e^{-0.159t}$ for $t \ge 0$, $t \ge 0$ measured in years. This population will approach a limiting value as time goes on. During which year will the population reach <u>half</u> of this limiting value?

- (A) Second
- (B) Third
- (C) Fourth
- (D) Eighth
- (E) Twenty-ninth

Note: This is the graph of f'(x), NOT the graph of f(x).

30. Let f be a differentiable function for all x. The graph of f'(x) is shown above. If f(2)=10, which of the following best approximates the maximum value of f(x)?

- (A) 30
- (B) 50
- (C) 70
- (D) 90
- (E) 110

31. Of the choices given, which value is NOT in the domain of the function $f(x) = (\cos x)^x$?

- (A) 1
- (B) $\frac{\pi}{2}$
- (C) $\frac{4\pi}{3}$
- (D) 4
- **(E)** 2π

32. Let f be a function that is everywhere differentiable. The value of f'(x), is given for several values of x in the table below.

х	-10	-5	0	5	10
f'(x)	-2	-1	0	1	2

If f'(x) is always increasing, which statement about f(x) must be true?

- (A) f(x) has a relative minimum at x = 0.
- (B) f(x) is concave downwards for all x.
- (C) f(x) has a point of inflection at (0, f(0)).
- (D) f(x) passes through the origin.
- (E) f(x) is an odd function.

I.
$$f'(x) < 0$$
 for all $x \ge 0$

II.
$$\lim_{x \to +\infty} f'(x) = 0$$

III.
$$\lim_{x\to -\infty} f'(x) = 2$$

(A) I only

- (B) II only
- (C) III only (D) I and II only
- (E) I, II, and III

(c, 34. The graph above shows the distance s(t) from a reference point of a particle moving on a number line, as a function of time. Which of the points marked is closes to the point where the acceleration first becomes negative?

- (A) A
- (B) B
- (C) C
- (D) D
- (E) E

35. The <u>derivative</u> of f is given by $f'(x) = e^x(-x^3 + 3x) - 3$ for $0 \le x \le 5$. At what value of x is f(x) an absolute minimum?

- (A) For no value of x
- (B) 0
- (C) 0.618
- (D) 1.623
- (E) 5

36.

х	f(x)			
3.99800	1.15315			
3.99900	1.15548			
4.00000	1.15782			
4.00100	1.16016			
4.00200	1.16250			

The table above gives values of a differentiable function f. What is the approximate value of f'(4)?

- (A) 0.00234
- (C) 0.427
- (D) 2.340
- (E) f'(4) cannot be determined from the information given..

37. If y=7 is a horizontal asymptote of a rational function f, then which of the following must be true?

- $(A) \lim_{x \to 7} f(x) = \infty$

38.

x	0	1	2	3	4	5 6
f(x)	0	0.25	0.48	0.68	0.84	0.95 1

For the function whose values are given in the table above, $\int f(x)dx$ is approximated by a Riemann Sum using the value at the midpoint of each of three intervals of width 2. the

approximation is

- (A) 2.64
- (B) 3.64
- (C) 3.72
- (D) 3.76
- (E) 4.64

39. The tangent line to the graph $y = e^{2-x}$ at the point (1,e) intersects both coordinate axes. What is the area of the triangle formed by this tangent line and the coordinate axes?

- (A) 2e
- (B) $e^2 1$
- (C) e^2 (D) $2e\sqrt{e}$
- (E) 4e

41 Problems: AP Calculus AB

41.

40. Which graph best represents the position of a particle, s(t), as a function of time, if the particle's velocity and acceleration are both positive?

TO TO

Suppose the derivative of f has the graph shown above. Which of the following could be the graph of f?