Find the following algebraically.

- 1. $\lim_{x\to 3} \frac{x-3}{x^2-2x-3}$ is

- (A) 0 (B) 1 (C) $\frac{1}{4}$ (D) ∞ (E) none of these
- 2. $\lim_{x\to 0} \frac{|x|}{x}$ is

 - (A) 0 (B) nonexistent (C) 1

- (D) -1 (E) none of

these

- 3. $\lim_{x\to 7} \frac{x-7}{\sqrt{x}-7}$ is
 - (A) $2\sqrt{7}$ (B) $\sqrt{7}$ (C) 0 (D) $-2\sqrt{7}$

- (E)

nonexistent

Find the following WITHOUT the use of a calculator.

- 1. $\lim_{x\to 1}\frac{x}{\ln x}$ is

- (A) 0 (B) $\frac{1}{e}$ (C) 1 (D) e (E) nonexistent
- 2. If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 a^2}{x^4 a^4}$ is

 - (A) $\frac{1}{a^2}$ (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$ (D) 0
- (E) nonexistent

- 3. $\lim_{x \to \infty} \frac{x^3 2x^2 + 3x 4}{4x^3 3x^2 + 2x 1} =$
- (A) 4 (B) 1 (C) $\frac{1}{4}$

4. The graph of the function f is shown in the figure above. Which of

the following statements about f is true?

- (A) $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$
- (B) $\lim_{x \to a} f(x) = 2$

$$(c) \lim_{x\to b} f(x) = 2$$

(b)
$$\lim_{x \to b} f(x) = 1$$

(E)
$$\lim_{x\to a} f(x)$$
 does not exist.

Find the following WITHOUT the use of a calculator.

1. Let f(x) = 4 - 3x. Which of the following is equal to f'(-1)?

(A) -7 (B) 7

- (C) -3 (D) 3 (E) nonexistent
- 2. Which of the following is true about the graph of $f(x) = x^{-5}$ at

x = 0?

- (A) It has a corner.
- (B) It has a cusp.
- (C) It has a vertical tangent.
- (D) It has a discontinuity.
- (E) f(0) does not exist.
- 3. Let f be the function given by f(x) = |x|. Which of the following statements about f are true?
 - f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.
 - (A) I only
- (B) II only (C) III only
- (D) I and III only (E) II and III only

Find the following WITHOUT the use of a calculator.

- 1. If the line normal to the graph of f at the point (1,2) passes through the point (-1,1), then which of the following gives the value of f'(1) = ?
- (A) -2 (B) 2 (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$
- (E) 3

- 2. Find $\frac{dy}{dx}$ if $y = \frac{4x-3}{2x+1}$.
 - (A) $\frac{10}{(4x-3)^2}$
 - (B) $-\frac{10}{(4x-3)^2}$
 - (C) $\frac{10}{(2x+1)^2}$
 - (D) $-\frac{10}{(2x+1)^2}$
 - (E) 2
- 3. Let $f(x) = 1 3x^2$. Which of the following is equal to f'(1)?

- (A) -6 (B) -5 (C) 5 (D) 6 (E) Does not exist

Find the following WITHOUT the use of a calculator.

- 1. If the nth derivative of y is denoted as $y^{(n)}$ and $y = -\sin x$, then $y^{(7)}$ is the same as
 - (A) y (B) $\frac{dy}{dx}$ (C) $\frac{d^2y}{dx^2}$ (D) $\frac{d^3y}{dx^3}$ (E) none of the

above

- 2. Find $\frac{dy}{dx}$ if $y = \frac{4}{x^3}$.

 - (A) $-4x^2$ (B) $-\frac{12}{x^2}$
 - (C) $\frac{12}{x^2}$ (D) $\frac{12}{x^4}$
- 3. Use the table below to find the value of $\frac{d}{dx}(f \bullet g)$ at x = 3.
 - (A) $\frac{5}{2}$ (B) $-\frac{3}{2}$ (C) -13 (D) 12 (E) $\frac{21}{2}$

\boldsymbol{x}	f(x)	g(x)	f'(x)	g'(x)
1	4	2	5	$\frac{1}{2}$
3	7	-4	$\frac{3}{2}$	-1

Find the following WITHOUT the use of a calculator.

