Part I – Multiple Choice (You may use a calculator)

Please circle the best answer.

1. At time $t \ge 0$, the acceleration of a particle moving on the x-axis is given by $a(t) = t + \sin t$. At t = 0, the velocity of the particle is -2. For what value of t will the velocity of the particle be 0?

(B) 1.48

(C) 1.85

(D) 2.81

(E) 3.14

2. The average value of the function $f(x) = x^2 \sin x$ on the interval [2, 4]

(A) -0.686

(B) 0.686

(C) -1.373

(D) 1.373

(E) -2.746

3. Find the distance traveled in the first four seconds, for a particle whose velocity is given by $v(t) = 7\sin(t)$; where t represents time, in seconds.

(A) -16.424

(B) -11.576

(C) 0

(D) 11.576

(E) 16.424

4. The volume generated by revolving about the x-axis the region below the curve $y = x^3$, above the x-axis, and between x = 0 and x = 1 is

(A) $\frac{\pi}{42}$

(B) 0.143π

(C) $\frac{\pi}{7}$

(D) 0.643π

(E) $\frac{6\pi}{7}$

5. If f is a continuous function, and F'(x) = f(x) for all real numbers x, then $\int_{-\infty}^{\infty} f(2x) dx = \int_{-\infty}^{\infty} f(x) dx$

- (A) 2F(3) 2F(1)

- (E) $\frac{1}{2}F(6) \frac{1}{2}F(2)$
- (B) $\frac{1}{2}F(3) \frac{1}{2}F(1)$ (C) 2F(6) 2F(2) (D) F(6) F(2)6. Let g be the function given by $g(x) = \int_{0}^{x} \sin(t^2) dt$ for $-1 \le x \le 3$. On which of the following intervals is g decreasing?

- $(A) -1 \le x \le 0$
- (B) $0 \le x \le 1.772$
- (C) $1.253 \le x \le 2.171$
- (D) $1.772 \le x \le 2.507$
- (E) $-1 \le x \le 3$
- 7. If the region enclosed by the y-axis, the curve $y = 4\sqrt{x}$, and the line y = 8 is revolved about the x-axis, the volume of the solid generated is

- (B) 128π
- (C) $\frac{128}{3}$

8. Find the length of the curve $y = x^{3/2}$ from x = 1 to x = 2

(A) 0

- (B) 1.456
- (C) 2.086
- (D) 3.498
- (E) 10.862

Part II – Multiple Choice (You may not use a calculator)

Please circle the best answer.

1. What is the average value of $y = \sin 2x$ over the interval $\left| \frac{\pi}{4}, \frac{\pi}{3} \right|$

- (C) $\frac{3}{\pi}$

- (D) 3π
- (E) $\frac{6}{\pi}$

- 2. Which of the following integrals correctly corresponds to the area of the shaded region in the figure above? (FYI: the functions graphed are: $f(x) = 1 + x^2$ and g(x) = 5)
- (A) $\int_{1}^{2} (x^{2} 4) dx$ (B) $\int_{1}^{2} (4 x^{2}) dx$ (C) $\int_{1}^{5} (x^{2} 4) dx$ (D) $\int_{1}^{5} (x^{2} + 4) dx$ (E) $\int_{1}^{5} (4 x^{2}) dx$

- 3. A particle's position is given by $s(t) = \sin t + 2\cos t + \frac{t}{\pi} + 2$. The average velocity of the particle over $[0, 2\pi]$

- (C) 0

- (D) $\frac{1}{\pi}$

$$5. \int_{0}^{\pi/2} \cos x dx$$

$$(A) -\pi$$

(B) -1

(D) 1

(E) π

$$6. \quad \frac{d}{dx} \int_{0}^{x} \sin(t) dt =$$

- (A) $\sin t$
- (B) $\cos t$

 $(C) - \cos x$

(D) $\sin x$

(E) $\cos x$

SECTION 1 KEY

1	2	3	4	5	6	7	8
В	A	Е	С	Е	D	В	С

SECTION 2 KEY

1	2	3	4	5	6	
1 C	В	D	D	D	D	