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Problem 1

a)

1
4−0

∫ 4

0
C(t)dt ≈ 2.778 is the average number of acres affected by the invasive species from t = 0 to

t = 4 weeks.

b)

The average rate is C(4)−C(0)
4−0

≈ 1.28201. Setting this number equal to C ′(t), and solving with the
graphing calculator, we get t ≈ 2.514.

c)

lim
t→∞

C ′(t) = lim
t→∞

38
25+t2

= 0
∞ = 0.

The rate of change of the number of species approaches zero in the long run.

d)

The domain is 4 ≤ t ≤ 36. The function we are maximizing is:

A(t) = C(t)−
t∫
4

(0.1 ln(x)) dx > 0 → A′(t) = C ′(t)− 0.1 ln(t) by FTC.

Setting the derivative A′(t) equal to 0 or undefined, we find one critical number in the given domain:
t = 11.442.

We use the Closed Interval Method with the graphing calculator to evaluate:

A(4) = 5.128

A(36) = 1.743

A(11.442) = 7.317

Therefore, the absolute maximum occurs at t = 11.442 weeks.



Problem 2

r(θ) = 2(sin θ)2; 0 ≤ θ ≤ π.

a)

dr
dθ

= 4 sin θ cos θ

dr
dθ

∣∣∣
θ=1.3

= 4 sin(1.3) cos(1.3) ≈ 1.031 (Insert graphing calculator model here.)

b)

To find the corresponding angle(s) where the polar curves intersect, set the expressions equal to
each other:

2(sin θ)2 = 1
2
→ θ = π

6
, 5π

6

We can use symmetry to double the area in the first quadrant:

A = 2×

[
1
2

π/2∫
π/6

(
(r(θ))2 −

(
1
2

)2)
dθ

]
≈ 2.067 (Insert graphing calculator model here.)

Note that the precise value of the area is 7
√
3

16
+ 5π

12
.

c)

Given: dx
dθ

= 4 sin θ cos2 θ − 2 sin3 θ.

To maximize the distance to the y-axis in the first quadrant, it means the same as maximizing x(θ)
for 0 ≤ θ ≤ π/2.

To find critical numbers, we can use technology or see where the algebra takes us:

dx
dθ

= 2 sin θ
[
2 cos2 θ − sin2 θ

]
→ tan2 θ = 2 or sin θ = 0

In the given domain, the only interior candidate is θ = arctan(
√
2) ≈ 0.955317.

Since x(0) = x(π/2) = 0, we use the Closed Interval Method to justify that x(0.955317) ≈ 0.770 is
the absolute maximum, so the particle will be farthest from the y-axis when θ = arctan(

√
2) ≈ 0.955

radian. Alternatively, we could have used the First Derivative Test for Global Extrema to justify.

d)

By the Chain Rule, dr
dt

∣∣∣
θ=1.3

= dr
dθ

∣∣∣
θ=1.3

× dθ
dt

∣∣∣
θ=1.3

= 1.031× 15 = 15.465 units of distance per unit of

time.
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Problem 3

a)

R′(1) ≈ R(2)−R(0)
2−0

= 100−90
2−0

= 5 words per minute per minute.

b)

Yes, by the Intermediate Value Theorem, there must be a value c between 8 and 10 such that
R(c) = 155 because 155 falls between R(8) = 150 and R(10) = 162. We can apply IVT here
because the function R(t) is differentiable and therefore continuous on the given interval.

c)

T3 =
1
2
[2× 190 + 3× 250 + 2× 312] = 190 + 750 + 312 = 1252 words.

d)

10∫
0

W (t)dt =
10∫
0

[−0.3t2 + 8t+ 100] dt = (−0.1t3 + 4t2 + 100t)
∣∣∣t=10

t=0
= −0.1× 1000 + 4× 100 + 100×

10 = 1300 words.
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Problem 4

a)

g′(x) = f(x) by the Fundamental Theorem of Calculus,therefore g′(8) = f(8) = 1.