1. What does the limit statement $\lim_{x\to 1} \frac{\ln(x+1) - \ln 2}{x-1}$ represent?

- **(B)** $\frac{d}{dx} [\ln(x+1)]$ **(C)** f'(1), if $f(x) = \ln(x+1)$ **(A)** 0
- (E) The limit does not exist

2. Find $\frac{d^2y}{dx^2}$ if $f(x) = (2x+3)^4$.

- (A) $4(2x+3)^3$
- (B) $8(2x+3)^3$ (C) $12(2x+3)^2$
- (D) $24(2x+3)^2$
- (E) $48(2x+3)^2$

3. Find $\frac{dy}{dx}$ for $y = 4\sin^2(3x)$.

(A) $8\sin(3x)$ (B) $24\sin(3x)$ (C) $8\sin(3x)\cos(3x)$ (D) $12\sin(3x)\cos(3x)$ (E) $24\sin(3x)\cos(3x)$

Find the following WITHOUT the use of a calculator.

1. If $x^2 + y^2 = 25$, what is the value of $\frac{d^2y}{dx^2}$ at the point (4,3)?

(A) $-\frac{25}{27}$ (B) $-\frac{7}{27}$ (C) $\frac{7}{27}$ (D) $\frac{3}{4}$ (E) $\frac{25}{27}$

- 2. What is the instantaneous rate of change at x = 2 of the function f

given by $f(x) = \frac{x^2-2}{x-1}$.

- (A) -2 (B) $\frac{1}{6}$ (C) $\frac{1}{2}$ (D) 2

3. Find $\frac{dy}{dx}$ if $3xy = 4x + y^2$.

(A) $\frac{4-3y}{2y-3x}$ (B) $\frac{3x-4}{2x}$ (C) $\frac{3y-x}{2}$ (D) $\frac{3y-4}{2v-3x}$

 $\frac{4+3y}{2y+3x}$

4. The function f is continuous on the closed interval [0,2] and has values

that are given in the table below. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =

- (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) 3

Multiple Choice Sets: AP Calculus AB

x	0	1	2
f(x)	1	k	2

Find #1-3 WITHOUT the use of a calculator.

- 1. $\lim_{x\to 0} \frac{x^3 + x^2 2x}{x^3 x} =$ (A) -1 (B) 0 (C) 1 (D) 2 (E) ∞
- 2. What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?
 - (A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2
- 3. Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?
 - (A) $-\frac{1}{2}$ (B) $-\frac{1}{8}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$
 - (E) The value of g'(3) cannot be determined from the information

given.

A Calculator may be used for #4

4. A particle moves along a straight line with velocity given by

 $v(t) = 7 - (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3?

(A) -0.914 (B) 0.055 (C) 5.486 (D) 6.086 (E) 18.087

You may use a graphing calculator to solve the following.

1. Which of the following gives $\frac{dy}{dx}$ at x = 1 if $x^3 + 2xy = 9$?

(A)
$$\frac{11}{2}$$
 (B) $\frac{5}{2}$ (C) $\frac{3}{2}$ (D) $-\frac{5}{2}$ (E) $-\frac{11}{2}$

