a) $C'(5) \approx \frac{C(7)-C(3)}{7-3} = \frac{69-85}{4} = -4$ degrees Celcius per minute.

b) $\int_0^{12} C(t) dt \approx L_3 = f(0)(3-0) + f(3)(7-3) + f(7)(12-7) = 100 \times 3 + 85 \times 4 + 69 \times 5 = 985.$

The expression $\frac{1}{12} \int_0^{12} C(t) dt$ is the average temperature of coffee during the 12 minutes.

c) By the Fundamental Theorem of Calculus, $\int_{12}^{20} C'(t) dt = C(20) - C(12)$.

Therefore, $C(20) = C(12) + \int_{12}^{20} C'(t) dt \approx 55 + (-14.6708) \approx 40.329$ degrees Celsius.

(Use graphing calculator to approximate the definite integral.)

d) The graph of $C''(t)$ is positive on the interval $12 < t < 20$, so the temperature of coffee is changing at an increasing rate.

 $C''(t) > 0 \rightarrow C'(t)$ is increasing.

a) The particle is at rest when the velocity is zero.

 $v(t) = \ln(t^2 - 4t + 5) - 0.2t = 0 \rightarrow t_R \approx 1.426.$

The velocity graph is positive on the interval $0 < t < t_R$, so the particle is moving to the right during this time.

b)

 $a(t) = v'(t) = \frac{2t-4}{t^2-4t+5} - 0.2$ $a(1.5) = v'(1.5) = \frac{-1}{5/4} - 0.2 = -0.8 - 0.2 = -1$ $v(1.5) \approx -0.0768564 < 0$ (graphing calculator)

Because velocity and acceleration are both negative at $t = 1.5$, the particle is speeding up at this moment, which means its speed is increasing.

c)

By the Fundamental Theorem of Calculus:

$$
x(4) - x(1) = \int_1^4 v(t) dt
$$
, so it follows that $x(4) = x(1) + \int_1^4 v(t) dt \approx -2.803$
d)

Total distance is given by \int_1^4 speed $dt = \int_1^4 |v(t)| dt \approx 0.958$ units of distance.

a) Below is a solution curve that passes through the point (0,4).

b) A critical number occurs when $\frac{dH}{dt} = 0$ or is undefined. Becase $H(t) > 1$, it follows that $\cos\left(\frac{t}{2}\right)$ $\frac{t}{2}$ = 0. Therefore, $\frac{t}{2} = \frac{\pi}{2} \rightarrow t = \pi$ is the solution we are looking for in the interval $0 < t < 5$. We need to study the sign change:

For $t < \pi \rightarrow \cos\left(\frac{t}{2}\right)$ $\frac{t}{2}$) > 0 $\rightarrow \frac{dH}{dt}$ > 0. For $\pi < t \to \cos\left(\frac{t}{2}\right)$ $\left(\frac{t}{2}\right)$ < 0 $\rightarrow \frac{dH}{dt}$ < 0.

By the first derivative test for local extrema, the depth water has reached a local maximum at the given critical number. Note that we ignored the factor $(H - 1)$ when studying the sign since we know that $H(t) > 1$.

c) We first separate the variables before integrating:

$$
\frac{1}{H-1}dH = \frac{1}{2}\cos\left(\frac{t}{2}\right)dt
$$
\n
$$
\int \frac{1}{H-1}dH = \int \frac{1}{2}\cos\left(\frac{t}{2}\right)dt
$$
\n
$$
\ln|H-1| = \sin\left(\frac{t}{2}\right) + C \leftarrow H(0) = 4
$$

 $C = \ln 3$ so we have: $|H(t) - 1| = e^{\sin(t/2)}e^{\ln 3} = 3e^{\sin(t/2)}$

 $H(t) = 1 \pm 3e^{\sin(t/2)}$. The option that satisfies our initial condition is: $H(t) = 1 + 3e^{\sin(t/2)}$.