b)

g′′(x) = f ′(x), which changes sign at x = −3, 3, 6. These are the inflection points on the graph of g
because the second derivative changes sign, the first derivative (g′(x) = f(x)) maintains the same
sign, and g(x) is continuous.

c)

g(12) = 1
2
(6× 3) = 9 (We use geometry here to find the area of the triangle.)

g(0) = −9π
2

(We use geometry here as well to first find the area of the semi-circle. The negative sign
is required because the integrand is positive but the upper bound is less than the lower bound. )

d)

To find the absolute minimum on [−6, 12] we consider critical numbers and endpoints:

g(−6) = g(6) = 0

g(0) = −9π
2

g(12) = 9

Since the function g(x) is continuous on the given interval, we use the Closed Interval Method to
find that the global minimum occurs at x = 0.
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Problem 5
dy

dx
= (3− x)y2; f(1) = −1

a)

After differentiating below, plug in x = 1, y = −1, dy
dx

= 2.

d2y
dx2 = (3− x)× 2y dy

dx
− y2 → d2y

dx2 = 1× 2× (−1)× 2− 1 = −9

b)

T2(x) = f(1) + f ′(1)(x− 1) + f ′′(1)
2!

(x− 1)2 = −1 + 2(x− 1)− 9
2!
(x− 1)2

c)

LEB =
∣∣∣f ′′′(z)(x−1)3

3!

∣∣∣ = ∣∣∣60∗(1.1−1)3

3!

∣∣∣ = 1
100

.

|T2(1.1)− f(1.1)| < 1
100

The error cannot exceed the Lagrange Error Bound.

d)

We use Euler’s Method with ∆x = 0.2 to approximate f(1.4).

Start with: x0 = 1, y0 = −1,m = dy
dx

∣∣∣
x=1,y=−1

= 2, so the tangent line equation is: y = −1+2(x−1).

Plugging in x1 = 1.2 we get y1 = −0.6.

When x1 = 1.2, y1 = −0.6,m = dy
dx

∣∣∣
x=1,y=−0.6

= 81
125

, so the tangent line equation is: y = −3
5

+

81
125

(x− 1.2).

Plugging in x2 = 1.4, we get f(1.4) ≈ y2 =
−3
5
+ 81

125
× 0.2 = 81−375

625
= −294

625
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Problem 6

f(x) =
∞∑
n=1

(x− 4)n+1

(n+ 1)3n

a)

We perform the Ratio Test to identify the interval of convergence:∣∣∣an+1

an

∣∣∣ = ∣∣∣ (x−4)n+2

(n+2)3n+1 × (n+1)3n

(x−4)n+1

∣∣∣ = n+1
n+2

3n

3n+1 |x− 4| → |x−4|
3

< 1

Solve the inequality to find: 1 < x < 7.

We need to also test the endpoints:

When x = 1, the series becomes
∞∑
n=1

(−3)n+1

(n+1)3n
=

∞∑
n=1

(−1)n+13
(n+1)

, which converges by the Alternating Series

Test. Note that the series is a multiple of the Alternating Harmonic Series.

When x = 7, the series becomes
∞∑
n=1

(3)n+1

(n+1)3n
=

∞∑
n=1

3
(n+1)

, which diverges, since it is a non-zero

multiple of the Harmonic Series.

The interval of convergence is 1 ≤ x < 7.

b)

f ′(x) = x−4
3

+ (x−4)2

32
+ (x−4)3

33
+ ...+ (x−4)n

3n
+ ...

c)

The first term of the geometric series is also equal to the ratio: a = r = x−4
3
. The geometric series

converges to:

a
1−r

= (x−4)/3
1−(x−4)/3

= x−4
3−(x−4)

= x−4
7−x

, as wanted.

d)

The Taylor series for f ′(x) does not converge at x = 8 because this falls outside of the interval of
convergence of the series of the original function f(x).
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