2. Which of the following gives $\frac{dy}{dx}$ if $y = \cos^3(3x-2)$?

(A)
$$-9\cos^2(3x-2)\sin(3x-2)$$

(B)
$$-3\cos^2(3x-2)\sin(3x-2)$$

(C)
$$9\cos^2(3x-2)\sin(3x-2)$$

(b)
$$-9\cos^2(3x-2)$$

(E)
$$-3\cos^2(3x-2)$$

3. If $y = \sin^{-1}(2x) \text{ find } \frac{dy}{dx}$.

(A)
$$-\frac{2}{\sqrt{1-4x^2}}$$
 (B) $-\frac{1}{\sqrt{1-4x^2}}$ (C) $\frac{2}{\sqrt{1-4x^2}}$ (D)

$$\frac{1}{\sqrt{1-4x^2}}$$

(E)
$$\frac{2x}{1+4x^2}$$

4. For what value of k is the function below continuous?

$$g(x) = \begin{cases} kx - 2, & x \le -1 \\ kx^2 + 3, & x > -1 \end{cases}$$
(A) $-\frac{5}{2}$ (B) $\frac{5}{2}$ (C) -1

(A)
$$-\frac{5}{2}$$

(B)
$$\frac{3}{2}$$

$$(D)^{\frac{1}{2}}$$

NO calculator may be used.

1. f is continuous for $a \le x \le b$ but not differentiable for some c such

that a < c < b. Which of the following could be true?

- (A) x=c is a vertical asymptote of the graph of f.
- $\lim_{x \to c} f(x) \neq f(c)$
- (C) The graph of f has a cusp at x = c.
- (D) f(c) is undefined.
- (E) None of the above
- 2. What is the instantaneous rate of change at x = 3 of the **function** $f(x) = \frac{x^2 - 2}{x + 1}$? (A) $-\frac{17}{16}$ (B) $-\frac{1}{8}$ (C) $\frac{1}{8}$ (D) $\frac{13}{16}$

(A)
$$-\frac{17}{16}$$

(B)
$$-\frac{1}{8}$$

(C)
$$\frac{1}{8}$$

(D)
$$\frac{13}{16}$$

(E)
$$\frac{17}{16}$$

- 3. If $f(x) = \begin{cases} \ln 3x, & 0 < x \le 3 \\ x \ln 3, & 3 < x \le 4 \end{cases}$ then $\lim_{x \to 3} f(x)$ is

- (A) $\ln 9$ (B) $\ln 27$ (C) $3 \ln 3$ (D) $3 + \ln 3$ (E) nonexistent
- 4. If $f(x) = \tan 3x$, then $f'(\frac{\pi}{9}) =$

(A) $\frac{4}{3}$

(B) 4

(C) 6

(D)12

(E) $6\sqrt{3}$

NO calculator may be used.

1. If
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = 3x^2 + x$$
, then $\lim_{h\to 0} \frac{f(x+h)-f(x-h)}{h} = =$

- (A) $-3x^2 x$
- **(B)** $3x^2 + x$
- (C) $-6x^2 2x$
- **(D)** $6x^2 + 2x$
- (E) None of the above

$$2. \quad \lim_{x \to 3} \frac{x^3 - 2x^2 - 3x}{x^3 - 9x} = ?$$

- **(A)** 0

- **(D)** 1
- (E)

 ∞

3. If
$$f(x) = \frac{x^2}{e^x}$$
, then $f'(1) =$

- (A) 0 (B) $\frac{1}{e}$ (C) $\frac{2}{e}$
- **(D)** 2
 - (E)

2e

The tangent line to the curve $t = 3x^4 - 10x + 3$ at x = 1, intersects the

x -axis at the point

- (A) (-6,0) (B) (-4,0) (C) (0,-6) (D)(3,0) (E)

(4,0)

A graphing calculator may be used.

1. If
$$f(x) = \frac{e^{2x}}{2x}$$
, then $f'(x) = \frac{e^{2x}}{2x}$

(A) 1

(B)
$$\frac{e^{2x}(1-2x)}{2x^2}$$

(C) e^{-2x}

(D)
$$\frac{e^{2x}(2x+1)}{x^2}$$

(E)
$$\frac{e^{2x}(2x-1)}{2x^2}$$

2. If the derivative of f is given by $f'(x) = e^x - 3x^2$, at which of the

following values of x does f have a relative maximum value?

$$(A) -0.46$$

(E) 3.73

3. Let f be the function give by $f(x) = 2e^{4x^2}$. For what value of x is the

slope of the line tangent to the graph of f at (x, f(x)) equal to 3?