a) $g(x) = \int_0^x f(t) dt$. $g(-6) = \int_0^{-6} f(t) dt = - \int_{-6}^0 f(t) dt = -12.$ $g(4) = \int_0^4 f(t) dt = \frac{base * height}{2} = \frac{4*2}{2} = 4$ (the area of the right triangle in the first quadrant). $g(6) = \int_0^6 f(t) dt = \int_0^4 f(t) dt + \int_4^6 f(t) dt = \frac{4*2}{2} - \frac{2*1}{2} = 3.$ b) The graph of $g(x)$ has a critical point whenever its derivative, $g'(x) = f(x)$ (by FTC) is zero or undefined. On the given interval, the only such number is $x = 4$, since $f(4) = 0$. c) $h(x) = \int_{-6}^{x} f'(t) dt$. We use the Fundamental Theorem of Calculus in the computations below. $h(6) = \int_{-6}^{6} f'(t)dt = f(6) - f(-6) = (-1) - (0.5) = -\frac{3}{2}$ $\frac{3}{2}$.

$$
h'(x) = f'(x)
$$
, therefore $h'(6) = f'(6) = \frac{rise}{run} = -\frac{1}{2}$.

 $h''(x) = f''(x)$. Since the graph of f is a linear function, it follows that its second derivative is zero everywhere. Therefore, $h''(6) = 0$.

.

a) Plug $(2, 4)$ into $\frac{dy}{dx} = \frac{-2x}{3+4y}$ $\frac{-2x}{3+4y}$ to find a slope of $\frac{-4}{19}$. The equation of the tangent line at $(2, 4)$ is $L(x) = 4 - \frac{4}{19}(x - 2)$. Therefore, $f(3) \approx L(3) = 4 - \frac{4}{19} = \frac{72}{19}$.

b) For the line $y = 1$ to be tangent, we need to first check when the derivative is zero: $\frac{dy}{dx} = 0 \rightarrow$ $x = 0$. If we plug this condition into the equation of the curve, we get $2y^2 + 3y = 48$. Since $y = 1$ does not satisfy this condition, we conclude that $y = 1$ is not tangent to the curve.

Alternatively, if we plug in $y = 1$ into the equation of the curve, we get $x^2 = 43$, which disagrees with the condition $x = 0$.

c) We evaluate the slope expression at the point $(\sqrt{48}, 0)$:

$$
\frac{dy}{dx} = \frac{-2\sqrt{48}}{3+4*0} = \frac{-8\sqrt{3}}{3}
$$

. The slope we found is a finite number, so the tangent line cannot be vertical at this point.

d) We differentiate the equation $y^3 + 2xy = 24$ implicitly with respect to time t.

$$
3y^2\frac{dy}{dt} + 2x\frac{dy}{dt} + 2\frac{dx}{dt}y = 0
$$

Plugging in the known information, we get:

$$
3*(22)(-2) + 2*(4)(-2) + 2\frac{dx}{dt} * 2 = 0
$$

$$
\frac{dx}{dt} = 10
$$

At the instant when the particle is at the point $(4, 2)$, its x-coordinate is changing at a rate of 10 units per second.

a)
$$
A(R) = \int_0^2 f(x) - g(x) dx
$$

b) A typical rectangle (cross-section) has area given by $A(x) = \frac{1}{2}(x^2 - 2x)^2 = \frac{1}{2}$ $\frac{1}{2}(x^4 - 4x^3 + 4x^2)$

The volume is given by the integral of the area of a typical cross section:

$$
V = \int_2^5 A(x)dx = \int_2^5 \frac{1}{2}(x^4 - 4x^3 + 4x^2)dx
$$

The anti-derivative of the area function is:

$$
F(x) = \frac{1}{2} \left(\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right)
$$

Therefore, the volume is:

$$
V = F(5) - F(2) = \frac{1}{2} \left(\left(\frac{5^5}{5} - 5^4 + \frac{4 \cdot 5^3}{3} \right) - \left(\frac{2^5}{5} - 2^4 + \frac{4 \cdot 2^3}{3} \right) \right) = \frac{1}{2} \left(\frac{500}{3} - \frac{16}{15} \right) = \frac{414}{5} \text{ cubic units.}
$$

c) We use the Washer Method with the following radii:

outer radius = $R(x) = 20 - 0$

inner radius = $r(x) = 20 - g(x)$

$$
V_{\text{washer}} = \pi \int_2^5 (20)^2 - (20 - g(x))^2 \, dx
$$