(A) 0.168

(B) 0.276

(C) 0.318

(D) 0.342

(E)

0.551

x < 0

NO calculator.

1. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when

(A) x < -2 (B) x > -2 (C) x < -1 (D) x > -1 (E)

2. Let f be the function with the derivative given by $f'(x) = x^2 - \frac{2}{x}$.

On which of the following intervals is f decreasing?

- (A) $(-\infty, -1]$ only (B) $(-\infty, 0)$ (C) [-1, 0) only
- (D) $(0, \sqrt[3]{2}]$ only (E) $[\sqrt[3]{2}, \infty)$
- 3. $\lim_{x \to \infty} \frac{x^3 2x^2 + 3x 4}{4x^3 3x^2 + 2x 1} =$ (A) 4 (B) 1 (C) $\frac{1}{4}$ (D) 0 (E) -1
- 4. The graph of f'(x), the derivative of the function f, is shown below.

Which of the following statements is true about ??

- (A) f is decreasing for $-1 \le x \le 1$
- (B) f is increasing for $-2 \le x \le 0$
- (C) f is increasing for $1 \le x \le 2$
- (D) f has local minimum at x = 0

(E) f is not differentiable at x = -1 and x = 1

NO CALCULATOR

1.
$$\lim_{x \to 0} \frac{x^2 - 1}{1 - 2x^2} =$$

- (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 1 (E) non-existent
- 2. The sum of two non-negative numbers is 6. If the square of one

of the numbers is multiplied by the second number, then the largest possible product is

- (A) 32 (B) 36 (C) 38 (D) 45 (E) 64

- 3. The minimum value of the function $y = \sqrt{x^2 + 2ax + 10a^2}$, where a > 0, is
 - (A) -a

- (B) a (C) 3a (D) 6a (E) $9a^2$
- 4. If $y = \sin x + e^{-x}$, then y + y' = -x +
 - (A) 0
 - (B) $\sin x + \cos x$
 - (C) $2e^{-x}$
 - (D) $2\sin x + 2e^{-x}$
 - (E) $2\sin x 2e^{-x}$

NO CALCULATOR

1. The expression
$$\frac{1}{50} \left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \sqrt{\frac{3}{50}} + \bullet \bullet \bullet + \sqrt{\frac{50}{50}} \right)$$
 is a

Riemann sum

approximation for

approximation for

(A)
$$\int_{0}^{1} \sqrt{\frac{x}{50}} dx$$

(B) $\int_{0}^{1} \sqrt{x} dx$

(C)
$$\frac{1}{50} \int_{0}^{1} \sqrt{\frac{x}{50}} dx$$

(D) $\frac{1}{50} \int_{0}^{1} \sqrt{x} dx$

(E) $\frac{1}{50} \int_{0}^{50} \sqrt{x} dx$

2. Let f be a function defined for all real numbers x. If $f'(x) = \frac{\left|4 - x^2\right|}{x - 2}$ then f is decreasing on the interval (A) $(-\infty,2)$ (B) $(-\infty,\infty)$ (C) (-2,4) (D) $(-2,\infty)$ (E) $(2,\infty)$

$$(A) (-\infty, 2)$$

(B)
$$\left(-\infty,\infty\right)$$

(C)
$$(-2,4)$$

(D)
$$\left(-2,\infty\right)$$

Multiple Choice Sets: AP Calculus AB

3. The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown below.

What is the value of the $\int_{-1}^{4} f(x)dx$?

- **(A)** 1
- **(B)** 2.5
- **(C)** 4
- (D) 5.5
- **(E)** 8

NO CALCULATOR

1. If $f(x) = 6x^2 + \frac{16}{x^2}$, then $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} =$ (A) 0 (B) 20 (C) 24 (D) 32 (E)

 ∞

2. If
$$y = \frac{2x+3}{3x+2}$$
, then $\frac{dy}{dx} =$

(A) $\frac{12x+13}{(3x+2)^2}$ (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$

3.
$$\int_{0}^{\frac{\pi}{4}} \sin x dx =$$
(A) $-\frac{\sqrt{2}}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $-\frac{\sqrt{2}}{2}-1$ (D) $-\frac{\sqrt{2}}{2}+1$ (E)

CALCULATOR MAY BE USED

1. A rectangle is inscribed in the semicircle $y = \sqrt{4-x^2}$. Find the

largest possible area.

- (A) 1.4
- e area. (B) $\sqrt{3}$ (C) $2\sqrt{3}$ (D) 4

undefined

2. Find the value of c guaranteed by the Mean Value Theorem for $f(x) = \frac{2x}{x^2 + 1}$ on the interval [0, 1].

- **(A)** 0.475 **(B)** 0.486 **(C)** 0.488
- **(D)** 0.577

(E)

1.000

NO CALCULATOR

3. If $F(x) = \int_{0}^{x} \sin^{2}(2t) dt$, then F'(x) =

- (A) $-\cos^2(2x)$ (B) $\cos^2(2x)$ (C) $\sin^2(2x)$

- (D) $\frac{1}{2}\sin^2(2x)$ (E) $4\sin(2x)\cos(2x)$

4. Find the average value of $f(x) = \sqrt{x}$ on the interval [1, 4].

- (A) $\frac{1}{3}$ (B) $\frac{7}{9}$ (C) $\frac{14}{9}$ (D) $\frac{7}{2}$ (E) $\frac{14}{3}$

CALCULATOR MAY BE USED

1. The rate of natural gas sales for the year 1993 at a certain gas

company is given by $P(t) = t^2 - 400t + 160000$, where P(t) is measured in gallons per day and t is the number of days in 1993 (from day 0 to day 365). To the nearest gallon, what is the total number of gallons of natural gas sales at this company for the 31 days (day 0 to day 31) of January 1993?

$$2. \int \cos(7t+3)dt =$$

(A)
$$7\sin(7t+3)+6$$

(B)
$$\sin(7t+3)+C$$

(A)
$$7\sin(7t+3)+C$$
 (B) $\sin(7t+3)+C$ (C) $\frac{1}{7}\sin(7t+3)+C$

(D)
$$-7\sin(7t+3)+6$$

(D)
$$-7\sin(7t+3)+C$$
 (E) $-\frac{1}{7}\sin(7t+3)+C$

NO CALCULATOR

3. If
$$f(x) = \sin x$$
, $g(x) = \cos(2x)$, and $h(x) = f(g(x))$, what is $h'(\frac{\pi}{4})$?

$$(A) -2$$

(A)
$$-2$$
 (B) $-\sqrt{2}$ (C) 0 (D) $\sqrt{2}$ (E) 2

(D)
$$\sqrt{2}$$

- 4. The position of a particle moving in a line is $s(t) = t^3 5t^2 + 2t 13$. What is the speed of the particle at t = 2?
 - **(A)** -21
- **(B)** -6
- **(C)** 6
- **(D)** 10
- **(E)** 32

CALCULATOR MAY BE USED

1. If k > 1, the area under the curve $y = kx^2$ from x = 0 to x = kis

(A)
$$\frac{1}{3}k^4$$
 (B) $\frac{1}{3}k^3$ (C) $\frac{1}{4}k^4$ (D) $\frac{1}{3}k^3 - k$ (E) k^3

2. A continuous function g(t) is defined in the closed interval [0,6] with values given in the table below. Using a midpoint Riemann sum with three subintervals of equal

length, the approximate value of $\int_{-\infty}^{\infty} g(t)dt$ is

t	g(t)	
0	<i>g(t)</i> 4	
1	7	
2	8	
3	12	
4	15	
5	22	
6	26	

NO CALCULATOR

3.
$$\int_{1}^{6} \sqrt{x+3} dx =$$

(A)
$$-\frac{5}{36}$$

(C)
$$\frac{58}{5}$$

(B) 1 (C)
$$\frac{58}{5}$$
 (D) $\frac{38}{3}$ (E) 19

- 4. A young girl, 5 feet tall, is walking away from a lamppost which is
 - 12 feet tall. She walks at a constant rate of 2 feet per second and notices that, as she moves away from the lamppost, the length of her shadow is increasing. How fast is

Multiple Choice Sets: AP Calculus AB

the length of her shadow increasing in feet per second when she is 20 feet from the post?

(A)
$$\frac{7}{10} ft / \sec$$
 (B) $\frac{10}{7} ft / \sec$ (C) $2 ft / \sec$ (D) $\frac{34}{7} ft / \sec$ (E)

$$\frac{27}{10}$$
 ft/sec

5. If $f(x) = 3x^3 + 5x$ and $g(x) = f^{-1}(x)$, what is g'(8)?

- (A) $\frac{1}{14}$
- **(B)** $\frac{1}{11}$
- (C) $\frac{1}{8}$
- **(D)** 11

(E) 14

CALCULATOR MAY BE USED

1. Let f be the function given by $f(x) = 2e^{4x^2}$. For what value of x is the

slope of the line tangent to the graph of f at (x, f(x)) equal to 3?

2. The base of a solid is the region in the first quadrant bounded by the y-axis, the graph of $y = \tan^{-1} x$, the horizontal line y = 3, and the vertical line x = 1. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?

NO CALCULATOR

$$3. \ \frac{d}{dx} \left(\int_{0}^{x^2} \sin(t^3) dt \right) =$$

(A)
$$-\cos(x^6)$$

(B)
$$\sin(x^3)$$

(C)
$$\sin(x^6)$$

(A)
$$-\cos(x^6)$$
 (B) $\sin(x^3)$ (C) $\sin(x^6)$ (D) $2x\sin(x^3)$ (E) $2x\sin(x^6)$

(E)
$$2x\sin(x^6)$$

4. Region Q is bounded by $y = \sin 2x, y = 0, x = 0, x = \frac{\pi}{2}$. Which of the following

expressions gives the volume of a solid whose base in the xy-plane is

region Q and whose cross sections, perpendicular to the xaxis, are

squares with a side in the xy-plane?

(A)
$$\pi \int_{0}^{\frac{\pi}{2}} (1-\cos^{2}2x) dx$$
 (B) $\int_{0}^{\frac{\pi}{2}} \sin^{2}2x dx$ (C) $\int_{0}^{\frac{\pi}{2}} (1-\cos 2x) dx$ (D) $\int_{0}^{\frac{\pi}{2}} (1-\cos 2x^{2}) dx$ (E) $\pi \int_{0}^{\frac{\pi}{2}} \sin(2x)^{2} dx$

(D)
$$\int_{0}^{\frac{\pi}{2}} (1-\cos 2x^{2}) dx$$
 (E) $\pi \int_{0}^{\frac{\pi}{2}} \sin (2x)^{2} dx$

5. If
$$f(x) = x^2 + 2x$$
, then $\frac{d}{dx}(f(\ln x)) =$

- (A) $\frac{2 \ln x + 2}{x}$ (B) $2x \ln x + 2x$ (C) $2 \ln x + 2$ (D) $2 \ln x + \frac{2}{x}$ (E) $\frac{2x + 2}{x}$

6. If the region enclosed by the y-axis, the line y = 2, and the curve

 $y = \sqrt{x}$ is revolved about the y-axis, the volume of the solid generated is

- (A) $\frac{32\pi}{5}$ (B) $\frac{16\pi}{3}$ (C) $\frac{16\pi}{5}$

(E) π